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Parcellations of resting-state functional magnetic resonance imaging (rs-fMRI) data 
are widely used to create topographical maps of functional networks in the human 
brain. While such network maps are highly useful for studying brain organization 
and function, they usually require large sample sizes to make them, thus creating 
practical limitations for researchers that would like to carry out parcellations 
on data collected in their labs. Furthermore, it can be difficult to quantitatively 
evaluate the results of a parcellation since networks are usually identified using a 
clustering algorithm, like principal components analysis, on the results of a single 
group-averaged connectivity map. To address these challenges, we developed 
the FunMaps method: a parcellation routine that intrinsically incorporates stability 
and replicability of the parcellation by keeping only network distinctions that agree 
across halves of the data over multiple random iterations. Here, we demonstrate 
the efficacy and flexibility of FunMaps, while describing step-by-step instructions 
for running the program. The FunMaps method is publicly available on GitHub 
(https://github.com/persichetti-lab/FunMaps). It includes source code for running 
the parcellation and auxiliary code for preparing data, evaluating the parcellation, 
and displaying the results.
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Introduction

Functional parcellations of resting state fMRI (rs-fMRI) data provide useful maps of 
functional networks in human cortex (Glasser et al., 2016; Power et al., 2011; Thomas Yeo 
et al., 2011). By subdividing the cortex into a topography of functional units, neuroscientists 
can more easily identify brain areas and networks that are relevant to a particular research 
question, while also forming new hypotheses based on the network architecture. Furthermore, 
individual parcels from a functional network map provide a valid means of reducing the 
number of units in a statistical test (from voxels to parcels) and identifying regions of interest 
for seed-based connectivity and task-based experiments. Parcellation algorithms can also 
be  used to create group-specific topographies that can be  used to compare network 
characteristics between clinical populations and matched controls (Persichetti et al., 2023). 
However, creating group-specific functional parcellations is often not feasible with commonly 
used parcellation methods because they require sample sizes that are much larger than the 
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typical dataset collected in a lab to ensure that the resultant network 
maps are stable and reliable.

In this paper, we  introduce a method, called FunMaps, that 
we  developed to perform flexible and data-driven functional 
parcellations of the brain to derive network maps with relatively small 
datasets collected in individual labs. FunMaps incorporates stability 
measures by searching for networks across random split halves of the 
data over multiple iterations and then keeping only networks that are 
present in both halves across several iterations (Persichetti et al., 2021, 
2023). The FunMaps parcellation tool comprises several steps that are 
controlled through a wrapper function. We will walk through the steps 
of the parcellation, how to enter the desired parameters into the 
wrapper, and how to evaluate the output at each step. We will show 
step-by-step results to highlight some of the ways that FunMaps can 
be applied to rs-fMRI data. In addition, we will describe and evaluate 
several auxiliary functions that complement the FunMaps method. 
FunMaps can be downloaded for free on GitHub.1 The GitHub page 
also includes a link to a sample dataset2 for users who want to try using 
the method on data used in this paper.

Methods

Demographics

We present data from two separate groups of participants. The 
main data presented were collected in our lab from 70 typically 
developing (TD) individuals with no history of psychiatric or 
neurological disorders [mean (SD) age = 19.7 (3.7) years; 19 female]. 
We also present data demonstrating how to use the FunMaps method 
on a restricted region of interest (ROI)—i.e., the anterior temporal 
lobes (ATL). These data were collected in our lab from 88 individuals 
with no history of psychiatric or neurologic disorders [mean (SD) age, 
21.2 years (7.6 years); 24 females]. Seventy of these participants are 
from the TD group described above. Subsets of the resting-state data 
from all of the above individuals have been used in several previous 
studies (Gotts et al., 2012; Jasmin et al., 2019; Persichetti et al., 2021, 
2022, 2023; Power et al., 2019; Ramot et al., 2017). Informed assent 
and consent were obtained from all participants and/or their parent/
guardian when appropriate in accordance with a National Institutes 
of Health (NIH) Institutional Review Board-approved protocol 
(10-M-0027, clinical trials number NCT01031407). In addition to the 
data collected in our lab, we also present data from a sample of 450 
participants from the Lifespan Human Connectome Project (HCP) 
Development project [mean (SD) age = 16.54 (2.94) years, range 
12–21 years; 231 female] (Somerville et al., 2018).

