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Introduction: Degeneracy in the brain-behavior code refers to the brain’s ability 
to utilize different neural configurations to support similar functions, reflecting 
its adaptability and robustness. This study aims to explore degeneracy by 
investigating the non-linear associations between psychometric profiles and 
resting-state functional connectivity (RSFC).

Methods: The study analyzed RSFC data from 500 subjects to uncover the 
underlying neural configurations associated with various psychometric 
outcomes. Self-organized maps (SOM), a type of unsupervised machine 
learning algorithm, were employed to cluster the RSFC data. And identify distinct 
archetypal connectivity profiles characterized by unique within- and between-
network connectivity patterns.

Results: The clustering analysis using SOM revealed several distinct archetypal 
connectivity profiles within the RSFC data. Each archetype exhibited unique 
connectivity patterns that correlated with various cognitive, physical, and 
socioemotional outcomes. Notably, the interaction between different SOM 
dimensions was significantly associated with specific psychometric profiles.

Discussion: This study underscores the complexity of brain-behavior interactions 
and the brain’s capacity for degeneracy, where different neural configurations 
can lead to similar behavioral outcomes. These findings highlight the existence of 
multiple brain architectures capable of producing similar behavioral outcomes, 
illustrating the concept of neural degeneracy, and advance our understanding 
of neural degeneracy and its implications for cognitive and emotional health.
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1 Introduction

The investigation of optimal configurations of the brain’s functional profiles for specific 
cognitive traits or behaviors has garnered significant attention in neuroscientific research. 
Functional connectivity, which refers to the temporal correlation between spatially remote 
neurophysiological events, plays a crucial role in understanding how different brain regions 
share information to support cognition (Wu et  al., 2021). Researchers have leveraged 
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resting-state functional connectivity (RSFC), measured through 
techniques like functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG), or magnetoencephalography (MEG) 
to predict outcomes such as intelligence, sustained attention, and 
creative ability (Reineberg et al., 2015; Yoo et al., 2018; Wei et al., 2014; 
Takeuchi et  al., 2012). By analyzing the patterns of functional 
connectivity, neuroimaging studies aim to uncover relationships 
between neural network configurations and individual differences in 
behavioral and cognitive functioning (Geerligs et al., 2015; Tompson 
et al., 2018). In other words, these studies seek to unveil the brain-
behavior code, which refers to the complex relationships and 
interactions between neural connectivity patterns and behavioral 
outcomes. RSFC can be  effectively used to infer psychometric 
measurements of cognitive abilities, emotions, and personality traits, 
such as anxiety in young adults (Cermakova et al., 2021) and the sense 
of agency in psychopathological predispositions (Di Plinio et al., 2019; 
Berberian et  al., 2012), and to distinguish between healthy and 
diseased populations (Geerligs et al., 2015; Amico et al., 2017; Thijssen 
and Kiehl, 2017). Thus, by studying the brain-behavior code, 
researchers can uncover the neural mechanisms that underlie 
individual differences in behavioral outcomes, dysfunctional 
psychophysiological states, and cognitive changes throughout the 
lifespan (Geerligs et al., 2017).

RSFC can help studying the role of intrinsic functional 
architecture in relation to various personality traits, such as the Big 
Five traits quantified by the NEO Personality Inventory-Revised 
(Adelstein et al., 2011). For example, Hsu and colleagues showed that 
RSFC can predict neuroticism and extraversion in individuals, 
especially in primary motor and sensory regions (Hsu et al., 2018). A 
comprehensive study utilized multiple seed regions in major resting-
state networks and found widespread associations between RSFC and 
Big Five personality traits (Markett et al., 2018). RSFC has also been a 
topic of interest in cognitive neuroscience, for instance showing that 
specific brain regions, such as the posterior cingulate cortex (PCC) 
and ventral anterior cingulate cortex (vACC), exhibit distinct activity 
patterns during resting states compared to cognitive tasks (Greicius 
et al., 2002). More recently, RSFC has been used for individual trait 
prediction, indicating its potential in understanding individual 
cognitive characteristics (Sui, 2022). RSFC studies also significantly 
contributed to the understanding of personality disorders. For 
example, these studies reveal that borderline personality disorders 
have been associated with disrupted connectivity within key brain 
networks. Specifically, research indicates decreased connectivity in the 
default mode network (DMN) and salience network (SN), which 
correlates with the clinical features of borderline personality disorder 
(BDP) such as emotion dysregulation and impulsivity (Quattrini et al., 
2019; Wolf et al., 2011). Further, abnormal connectivity patterns in the 
fronto-limbic regions, particularly involving the amygdala and 
anterior cingulate cortex, have been linked to the emotional and 
cognitive disturbances observed in BDP patients (Krause-Utz 
et al., 2014).