MRI data acquisition and procedure

For all data collected in our lab, scanning was completed on a 
General Electric Signa HDxt 3.0 T scanner (GE Healthcare) at the 
NIH Clinical Center NMR Research Facility. For each participant, 

1 https://github.com/persichetti-lab/FunMaps

2 https://osf.io/we8k3

T2*-weighted blood oxygen level-dependent (BOLD) images covering 
the whole brain were acquired using an 8-channel receive-only head 
coil and a gradient echo single-shot echo planar imaging sequence 
(repetition time = 3,500 ms, echo time = 27 ms, flip angle = 90°, 42 axial 
contiguous interleaved slices per volume, 3.0 mm slice thickness, 
128 × 128 acquisition matrix, single-voxel volume = 1.7 × 1.7 × 3.0 mm, 
field of view = 22 cm). An acceleration factor of 2 (ASSET) was used 
to reduce gradient coil heating during the session. In addition to the 
functional images, a high-resolution T1-weighted anatomical image 
(magnetization-prepared rapid acquisition with gradient echo—
MPRAGE) was obtained (124 axial slices, 1.2 mm3 single-voxel 
volume, 224 × 224 acquisition matrix, field of view = 24 cm). During 
the resting scans, participants were instructed to relax and keep their 
eyes fixated on a central cross. Each resting scan lasted 8 min and 10 s 
for a total of 140 consecutive whole-brain volumes. Independent 
measures of cardiac and respiratory cycles were recorded during 
scanning for later artifact removal.

For the HCP Development (HCP-D) data, scanning was 
completed on 3 T Siemens Prisma scanners (Siemens, Erlangen, 
Germany). For each participant, T2*-weighted blood oxygen level-
dependent (BOLD) images covering the whole brain were acquired 
using the Siemens 32-channel Prisma head coil and a 2D multiband 
(MB) gradient-recalled echo (GRE) echo-planar imaging (EPI) 
sequence (MB8, TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm 
isotropic voxels. In addition to the functional images, a high-
resolution multi-echoT1-weighted anatomical image (magnetization-
prepared rapid acquisition with gradient echo—MPRAGE) was 
obtained (Harms et al., 2018; Somerville et al., 2018). The MPRAGE 
scan used a sagittal FOV of 256 × 240 × 166 mm with a matrix size of 
320 × 300 × 208 slices. Slice oversampling of 7.7% was used, as was 
2-fold in-plane acceleration (GRAPPA) in the phase encode direction 
and a pixel bandwidth of 744 Hz/Px. Other parameters included: TR/
TI = 2,500/1,000, TE = 1.8/3.6/5.4/7.2 ms, flip angle of 8 deg, water 
excitation employed for fat suppression (to reduce signal from bone 
marrow and scalp fat), and up to 30 TRs allowed for motion-induced 
reacquisition. During the resting scans, participants were instructed 
to stay still, stay awake, and blink normally while looking at the 
fixation crosshair. Each resting scan lasted 6 min and 30 s for a total of 
488 consecutive whole-brain volumes. Independent measures of 
cardiac and respiratory cycles were recorded during scanning for later 
artifact removal.

Preprocessing

All data that were collected in our lab were preprocessed using the 
AFNI software package (Cox, 1996). First, the initial three TRs from 
each EPI scan were removed to allow for T1 equilibration. Next, 
3dDespike was used to bound outlying time points in each voxel 
within 4 SDs of the time series mean, and 3dTshift was used to adjust 
for slice acquisition time within each volume (to t = 0). 3dvolreg was 
then used to align each volume of the resting-state scan series to the 
first retained volume of the scan. White matter and large ventricle 
masks were created from the aligned MPRAGE scan using Freesurfer 
(Fischl et  al., 2002). These masks were then resampled to EPI 
resolution, eroded by 1 voxel to prevent partial volume effects with 
gray matter voxels, and applied to the volume-registered data to 
generate white matter and ventricle nuisance regressors before spatial 
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blurring. Scans were then spatially blurred by a 6 mm Gaussian kernel 
(full-width at half-maximum) and divided by the voxelwise time series 
mean to yield units of percentage signal change. The data were 
denoised using the ANATICOR preprocessing approach (Jo et al., 
2010). Nuisance regressors for each voxel included the following: six 
head-position parameter time series (three translation, three rotation), 
one average eroded ventricle time series, one “localized” eroded white 
matter time series (averaging the time series of all white matter voxels 
within a 15-mm radius sphere), eight RETROICOR time series (four 
cardiac, four respiration) calculated from the cardiac and respiratory 
measures taken during the scan (Glover et  al., 2000), and five 
respiration volume per time series to minimize end-tidal CO2 effects 
from deep breaths (Birn et al., 2008). All regressors were detrended 
with a fourth-order polynomial before denoising, and the same 
detrending was applied during nuisance regression to the voxel time 
series. Finally, the residual time series were spatially transformed to 
standard anatomic space (Talairach–Tournoux) at both 2 and 6 mm3 
isotropic resolutions for computational speed in later analyses.

The HCP-D data were preprocessed using the AFNI software 
package (Cox, 1996). First, 3dDespike was used to bound outlying 
time points in each voxel within 4 SDs of the time series mean. Next, 
unWarpEPI was used to warp posterior-anterior (PA) and anterior-
posterior (AP) encoding scans to the midpoint of the two scans (each 
with 478 TRs), simultaneously accomplishing volume registration. 
The python script align_epi_anat.py was then used to align the 
MPRAGE scan to the EPI data. White matter and large ventricle 
masks were created from the aligned MPRAGE scan using Freesurfer 
(Fischl et  al., 2002). These masks were then resampled to EPI 
resolution, eroded by 1 voxel to prevent partial volume effects with 
gray matter voxels, and applied to the volume-registered data to 
generate white matter and ventricle nuisance regressors before spatial 
blurring. Scans were then spatially blurred by a 4 mm Gaussian kernel 
(full-width at half-maximum) and divided by the voxelwise time series 
mean to yield units of percentage signal change. The data were 
denoised using the ANATICOR preprocessing approach (Jo et al., 
2010). Nuisance regressors for each voxel included the following: six 
head-position parameter time series (three translation, three rotation), 
one average eroded ventricle time series, one “localized” eroded white 
matter time series (averaging the time series of all white matter voxels 
within a 15 mm radius sphere), and the first 3 PCs of the voxelwise 
timeseries from the combined white-matter and ventricle masks 
(modified aCompCor: Behzadi et al., 2007; Stoddard et al., 2016). All 
regressors were detrended with a fourth-order polynomial before 
denoising, and the same detrending was applied during nuisance 
regression to the voxel time series. Following nuisance regression, the 
PA and AP scans were concatenated, and the residual time series were 
spatially transformed to standard anatomic space (Talairach–
Tournoux) at both 2 and 6 mm3 isotropic resolutions for computational 
speed in later analyses.

Results

Brief overview

The FunMaps method is a Matlab based pipeline that also uses 
AFNI fMRI analysis software (Cox, 1996), and the graph theory-based 
Infomap algorithm for community detection (Rosvall and Bergstrom, 

2008, 2011). Instructions for downloading the FunMaps dependencies 
can be found on the FunMaps GitHub page. All functions in the main 
pipeline are controlled through a wrapper function 
(funmapsWrapper.m) that allows the researcher to update the 
necessary variables for each step in the pipeline and execute them 
from one script. Below we will describe each step of the pipeline and 
which variables coincide with them when applicable (see Table 1 for a 
schematic of the directory structure and output of FunMaps).

Step 0: Data and materials needed to run 
FunMaps

Before running FunMaps, you will need to make an experiment 
directory with two subdirectories: One called “brains” that contains 
the cleaned rs-fMRI timeseries data for all participants in the study 
and another directory called “masks” that contains two types of masks 
in the native resolution of the timeseries data (Figure 1A). The “brains” 
directory should contain only one timeseries of equal length from 
each participant, so the parcellation is not weighted toward an 
individual or subgroup in the data. The method requires all initial 
brain data and masks to be in NIfTI format and to be in the users’ 
preferred standard volumetric space (e.g., our data are in Talairach 
space—Talairach and Tournoux 1997). The first type of mask is the 
region of interest (ROI) mask, which consists of all the voxels within 
the brain region(s) that you want to parcellate. The ROI mask can 
range in size from a small region of study (e.g., the anterior portion of 
the temporal lobes—Persichetti et  al., 2021) to the whole brain 
(Persichetti et  al., 2023). If your ROI includes both cortical and 
subcortical voxels, then we recommend separating the ROI mask into 
cortical and subcortical masks. The pipeline can handle multiple ROI 
masks at a time, if necessary. The cortical and subcortical ROI’s will 
be parcellated separately and then combined at a later step in the 
pipeline. The second type of mask is the context mask, which will 
often be a whole-brain mask, but you can also decide to exclude voxels 
that are in your ROI mask—e.g., if you have a small ROI mask and 
you do not want to use voxel-to-voxel correlations from within the 
ROI (see Persichetti et  al., 2021 for an example). Additionally, 
we recommend removing voxels with poor temporal signal-to-noise 
ratio (tSNR) and prominent blood vessel signal from both types of 
masks. We removed voxels with prominent blood vessel signals by 
identifying voxels with a relatively high standard deviation in a 
standard deviation map of the volume registered EPI data (Kalcher 
et al., 2015).

Step 1: Extract voxelwise timeseries data 
from each mask (dumpTS.m)

The dumpTS function downsamples the data and masks to a lower 
spatial resolution, then extracts voxelwise time series data from the 
rs-fMRI volumes and saves it into text files (Table 1). Downsampling 
the data before starting the parcellation saves lots of time without 
sacrificing performance of the parcellation routine, while saving the 
timeseries data into text files saves space and time, since text files are 
a small fraction of the file size of a brain volume.