Even if RSFC stands out as a remarkable predictor of behavior, the 
variability in such predictions is high, posing relevant trustability 
challenges for researchers. For instance, a comprehensive study found 
no consistent predictability for most of the Big Five personality traits 
except for Openness, suggesting limitations in using RSFC for reliable 
personality trait prediction (Dubois et  al., 2018). Time-frequency 
analyses revealed significant temporal variability in connectivity, 

complicating the assessment of stable traits (Chang and Glover, 2010). 
The neural coding of cognitive functions, particularly fluid and 
crystallized intelligence, also presents varying evidence regarding 
specific brain regions, with an unclear contribution of prefrontal, 
anterior cingulate, and subcortical structures (Jiang et al., 2023; Xue 
and Xu, 2019; Zamroziewicz et al., 2016). The conflicting or partial 
evidence in the literature regarding brain-behavioral coding might 
be explained by the existence of degeneracy in the brain-behavioral 
code. Degeneracy, in the context of brain encoding of behavior, is the 
natural consequence of neuroevolutionary trajectories (Di Plinio and 
Ebisch, 2020; Gould, 2002; Dunbar and Shultz, 2007) and allows the 
emergence of multiple fundamental neural patterns or structures that 
could underpin diverse behavioral and cognitive phenotypes. We use 
the terms “archetypal patterns” or” archetypal connectivity profiles” to 
refer to distinct patterns of brain connectivity that represent the most 
typical or characteristic configurations observed in the sample. These 
profiles can be identified through machine learning techniques and 
serve as reference points for comparing individual variations in brain 
connectivity. In our view, archetypes represent multiple, equally valid 
neural configurations that can support similar or diverging cognitive 
functions or personality traits.

Although it is crucial in understanding the brain’s ability to 
produce diversified behavior through multiple neural pathways or 
mechanisms (Di Plinio and Ebisch, 2020; Wit and Matheson, 2022), 
degeneracy is seldom investigated due to its complexity. Nevertheless, 
degeneracy plays a significant role in neural processes, for example 
allowing different circuits within the brain to contribute to the same 
task (Kamaleddin, 2021). Studies showed that degeneracy in brain 
network functionality contributes to the brain’s functioning in the face 
of perturbations and enables to compensate to redistribute functions 
across different regions or circuits, highlighting the brain’s resilience 
and adaptability (Fornito et al., 2015; Vergotte et al., 2018; Dodel et al., 
2020). Neural degeneracy has also been associated with neural 
plasticity, which is essential for many cognitive functions (Rotondo and 
Bieszczad, 2019), and with the emergence of baseline neural properties 
and plasticity profiles. This evidence emphasizes the importance to 
consider heterogeneities in neural properties when studying brain-
behavior relationships (Shridhar et al., 2022). Thus, or degeneracy is a 
form of within-species redundancy in brain-behavior encoding which 
enables the brain to adapt to changes, recover from damage, and 
maintain functionality despite variations in its structure or activity.

To address brain-behavioral encoding, advanced methods that 
can account for degeneracy are essential. One approach involves 
leveraging Pareto optimality theory to explore trade-offs that lead to 
the evolution of phenotypes distributed in a portion of the trait-space 
resembling a polytope, with vertices representing specialists at one of 
the traits, or archetypes (Cona et al., 2018). By focusing on models 
aligning with archetypal configurations, researchers can identify 
patterns of behavior, or neural archetypes, representative of certain 
traits (Mittas and Angelis, 2020; Whitacre, 2010), which are possibly 
underpinned by specific evolutionary neurobehavioral trajectories (Di 
Plinio and Ebisch, 2020). This approach allows for a nuanced 
exploration of behavioral traits and their relationship to archetypal 
configurations, providing a more holistic understanding of the 
complex interplay between neural processes and behavior.

Self-organizing maps (SOMs) have emerged as powerful tools in 
the analysis of functional connectivity and its relationship to 
cognitive and personality traits. These unsupervised learning 
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algorithms facilitate the analysis and visualization of high-
dimensional data by projecting it onto a lower-dimensional space 
while preserving the topological relationships within clusters. This 
capability makes SOMs particularly suitable for exploring complex 
brain-behavior interactions where traditional model-based 
approaches might fall short. For instance, SOMs have been used in 
fMRI studies, to identify activation sites (Ngan and Hu, 1999), and 
have been shown to outperform traditional methods such as 
independent component analysis and voxel-wise univariate linear 
regression (Katwal et  al., 2013). Recent studies have further 
underscored the applicability of SOMs in understanding brain 
network topologies associated with various psychological conditions 
and cognitive abilities. For example, these algorithms have been 
employed to investigate neurofunctional correlates of BDP and 
revealed altered global network topology in BPD patients (Xu et al., 
2016). Similarly, a study used SOMs to identify distinct amygdalar 
subregions based on their connectivity patterns, highlighting the 
method’s strength in uncovering functional heterogeneity (Mishra 
et al., 2014).