For example, in Persichetti et al. (2023), we started with 2 mm3 
resolution voxels, then downsampled the whole-brain context mask and 
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the cortical ROI mask to 6 mm3 resolution, while the subcortical ROI 
mask was downsampled to 3 mm3 resolution because of its smaller 
starting volume. Users can choose to omit or modify the degree of down 
sampling to match the needs of their data, using the variables 
roiDownDimArray and contextDownDim in the wrapper. Next, to lower 
data storage requirements, the ROI and context masks are used to extract 
voxelwise time series data from the rs-fMRI volumes and save it into 1D 
vectors. Thus, the output of this step will be new downsampled masks in 
the masks directory (if downsampling is indicated in the wrapper, which 
we  recommended) and a new subdirectory, named timeseries, that 
contains 1D text files of voxelwise rs-fMRI timeseries data from each 
participant and each mask in the desired spatial resolution (Table 1).

Step 2: Create random split-half datasets 
(genSplits.m)

The genSplits function randomly splits the participant data into 
two equal groups, calculates the voxelwise correlation matrices 

between each ROI mask and the context mask data (done separately 
for each ROI mask) for each participant, then combines the correlation 
matrices from all participants in each split-half group to create a 
group-averaged correlation matrix in each half of the data. This 
process is repeated over several iterations (we recommend 10 split-half 
iterations as a good tradeoff between finding stability and minimizing 
computation time), each time randomly splitting the group of 
participants into two equal sized groups. The group-averaged ROI × 
context matrix from each half and each iteration is then made square 
by calculating the column-wise correlation, yielding an ROI-voxels × 
ROI-voxels matrix that reflects the similarity of connectivity patterns 
from ROI voxels to the voxels in the context mask. The final step 
formats the matrices to be compatible with the InfoMap algorithm 
that will be used in the next step of the pipeline. Specifically, the real-
valued correlation matrices are thresholded into binary (0 or 1) 
undirected matrices at a range of threshold values representing the top 
percentages of connections and then converted to the Pajek file 
format. In the examples used in this paper, we used the following 
thresholds: 50, 60, 70, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, and 

TABLE 1 A schematic of the directory structure that houses the products of the FunMaps method.
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99.5% (indicated in the wrapper by the variable testThreshArray as 
proportions—e.g., 0.5, 0.6, 0.7, etc.). We  used this wide range of 
thresholds to give the reader a sense of the effect thresholding has on 
the parcellation routine. However, we recommend that users constrain 
this range to something closer to steps of 3% between 80–95% to save 
time, since we have consistently found that ideal thresholds to be 85% 
for subcortical masks and 90% for cortical masks.

Step 3: Create network prototypes 
(genClusters.m)

The genClusters function searches for network prototypes in the 
thresholded matrices of each split-half group using the InfoMap 

algorithm to form optimal two-level partitions (FunMaps searches for 
the optimal solution over 100 searches on each split-half iteration). 
Prototypes found in each half of the data are required to replicate 
across halves in each iteration. Specifically, in each iteration, a 
prototype is counted as replicating if the Dice coefficient 
[( ( )2 )∩ +X Y X Y ] is greater than 0.5 and the volume of the 
intersecting voxels for the prototype is at least 2% of the ROI mask 
size. Network prototypes that meet these criteria are retained in each 
iteration. After repeating the above steps for all iterations, an 
agreement matrix is created, such that each cell reflects the proportion 
of iterations in which two voxels were part of the same network 
prototype that agreed across the split halves. Thus, if two voxels were 
part of a prototype that was present in eight out of 10 iterations, then 
that cell of the matrix would get a value of 0.8 to indicate that it was 

FIGURE 1

(A) In the main example presented in this paper, we chose two ROI masks: a cortical mask that included all cortical and cerebellar voxels (blue) and a 
subcortical mask that included all voxels in the subcortex (red) and brain stem. Our context mask included all voxels in the whole brain (purple). (B) The 
spilt-half agreement curves were constructed across a wide range of thresholds. The error in the line plots represents ±1 standard deviation across the 
10 iterations of the split-half routine. In this example, we chose the 90% threshold in the cortical mask and the 85% threshold for the subcortical mask 
as the thresholds that maximized proportion of coverage (i.e., number of voxels assigned a network prototype label) and the number of detected 
network prototypes in each mask (vertical dashed lines). It is critical for the user to evaluate these curves and select thresholds for themselves. (C) The 
cortical network prototypes at the 90% threshold and the subcortical prototypes at the 85% threshold. At this stage of the parcellation, the user can 
map the prototypes back to the volume at select thresholds to evaluate whether they are acceptable before proceeding to the next steps.
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present in 80% of the iterations. The matrix is then thresholded such 
that two voxels are required to be part of the same prototype in at least 
50% of the iterations. It is important to note that at this step the matrix 
has lost the prototype labels and is simply a binarized matrix reflecting 
generic network prototype membership across voxels. The voxels will 
be relabeled in the next step of the method (genParcels).

The above process is completed for all thresholds indicated in the 
prior step and agreement curves for each ROI are constructed across 
thresholds (Figure 1B). The agreement curves can be evaluated to find 
the threshold with the desired split-half agreement in brain coverage 
(i.e., the percentage of voxels assigned to a prototype at each threshold) 
and the total number of prototypes retained. At this point, the program 
pauses and asks the user to enter on the command line which threshold 
should be used for each ROI mask. Once the user enters the desired 
threshold for each ROI mask on the command line, the program 
resumes the parcellation for those thresholds only. In the example 
presented here, we chose 90% for the cortical mask and 85% as the 
threshold for the subcortical mask because we have consistently found 
these to be ideal thresholds for these types of masks (Figure 1B). In each 
mask, we consider a threshold “ideal” if both the number of parcels 
retained and the proportion of coverage are at a “stable” point in the 
agreement curve (Figure 1B). For example, we chose the 0.85 threshold 
in the subcortex, because this is the point in the curves where the 
proportion of coverage is at a local maximum just before it starts a 
steeper decline (i.e., an unacceptable loss in the number of voxels kept 
in the mask), while the number of parcels retained is at a relatively flat 
part of the curve just before a steep increase in the parcels retained that 
indicates unstable fractionation within the mask. However, it is critical 
that users evaluate the agreement curves and decide for themselves how 
they want to proceed, since the optimal threshold will be dependent on 
features of each dataset, such as sample size and tSNR (the ratio of the 
average signal intensity to the signal standard deviation across a scan 
Triantafyllou et  al., 2005). In addition to evaluating the agreement 
curves, the user should run the auxiliary function called 
undumpPrototypes.m that is provided in addition to the core FunMaps 
method to map the prototypes (in the downsampled space) at a given 
threshold onto the brain volume (Figure 1C). It is important to note that 
the number of prototypes that are mapped to the volume may differ 
slightly from the number indicated on the agreement curve because 
each prototype must cover at least 2% of the ROI mask. The volumetric 
prototypes are saved in a text file named with the ROI mask and the 
threshold value (e.g., cortex_prototypeNets_90.1D) and as a NIfTI 
formatted brain volume with the same name. The resultant brain map 
will give the user a good idea about whether the parcellation solution at 
the selected threshold is reasonable or not.

Step 4: Assign network labels in the original 
volume space (genParcels.m)

The genParcels function assigns final network labels to each voxel in 
the original spatial resolution. To save time, this step is completed 
entirely on vectors in the 1D text file format. The network labels will 
be mapped onto a brain volume in the next step. First, the program 
iterates through the timeseries data for each ROI mask in each 
participant and makes a correlation matrix that reflects the pattern of 
functional connectivity between each voxel in the ROI mask with all 
voxels in the context mask. These correlation matrices are then averaged 

across participants in the downsampled space. These voxelwise patterns 
of connectivity are then assigned prototype labels, and voxels from the 
same prototype are averaged together to get an average pattern of brain 
connectivity for each prototype. The average pattern of brain 
connectivity for each prototype from all ROI masks is then correlated 
with the pattern from every voxel across the brain in the original spatial 
resolution of the data. Thus, a prototype that originated in the 
subcortical ROI mask can include network voxels in the cortex, and vice 
versa. In a winner-takes-all approach, each voxel is given the label of the 
network prototype that explains the most variance in that voxel. 
However, as a final quality assurance step, the winning network 
prototype must explain at least 50% of the variance (i.e., R2 > 0.5) in the 
functional connectivity pattern of a given voxel for it to get a final 
network label, otherwise the voxel does not get a label at this step. We do 
this to avoid giving “noise voxels” (e.g., voxels with prominent blood 
vessel signal) a network label. At the end of this step, the final network 
labels are saved in a 1D text file along with the coordinates of all brain 
voxels in the original spatial resolution of the data. In the next and final 
step of the program, each voxel will be given a network label while 
remapping the data into the brain volume.

Step 5: Create a final volume that includes 
all networks (genVolume.m)

The genVolume function maps the network labels assigned to each 
voxel in the original spatial resolution of the data onto the brain volume 
in the NIfTI (.nii) file format. At this step, every voxel that was not 
assigned a network label in the previous step is given a label using nearest-
neighbor interpolation. The map of brain-wide functional networks 
provided by FunMaps is now complete and the final volumetric rendering 
of the whole-brain network parcellation can be  easily visualized 
(Figure  2A). The FunMaps GitHub page also includes an auxiliary 
function called vol2surf.m that uses the HCP Connectome Workbench 
(Marcus et al., 2013) to create a surface rendering of the cortical networks 
(Figure 2B). Instructions for downloading the Workbench software are 
on the FunMaps GitHub page.