Despite these advancements, there remains a need for novel 
approaches able to explore the degeneracy of brain-behavioral coding 
as well as the existence of functional archetypes in the brain. This paper 
aims to build on these foundations by introducing a novel SOM-based 
method designed to further unravel the complexity of brain-behavior 
interactions. By incorporating concepts such as degeneracy and 
archetypal configurations, the proposed method offers an original 
exploration of behavioral traits and their relationship to neural 
processes, providing a more holistic understanding of brain-behavior 
relationships. We analyze data from the HCP dataset (https://balsa.
wustl.edu/; Van Essen et al., 2012) using parametrized, unsupervised, 
finetuned self-organizing maps to achieve a superior understanding of 
the neurodiversity underlying varying neural architectures that achieve 
the same behavioral outcomes. The presence of these archetypal 
frameworks and diverse evolutionary paths could account for the 
apparent inconsistencies or gaps in the brain-behavioral coding 
literature, highlighting the complexity and adaptability of neural 
mechanisms in shaping human behavior and cognition.

2 Methods

2.1 Data

We used resting-state fMRI and behavioral data from 500 
participants (250 females) of the Human Connectome Project (HCP) 
database (S1200 data release). The HCP data includes cognitive testing 
and neuroimaging sessions. The cognitive data is collected using 
standardized batteries such as the NIH Toolbox Cognition Battery and 
the Penn Computerized Neurocognitive Battery. Neuroimaging 
sessions capture high-resolution structural and functional connectivity 
data. The imaging sessions require participants to lie still inside an 
MRI scanner for extended periods, during which they might be asked 
to engage in specific tasks or rest quietly. All participants provided 
their written informed consent, in accordance with the research 
protocol approved by the Institutional Review Board of Washington 
University in St. Louis (Marcus et al., 2011; Smith et al., 2013). For 
detailed information on the HCP protocol, please refer to Van Essen 
et al. (2013) and Glasser et al. (2013).

2.2 MRI data acquisition and preprocessing

MRI scans were collected at Washington University in St. Louis 
using a customized 32-channel Siemens 3 T scanner. For each 
participant, four functional images and one anatomical image were 
acquired. Image acquisition techniques are delineated in Uğurbil et al. 
(2013). For the resting-state fMRI images, a gradient-echo echo planar 
imaging (EPI) sequence was utilized with specific parameters: 
TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208 × 180 mm, 
matrix = 104 × 90, voxel resolution 2 × 2 × 2 mm, 72 slices covering the 
entire brain, and a multiband factor of 8. Each subject underwent four 
resting-state scans, each lasting 15 min (1,200 volumes per run).

We used resting-state runs of the HCP dataset which were 
pre-processed using the ICA + FIX pipeline. The fMRI datasets 
underwent preprocessing using the HCP’s main pipeline as described 
by Glasser et al. (2013). This procedure corrects for spatial distortions 
resulting from gradient nonlinearities through gradient distortion 
correction. This is followed by motion correction, during which 
volumes are aligned. Subsequently, the fMRI data is registered to the 
individual’s structural images using nonlinear registration techniques. 
A global intensity normalization is then performed to scale the 4D 
fMRI volume, followed by temporal high-pass filtering to mitigate 
low-frequency drifts and by the IC + FIX pipeline created by the HCP 
project (Glasser et al., 2013). The ICA + FIX pipeline is a significant 
component of the Human Connectome Project data processing 
strategy, primarily focused on the analysis of functional magnetic 
resonance imaging (fMRI) data. ICA stands for Independent 
Component Analysis, a computational method used to separate a 
multivariate signal into additive, independent components. FIX, or 
FMRIB’s ICA-based X-noiseifier, is a tool developed by the Functional 
MRI of the Brain (FMRIB) Centre at the University of Oxford. FIX is 
used for the automatic removal of motion and other non-neural 
artifacts from fMRI data.

With respect to fMRI data, functional connectivity data 
encompassed the four resting-state scans for each of the subject. The 
data collected from these sessions was processed and analyzed to 
construct brain functional connectomes. First, the connectivity 
matrices for the cortical regions were extracted from the FC dataset. 
Connectomes of 346 × 346 nodes for each single subject, and for each 
resting-state run, were constructed using cortical atlas by Joliot et al. 
(2015). The extracted connectivity matrices were concatenated across 
all resting-state scans, resulting in a comprehensive dataset of brain 
connectivity measures. Following common practices, and to reduce 
data skewness, we determined functional connectivity using the z 
Fisher transform of the Pearson correlation among preprocessed 
time series.