Focused parcellations

In addition to parcellating the whole brain, FunMaps can be used to 
parcellate select brain regions. In this way, the method can be used to find 
finer grained parcellations within each network found in the first use of 
FunMaps. It can also be used to parcellate an a priori brain region—e.g., 
in a recently published paper, we used the FunMaps method to parcellate 
the anterior portions of the temporal lobes (i.e., the ATL—Persichetti 
et al., 2021). An example of both uses of FunMaps can be found in the 
above-mentioned paper, in which we used it to find functional network 
boundaries in the ATL. Specifically, in that paper, we  focused our 
parcellation on a mask that covered the bilateral ATL and another that 
included the hippocampus and amygdala (Figure  3). The initial 
parcellation yielded eight parcels across the cortical and subcortical masks 
(Figure 3A). We then parcellated each cortical parcel again and ended 
with a total of 34 distinct functional networks in the ATL (Figure 3B). 
We  provided further analyses to demonstrate that the parcellation 
identified functionally specific brain networks (see Persichetti et al., 2021 
for details). Additionally, results from this paper demonstrated that 
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focusing our parcellation routine specifically on the hippocampus and 
amygdala identified expected functional boundaries in these structures—
separating the amygdala from the hippocampus and further dividing the 
hippocampus into tail, body, and head (Figure 3C). The divisions within 
the hippocampus are consistent with an anterior-to-posterior functional 

gradient within the hippocampus (Fanselow and Dong, 2010; Grady, 
2020; Nadel et al., 2013; Poppenk et al., 2013; Ranganath and Ritchey, 
2012; Sekeres et al., 2018). Thus, the FunMaps method allows users to 
control the granularity of the network maps by refocusing the parcellation 
routine on more restricted brain volumes.

FIGURE 2

(A) The final volumetric network map in the original spatial resolution of the data. (B) The auxiliary function called vol2surf.m can be used to project the 
network map onto the surface using the HCP Workbench software.

FIGURE 3

(A) The first iteration of the parcellation focused on the cortical (top row) and subcortical masks separately. The cortical mask extended from the 
anterior tip of the temporal pole back to the Talairach coordinate, y  =  35. The subcortical mask included the hippocampus and amygdala. Shown here 
is an example of how to use FunMaps to create an initial parcellation in the ROI mask and then further parcellate each of the parcels in turn to create a 
more fine-grained network map. After the first pass of the FunMaps routine, the ATL was divided into eight bilateral parcels (second from top row). 
We then ran FunMaps again on each of the eight parcels, in turn, to further fractionate each parcel (bottom two rows). (B) Our parcellation of the ATL 
resulted in 34 distinct functional parcels based on the patterns of functional connectivity between voxels in the ATL and the rest of the brain. The flat 
maps in the bottom panel are labeled to orient the reader. V1, primary visual cortex; A1, primary auditory cortex; pole, temporal pole. (C) The 
parcellation within the medial temporal masks (red, top) separated the amygdala (purple) from the hippocampus and further divided the hippocampus 
into head (orange), body (magenta), and tail (pink). The brown parcel overlaps mostly rhinal cortex and inferolateral hippocampus. This figure is 
adapted from Persichetti et al. (2021).
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FIGURE 4

(A) The spilt-half agreement curves for sample sizes of 30, 50, and 70 participants. In this example, we chose the 90% threshold in the cortical mask 
(top) and the 85% threshold for the subcortical mask (bottom) as the thresholds that maximized proportion of coverage (i.e., number of voxels assigned 
a network prototype label) and the number of detected network prototypes in each mask (vertical dashed lines). (B) The final volumetric network maps 
in the original spatial resolution of the data for each sample size. (C) The spilt-half agreement curves for sample sizes of 10 and 20 participants at a 
restricted range of thresholds (85, 90, 93, 95%) plotted with the data from larger sample sizes. The vertical dotted line indicates the threshold chosen 
for the parcellation at the larger sample sizes.

Sample size

Another major benefit of the FunMaps method is that it requires a 
very small sample size compared to most parcellation methods. This is 
excellent news for researchers that want to create maps of functional 
brain networks that are specific to a dataset that was collected in their 
lab. This is especially useful for researchers interested in creating 
functional network maps that are specific to a clinical population. For 
example, we recently used the FunMaps method and data collected in 
our lab to create whole-brain functional network maps in a group of 70 
individuals with autism spectrum disorder (ASD) and a group of 70 
data-quality-matched typically developing (TD) control participants 
(Persichetti et al., 2023). Each participant in this study completed just 
one rest run of 8 min and 10 s in the scanner. We were able to identify 
the most stable parcellation solution in both groups using agreement 
curves that reflected the proportion of brain coverage and the number 
of found networks across a series of matrix thresholds. Our ability to 
find a stable parcellation of the ASD group allowed us to run a series of 
analyses that suggest patterns of network connectivity between the 
neocortex and the cerebellum, subcortical structures, and hippocampus 

are atypical in ASD individuals. Critically, the novel parcellation routine 
implemented by the FunMaps method allowed us to create a functional 
network map that was specific to a clinical population using only 70 
participants (for comparison, the Thomas Yeo et al. (2011), Power et al. 
(2011), and Glasser et  al. (2016) papers used between 200 and 
1,000 participants).

In anticipation of the release of the FunMaps method for public use, 
we asked just how small we can make our sample size and still get a 
stable parcellation result. We did this by running FunMaps on random 
subsamples of different sizes from the 70 TD individuals described 
above. We found stable cortical and subcortical parcellations across 
subsamples of 30, 50, and 70 participants (Figure 4). These results are 
very encouraging for our stated goal of offering a parcellation tool that 
researchers can use on the relatively small sample sizes collected in 
individual labs. We also ran FunMaps on subsamples of 10 and 20 
participants at a restricted range of thresholds (85, 90, 93, 95%) and 
found that, while these parcellations yielded interpretable results, the 
parcellation at these sample sizes yielded less network prototypes and 
an appreciable reduction in coverage compared to results from larger 
sample sizes in both cortex and subcortex (Figure 4C). Therefore, we did 
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not proceed further with the parcellation at these subsamples. However, 
this does not mean that the method is not usable with sample sizes 
smaller than 30 participants. Data quality and length of the rs-fMRI run 
time play critical roles in identifying stable functional networks in the 
brain (Gonzalez-Castillo et al., 2014). Thus, collecting more timepoints 
of rs-fMRI, acquiring data in higher field strengths (e.g., 7 Tesla), and 
using more sophisticated acquisition sequences (e.g., multi-echo 
acquisitions—Cohen et  al., 2021) are good ways to increase the 
likelihood that FunMaps will find optimal functional networks in your 
brain data (Laumann et al., 2017; Lynch et al., 2020). While we have 
demonstrated that FunMaps can be used to obtain functional network 
maps in small groups of individuals, it is worth noting that the method 
can also be used to find individual-specific network maps, so long as 
enough data are collected per study participant (e.g., Gordon 
et al., 2017).

The results described thus far are a product of applying FunMaps to 
rs-fMRI data with good tSNR values across the whole brain. To 
demonstrate how the parcellation routine performs on rs-fMRI data 

with much lower tSNR, we ran FunMaps on a group of 450 randomly 
selected participants from the HCP database. First, we measured the 
tSNR across the HCP participants and compared it to the 70 participants 
that were collected in our lab (Figure 5A). The tSNR was significantly 
lower in the HCP data compared to our data (Figure 5B). Even when 
using an unpaired t-test to compare the 70 highest tSNR values from the 
HCP data with our data in cortex and subcortex separately, the 
difference is pronounced (cortex(138), t = 47.85, p < 10−4, subcortex(138), 
t = 68.84, p < 10−4). While this significant reduction in tSNR influenced 
our ability to find stable functional networks in the HCP data, especially 
in the subcortex, we still achieved reasonable results.

The agreement curves for the cortical and subcortical masks provide 
good examples of why it is crucial that users look at the prototypes 
mapped onto the brain volume (Figure 5C). In the cortical mask, the 
agreement curves are similar to the agreement curves we get in our lab 
data (displayed in Figure 1B). However, when we mapped the prototypes 
to the brain volume, we found that at the 90% threshold (lighter vertical 
dashed line in Figure 5C), the cortical prototypes are reasonable and 

FIGURE 5

(A) Whole-brain tSNR maps averaged across 70 participants from our lab (top) and 450 HCP participants (bottom). (B) The tSNR values averaged across 
the cortical and subcortical masks separately in the 70 participants from our lab and the 70 highest tSNR values from the HCP data. (C) The spilt-half 
agreement curves across a wide range of thresholds. The error in the line plots represents ±1 standard deviation across the 10 iterations of the split-
half routine. The agreement curves in the cortex are a good example of why it is important to check the protoypes in the brain volume along with 
looking at the curves. At the 90% threshold (lighter vertical dashed line), the cortical prototypes are reasonable and similar to the results from our lab 
example, except that visual regions in the occipital lobes do not separate from the sensorimotor areas in the parietal lobe. At the 93% threshold (darker 
vertical dashed line), the prototypes look very similar, except now the visual and sensorimotor areas in the occipital and parietal lobes, respectively, are 
now separate prototypes. Meanwhile, the algorithm did not detect any subcortical network prototypes that met our inclusion criteria until the 85% 
threshold, then the number of prototypes increased rapidly at subsequent thresholds. (D) When the functional networks are mapped to the cortical 
surface at the 90 and 93% thresholds, it is clear to see that the visual regions in the occipital lobe do not separate from the sensorimotor areas in the 
parietal lobe at the 90% threshold, but do separate at the 93% threshold.
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FIGURE 6