To reduce the dimensionality of the high-dimensional 
connectivity data, and avoid redundant information, Principal 
Component Analysis (PCA) was performed before clustering. This 
technique has already been used successfully in neuroimaging studies 
(Margulies et  al., 2016; Di Plinio and Ebisch, 2018). The lower 
triangular part of each connectivity matrix, excluding the diagonal, 
was extracted and flattened into a vector. These vectors, that are 
unique connectivity values, served as the input for the PCA. A parallel 
analysis (Horn, 1965; Ledesma and Valero-Mora, 2007) was 
implemented through 10,000 simulated eigenvalues using a Monte 
Carlo procedure which started from random datasets with equal 
structure as the original dataset. Then, the number of factors to retain 

https://doi.org/10.3389/fnhum.2024.1455776
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://balsa.wustl.edu/
https://balsa.wustl.edu/


Di Plinio et al. 10.3389/fnhum.2024.1455776

Frontiers in Human Neuroscience 04 frontiersin.org

in the factor analysis was selected as the number of eigenvalues above 
the 95th percentile of the null distribution. The parallel analysis 
determined that 14 principal components should be retained. The 
scores of these principal components were standardized (z-scored) to 
produce the reduced dataset, which was subsequently used for 
clustering with Self-Organizing Maps (SOM).

2.3 Behavioral data preprocessing

The HCP database provides a comprehensive suite of 
psychometric measures that are essential for delineating the core 
functions necessary to understand the relationship between brain 
and behavior. These psychometric tools are meticulously designed 
to assess a wide array of cognitive, socioemotional, and behavioral 
functions, thereby offering a robust framework for investigating the 
underlying neural processes of interest. Specifically, our study 
utilized measures including personality traits as quantified by the 
Big Five questionnaire (covering agreeableness, extraversion, 
neuroticism, openness, and conscientiousness); discounting 
behavior, which assesses the propensity to devalue delayed rewards; 
and socioemotional measures, such as self-reported fear, anger, 
sadness, positive affect, life satisfaction, sense of meaning and 
purpose, friendship, loneliness, perceived hostility, perceived stress, 
and self-efficacy. The following cognitive scores were also 
incorporated: overall cognitive performance, fluid intelligence, and 
crystallized intelligence. Finally, motor and physical scores included 
were: endurance, gait speed, dexterity, and strength. These 
psychometric measures were rigorously preprocessed using 
Box-Cox correction to improve normality and subsequently 
normalized to a range of 1 to 100. This normalization procedure 
was adopted for comparability across different psychometric 
dimensions and enhancing the interpretability of the results. By 
aligning the normalized behavioral scores with the dimensionality 
of the brain connectivity data across multiple resting-state scans, 
we  ensured a robust and integrative approach to analyzing the 
intricate relationships between neural connectivity patterns and 
diverse psychometric outcomes.

2.4 Parametrization of self-organizing 
maps (SOM)

Self-Organizing Maps (SOMs; Kohonen, 1990, 2013) are a type of 
artificial neural network used for unsupervised learning. SOMs are 
particularly effective for clustering and visualizing high-dimensional 
data by mapping it onto a lower-dimensional grid, typically 
two-dimensional. This mapping process preserves the topological 
properties of the input data, ensuring that similar data points are 
placed close to each other on the grid. Each neuron in the SOM 
represents a weight vector with the same dimensions as the input data. 
For each input data point, the algorithm identifies the neuron with the 
closest weight vector, known as the Best Matching Unit (BMU). The 
BMU’s weight vector, as well as those of its neighboring neurons, are 
then updated to become more similar to the input data point. This 
process is repeated over many iterations (epochs), gradually refining 
the map. SOMs are valued for their ability to perform vector 
quantization and dimensionality reduction. These capabilities make 

them suitable for various applications, including pattern recognition, 
data compression, and feature extraction.

To determine the optimal SOM parameters, we conducted a 
double-step finetuning comprehensive parametrization process, 
evaluating different SOM dimensions and epochs. This 
parametrization process ensures a thorough exploration of the SOM 
parameter space, identifying the optimal settings for achieving stable 
and accurate clustering of the reduced brain connectivity data. SOM 
dimensions refer to the layout and size of the grid that forms the 
SOM. Typically represented in a two-dimensional array, these 
dimensions define the number of neurons (or clusters) and their 
arrangement in the map, influencing the granularity and resolution 
of the clustering. Epochs, in the context of SOM clustering, represent 
the number of times the training dataset is presented to the network 
during the training process. More epochs typically lead to better 
convergence, allowing the SOM to adjust its weights more 
thoroughly and produce more accurate and stable clustering results, 
but can also lead to overfitting, so that the process should 
be accurately supervised.

In the first finetuning step, we explored the stability of many 
SOM dimensional grids, from a 2 × 2 grid to a 10 × 10 grid, using a 
standard set of epoch values (epochs = 100). This preliminary analysis 
indicated a poor stability of high-dimensional grids (above 4 × 4). In 
the second step, two low-dimensional SOM grids were considered: 
2 × 2 (4 neurons, or clusters) and 3 × 3 (9 neurons, or clusters). For 
each dimension, we evaluated a range of epoch values, from 40 to 
260, in increments of 20. This extensive grid search allowed us to 
explore the impact of both SOM dimensions and the number of 
training epochs on the clustering performance. For each combination 
of SOM dimension and epoch values, the clustering process was 
repeated 200 times to ensure robust results. The SOM was trained on 
the reduced data using the selforgmap function with the specified 
parameters. After training, the data points were assigned to clusters. 
To assess clustering consistency, we computed the Adjusted Mutual 
Information (AMI) and Adjusted Rand Index (ARI) for all pairs of 
clustering results across the runs. These metrics evaluate the 
similarity between cluster assignments, with higher values indicating 
more consistent clustering. The AMI and ARI values were averaged 
for each combination of SOM dimension and epoch values. The mean 
AMI and ARI values were calculated for each combination of SOM 
dimension and epoch values. Average AMI and ARI values were 
visualized against the number of epochs for each SOM dimension. 
This visualization provided a clear comparison of the clustering 
performance across the parameter grid, highlighting the optimal 
configurations. The optimal parameters were identified based on the 
highest ARI and AMI values. Specifically, we  identified the best 
number of epochs for each SOM dimension that maximized 
clustering stability without falling into overfitting situations. The final 
parameters were saved for subsequent analyses, and the results were 
visualized to illustrate the impact of SOM dimensions and epochs on 
clustering performance.

2.5 Consensus clustering procedure

To enhance the robustness and reliability of the clustering results, 
a consensus clustering procedure was implemented following the 
iterative application of Self-Organizing Maps (SOM). This procedure 
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aimed to aggregate the results of multiple SOM runs and derive a 
consensus clustering that is more stable and reliable than individual 
runs; this process avoided falling into local minima or suboptimal 
solutions. The parameters for the SOM (i.e., dimensions and epochs) 
were selected based on the previous parametrization phase. For each 
combination of SOM dimensions and epochs identified as optimal, 
the consensus clustering procedure was applied.

For each chosen SOM configuration, the consensus clustering was 
executed 100 times using the optimal dimensions and epochs chosen 
after the finetuning procedure described in 2.4. Each run produced a 
clustering result, and these results were stored. A consensus matrix was 
constructed to capture the co-assignment frequency of data points across 
the multiple SOM runs: for each pair of data points, the number of times 
they were assigned to the same cluster across the 100 runs was counted; 
this count was then normalized by the total number of runs to obtain the 
consensus matrix, representing the probability of co-assignment.

To derive the final consensus clustering, the dissimilarity between 
data points was first calculated as one minus the consensus matrix 
values. Then, hierarchical clustering using average linkage was 
applied to the dissimilarity matrix. The final clusters were determined 
by cutting the dendrogram to form the same number of clusters as 
the original SOM configuration. To identify the most representative 
clustering from the multiple SOM runs, we  used Adjusted Rand 
Index (ARI), which was calculated between the consensus clustering 
and each of the 100 runs. The SOM clustering that achieved the 
highest ARI and AMI with the consensus clustering was selected as 
the best run, providing the final clustering. This consensus clustering 
procedure ensured that the final clustering results were robust and 
consistent, minimizing the variability inherent in individual SOM 
runs and providing a more reliable basis for subsequent analyses. The 
consensus clustering results were finally visualized. Average 
connectivity matrices for each cluster were computed and visualized, 
re-ordered based on network assignments for interpretability (Di 
Plinio and Ebisch, 2018). We also estimated and shown differences 
between clusters to give a comprehensive picture of the results.

2.6 Brain-behavior association analyses

To uncover the degeneracy in the brain-behavior code, a 
two-dimensional (two-way) ANOVA was employed to analyze the 
association between brain connectivity clusters (derived from Self-
Organizing Maps, SOM) and behavioral factors. This approach allows 
for the examination of how different SOM clusters (neurons) are 
associated with behavioral profiles.

SOM clusters (or archetypes) are organized into a two-dimensional 
grid which represent the SOM dimensions, enabling the representation 
of each cluster’s location on the grid. These coordinates were used as 
categorical variables in the subsequent analyses, which used both 
ANOVA and linear mixed-effects (LME) models in a multiverse 
analysis framework. The ANOVA and LME models included: main 
effects: the impact of the X and Y coordinates of the SOM clusters on 
the behavioral scores; interaction effects: the combined effect of the X 
and Y coordinates on the behavioral scores. Post-hoc multiple 
comparisons were performed for each main effect and for the 
interaction effect. For the interaction effect, comparisons were made 
between all possible pairs of SOM grid coordinates, but only the 
comparisons where one factor (either X or Y) differed were considered. 

We applied both false discovery rate and Bonferroni corrections for 
multiple comparisons (Benjamini and Yekutieli, 2001; Holland and 
Copenhaver, 1988) and interpreted data according to modern 
guidelines using multiple thresholding methods to control both type 
I and type II errors.