Network prototypes identified at the 85% threshold in the lab data (top row) and HCP data (middle row), and at the 93% threshold in the HCP data 
(bottom row). In the HCP data, the proportion of coverage at the 85% threshold is a bit lower than the lab data, and there are only three prototypes 
that separate the hippocampus and medulla from everything else (middle row). In the HCP data, the retained prototypes at the 93% threshold (bottom 
row) are similar to those found in the lab data (top row) with the exception that the HCP data does not demarcate the pons. However, at the 93% 
threshold almost a third of the voxels in the subcortical mask are not assigned a network label.

similar to the results from our lab example, except that visual regions in 
the occipital lobe do not separate from the sensorimotor areas in the 
parietal lobe. At the 93% threshold (darker vertical dashed line in 
Figure 5C), the prototypes look very similar, but now the visual and 
sensorimotor areas in the occipital and parietal lobes, respectively, are 
separate prototypes (Figure 5D). Thus, the 93% threshold is likely the 
better choice for these data.

The agreement curves from the subcortical mask in the HCP data 
are also similar to the agreement curves we get in our lab data, but with 
a few important differences that become even clearer when we evaluate 
the network prototypes in the brain volume. In the HCP data, the 
proportion of coverage at the 85% threshold is a bit lower than the lab 
data (79% vs. 87% in the lab data—Figure 5C) and it is clear that there 
are fewer voxels filled in the HCP brain compared to the lab data 
(Figure 6, top and middle rows). The bigger problem with the parcellation 
solution at the 85% threshold is that there are only three prototypes that 
separate the hippocampus and medulla from everything else—probably 
too coarse to be useful (Figure 6, middle row). By contrast, in the lab 
data, there are six prototypes that map subcortical structures reasonably 
well (e.g., it demarcates the hippocampus and separates the brainstem 
into midbrain, pons, and medulla—Figure 6, top row). We can also see 
in the agreement curve for the lab data that the number of prototypes 

starts to rise from a baseline small number (~2) by the 70% threshold 
(Figure 1B). By contrast, in the HCP agreement curve the number of 
prototypes does not start to rise from the baseline small number (~2) 
until the 85% threshold (light dashed vertical line) and remains relatively 
low until around the 93% threshold (dark dashed vertical line—
Figure  5C). It is not unreasonable in this situation to evaluate the 
parcellation at the 93% threshold, since there are more prototypes 
identified at that point. In the bottom row of Figure 6, we can see that the 
retained prototypes are similar to those found in the lab data with the 
exception that the HCP data does not demarcate the pons. However, it is 
also clear that the proportion of coverage (71%) is now even worse, with 
almost a third of the voxels in the subcortical mask not being given a 
label. The 29% of unlabelled voxels in the HCP subcortical mask is over 
double the unlabelled voxels in the Lab data (13%). This lack of coverage 
is concerning because it is an indication of instability in the connectivity 
patterns of these voxels. Furthermore, it can lead to problems at the next 
step of combining the cortical and subcortical prototypes and assigning 
a final network label to all voxels in the brain, since that step is really 
meant to fill small patches of unlabelled voxels rather than large numbers 
of voxels. That said, the parcellation at the 93% threshold is still useful 
since it identifies subcortical structures reasonably well. A researcher 
could stop here and use these network prototypes as regions of interest 
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or seeds, if it suits them. We do recommend caution when proceeding to 
the next step of the parcellation, if there is a large number of 
unlabelled voxels.

It is important to note that our intention for applying FunMaps to 
the HCP data was to demonstrate its flexibility by showing that it 
produces reasonably similar network parcellations across diverse 
datasets. We used a subset of 450 HCP participants, but there are over 
1,200 participants in the HCP database and we are confident that the 
parcellation in the HCP data would improve by including more 
participants. We also want to make clear that by pointing out that the 
HCP data have significantly lower tSNR than our lab data, we do not 
wish to imply that the HCP data are bad (or our data are unusually 
good). Rather, we are firm believers that the HCP, and other large data 
collection initiatives like it, are highly valuable to the field of 
cognitive neuroscience.

Conclusion

We introduced the FunMaps method as a flexible and easy-to-use 
way of creating topographical maps of functional networks in the human 
brain using relatively small rs-fMRI datasets that are collected in 
individual labs. In this paper, we have demonstrated how FunMaps can 
be used to create stable and replicable multi-level network maps across 
the whole brain or in focused regions of interest. We developed the 
FunMaps method to be flexible and easy to use. It is publicly available on 
GitHub (see text footnote 1) and includes source code for running the 
parcellation; auxiliary code for preparing data, evaluating the 
parcellation, and displaying the results; and further documentation on 
how to use the method.
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