Model statistics and multiple comparison results were computed 
for each analyzed behavioral factor. This multiverse, comprehensive 
analysis provided insights into how different brain connectivity 
patterns, as represented by SOM archetypes, are associated with 
various behavioral profiles, thus highlighting the potential degeneracy 
in the brain-behavior code. The methodology outlined above ensures 
a thorough and robust analysis of the complex relationships between 
brain connectivity and behavior, leveraging advanced clustering 
techniques and rigorous statistical testing to uncover 
meaningful findings.

Data analyses were executed using MatLab version 2022b.1

3 Results

3.1 SOM parametrization

The two-step fine-tuning process for selecting the dimensions of 
the SOM grid and the number of epochs identified the optimal 
configurations as small cluster grids (2 × 2 and 3 × 3) with the number 
of epochs set to 200 (Figure 1A). Both adjusted mutual information 
(AMI) and adjusted Rand indices (ARI) decreased with an increasing 
number of epochs. Additionally, lower epochs showed a mismatch 
between the chosen SOM dimensions. Thus, we employed 2 × 2 and 
3 × 3 SOM clustering with 200 epochs on the HCP fMRI resting-state 
data of functional connectivity. These configurations achieved the best 
balance between clustering stability and computational efficiency, 
making it ideal for subsequent analyses.

3.2 SOM clustering

We present results using the 2 × 2 dimensional grid as a benchmark 
not only to ease interpretability, but also to demonstrate the 
significance of our proposed approach. SOM clustering with the 2 × 2 
grid and 200 epochs resulted in 4 (2 × 2) different clusters. Because of 
the rationale of our study, each SOM cluster connectome is referred 
to as an archetype. We computed the average functional connectivity 
across subjects for each cluster, displayed in Figure  1B. The four 
archetypes had different numerosity: Archetype 1 (SOM 
coordinates = X1, Y1) included 400 participants; Archetype 2 (X2, Y1) 
included 798 participants; Archetype 3 (X1, Y2) included 314 
participants; finally, Archetype 4 (X2, Y2) included 472 participants.

The upper panel in Figure 1C presents a histogram of cluster 
variability across subjects, highlighting the distribution patterns. Since 
most subjects are consistently assigned to one or two archetypes, these 
results demonstrate consistent within-subject clustering. The lower 
panel in Figure 1C, instead, shows a parallel Monte Carlo analysis 
where the same number of subjects and runs were simulated with 

1 https://it.mathworks.com/
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random cluster assignment. This analysis offers insights into how often 
different resting-state runs of the same subjects are assigned to the 
same cluster compared to a null (random) assignment. Results 

indicate that the clustering assignments are different from random, 
suggesting that connectomes of the same subject tend to be assigned 
to the same archetype. However, many subjects’ connectomes are 

FIGURE 1

SOM clustering. (A) Results of the finetuning process for selecting optimal SOM parameters. Stability of Self-Organizing Map (SOM) clustering, 
exemplified by adjusted mutual information (AMI) indices is represented across different numbers of epochs for two SOM dimensions: [2 2] and [3 
3]. The shaded areas represent the standard error around the mean values. The dashed vertical line at 200 epochs indicates the selected optimal 
number of epochs. The red line represents the SOM dimension [2 2], while the gray line represents the SOM dimension [3 3]. AMI and ARI values 
(ARI values not represented) tend to stabilize after 200 epochs, indicating that this is an appropriate choice for the number of epochs to ensure 
stable clustering results. (B) Average connectomes are represented for each archetype derived from the 2 × 2 grid and 200 epochs. The 
connectomes are represented as heatmaps, where each pixel indicates the average connectivity strength between two brain regions. Color 
intensity indicates the average strength of Fisher-transformed functional connectivity within each Archetype. (C) The top panel shows the 
distribution of unique SOM clusters assigned per subject. The average number of unique clusters per subject is indicated by the red dashed line. The 
bottom panel displays the results of the Monte Carlo simulation with random cluster assignment, with the average number of unique clusters per 
subject indicated by the black dashed line. This comparison highlights the tendency for resting-state functional connectivity runs to be consistently 
assigned to the same clusters, as opposed to random assignment.
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assigned to 2 or 3 clusters, indicating substantial interindividual 
variability in a subject’s connectional profile over time, that is, over 
subsequent resting-state acquisitions.

Pairwise archetypal differences are detailed in Figures 2, 3, 
providing a comprehensive characterization of each archetype at 
the connectional level. These findings underscores the subtle 
differences and unique features of each archetype, enhancing our 
understanding of the functional connectivity patterns within and 
between archetypes. More specifically, Figure 2 reports average 
connectomes within the X and Y dimensions (X1, X2, Y1, Y2), 
and the differences within each dimension (X1 vs. X2; Y1 vs. Y2). 
These findings show that the X dimension separates archetypes 
based on anterior and left-lateralized prefrontal connectivity, 
while the Y dimension separates archetypes based on posterior, 
symmetrical connectivity in parietal, occipital, and temporal 
regions. Similarly, Figure 3 reports differences within specific 
archetypes. These two figures highlight similarities and 
differences in functional connectivity patterns within and 
between X and Y dimensions, providing insights into the neural 
correlates underlying functional brain archetypes.

3.3 Brain-behavioral coding

The analysis of functional archetypal coding of psychometric scores 
yielded several significant insights into the complex way brain functional 
architectures code for behavioral outcomes (Figure 4A): different SOM 
dimensions coded for different types of attributes. Specifically, the X 
dimension of SOM archetypes predominantly coded many psychometric 
indices such as fluid intelligence, dexterity, and agreeableness. This 
indicates that the X dimension is linked to a broad range of individuals 
behavioral facets reflected in cognitive, physical, and personality scores. 
In contrast, the Y dimension of SOM archetypes mainly coded for 
discounting behavior, which refers to the tendency of individuals to 
devalue rewards or benefits that are delayed in time. This indicates that 
brain connectivity pattern changes in the Y dimension are directly linked 
to planning and attitudes towards future rewards. Moreover, the 
interaction between the two SOM dimensions significantly encoded 
behavioral attributes related to socioemotional traits, such as sadness, life 
satisfaction, and loneliness. These findings underscore a consistent yet 
selective encoding of behavioral attributes by archetypes of 
functional connectivity.

FIGURE 2

Analysis of average functional connectomes within and between X and Y dimensions. (A) Functional connectome (FC) matrices for X1 and X2 and the 
differences in functional connectivity (FC difference) between these two conditions. The top row displays the FC matrices for X1 and X2, showing the 
average connectivity patterns across brain regions. The middle row shows the FC difference (X1–X2), where the color intensity represents the 
magnitude of connectivity differences, with red indicating greater connectivity in X1 compared to X2. The bottom row illustrates these differences in 
connectivity on a3D brain model obtained using BrainNet Viewer (www.nitrc.org/projects/bnv/; Xia et al., 2013). (B) This subfigure follows the same 
structure as (A) but focuses on the Y dimension, comparing Y1 and Y2. The FC matrices for Y1 and Y2 are shown on the top, followed by the FC 
difference (Y2-Y1) in the middle. The color map indicates regions with greater connectivity in Y2 compared to Y1 (red). The brain models at the bottom 
illustrate the regions with significantly stronger connectivity in Y2 compared to Y1 for both hemispheres.
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To better understand these results and investigate the 
degeneracy in brain-behavior encoding, we applied Bonferroni-
corrected multiple comparison testing on the analyses. Relatedly, 
Figure 4B presents selected representative comparisons showing 
distinctive associations with personality traits (e.g., agreeableness), 
socioemotional measures (e.g., loneliness), and discounting 
behavior. Overall, these findings underscore the intricate and 
selective encoding of behavioral attributes by functional 
connectivity archetypes. The results illustrate that different 
dimensions of brain connectivity are linked to various aspects of 
behavior, highlighting the complexity and degeneracy of brain-
behavior relationships. For instance, in the case of loneliness, there 
are distinctive connectivity profiles associated with higher or lower 
behavioral outcomes. Specifically, archetypes 2 (X2, Y1) and 3 (X1, 
Y2) are associated with high scores of loneliness, while archetypes 
1 (X1, Y1) and 4 (X2, Y2) are associated with low scores 
of loneliness.

Importantly, archetypes 2 and 3, which both code for high 
loneliness, exhibit very different functional connectivity profiles, 
with generally very high or very low functional connectivity values, 

respectively. We  stress here that these results is impossible to 
capture with ordinary measures and highlights the potential of the 
current approach to reveal degeneracy in brain-behavior coding, 
beyond linear associations of regional or network connections 
with behavior.

4 Discussion

The present study explored the concept of degeneracy in the 
brain-behavioral code. We developed a new approach integrating 
Self-Organizing Maps (SOMs) to analyze resting-state functional 
connectivity (RSFC) and its relationship to psychometric 
assessments of behavior. Our findings provide significant insights 
into the complex and redundant nature of brain-behavior 
interactions, showcasing the brain’s adaptability and robustness. 
One of the central findings of this study is the identification of 
distinct archetypal connectivity profiles, or archetypes, that 
correlate with specific psychometric profiles. The SOM clustering 
revealed primary archetypes, each exhibiting unique patterns of 

FIGURE 3

Pairwise differences between single Archetypes (A1, A2, A3, A4). The figure presents pairwise differences in functional connectivity between SOM 
archetypes through 3D brain renderings, which were obtained using BrainNet Viewer. Archetypes are represented in the diagonal, while differences 
among couples of archetypes are represented in the lower and upper triangles of the figure. In each brain model, blue lines represent the connections 
that differ the most between the archetypes. Nodes involved in these connections are depicted in red. These results help characterizing the (average) 
functional profile of each archetype. Top, anterior; Bottom, posterior.
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functional connectivity (Geerligs et  al., 2015; Tompson et  al., 
2018; Wu et  al., 2021). These archetypes represent different 
patterns of brain connectivity that are consistent across subjects. 
The within-and between-network connectivity patterns of these 
archetypes revealed distinct functional profiles, supporting the 
validity of the SOM clustering approach (Xu et al., 2016; Mishra 
et  al., 2014) and supporting the validity of the concept of 
archetype itself. Notably, the results demonstrate that different 
brain connectivity patterns can support similar behavioral 
outcomes, underscoring the concept of degeneracy in the brain-
behavior code (Di Plinio and Ebisch, 2020; Whitacre, 2010; 
Mittas and Angelis, 2020). Our pipeline revealed that the different 
dimensions of the SOM archetypes were differentially associated 
with psychometric measurements. The first dimension (X) was 
predominantly correlated with cognitive and physical behaviors, 
such as fluid intelligence and dexterity, as well as personality 
traits like agreeableness. In contrast, the second dimension (Y) 
was primarily linked to discounting behavior, reflecting 

individuals’ tendencies to devalue delayed rewards. The 
interaction between these dimensions was significantly associated 
with socioemotional traits, including sadness, life satisfaction, 
and loneliness.

The concept of degeneracy in biological systems, where different 
structures can produce similar functions, is well-established in 
neuroscience (Wit and Matheson, 2022; Dodel et al., 2020; Fornito 
et al., 2015). We extend the concept of degeneracy to brain-behavior 
relationships, showing two crucial points: first, distinct functional 
architectures of the brain can be associated with similar behavioral 
outcomes; second, and more importantly, the brain can achieve 
behavioral robustness through multiple network configurations. Our 
findings are consistent with previous research that has demonstrated 
degenerate functional connectivity patterns within neural networks 
during emotional experiences (Doyle et  al., 2022) as well as with 
findings highlighting the genetic component underlying shared 
connectivity profiles across different psychiatric conditions (Moreau 
et  al., 2022). The presence of degeneracy suggests that the brain’s 

FIGURE 4

Brain-Behavior associations. (A) Associations between brain archetypes (as identified by the 2 × 2 SOM grid) and various behavioral measures. The 
heatmap shows the significance of these associations across three dimensions: X, Y, and their interaction X:Y. The vertical axis represents behavioral 
measures, including discounting attitudes, affective measures, socioemotional measures, cognitive abilities, personality traits, and physical abilities. 
The p-value significance is represented by the color intensity, ranging from yellow (high p value, less significant) to red (low p-value, highly 
significant). Significant p-values (p < 0.001) are indicated by gray dots; p-values significant after FDR correction are indicated by red dots; p-values 
significant after Bonferroni correction are indicated by yellow dots. This figure highlights the intricate and selective encoding of various behavioral 
attributes by different dimensions of functional connectivity archetypes. (B) Bar plots show the mean scores and standard errors of various 
behavioral measures across different clusters identified by the 2 × 2 SOM grid. Each plot compares the effects of the X and Y dimensions of the SOM 
on specific behavioral attributes, highlighting the complexity and specificity of brain-behavior relationships. Significance markers (after Bonferroni 
correction): * p < 0.05; ** p < 0.01; *** p < 0.001.
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functional architecture is highly adaptable, capable of maintaining 
functionality despite structural or activity variations pathways 
(Fornito et al., 2015; Kamaleddin, 2021). This adaptability is crucial 
for understanding how the brain compensates for damage, supports 
recovery, and sustains cognitive and emotional health across the 
lifespan (Rotondo and Bieszczad, 2019).

Our study underscores the importance of considering innovative 
and multidimensional approaches when studying brain-behavior 
relationships. Traditional linear models may overlook the complexity 
and variability inherent in these relationships. The use of SOM and 
consensus clustering provides a powerful tool to capture and analyze 
this complexity, offering new insights into the functional 
organization of the brain (Katwal et al., 2013; Ngan and Hu, 1999). 
The methodological framework employed in this study has several 
strengths: first, the iterative SOM and consensus clustering approach 
ensures robust and stable clustering results, reducing the impact of 
variability and noise; second, by including multiple connectivity 
patterns for each participant, we  simultaneously characterized 
interindividual (between-subject) and within-subject differences 
within brain functional archetypes; third, the linkage of functional 
connectivity patterns to a wide range of behavioral traits 
demonstrates the applicability of our approach to understanding 
complex brain-behavior relationships. Moreover, the robustness of 
our clustering approach is supported by similar methods used to 
identify functional connectivity subtypes (e.g., in autism Urchs 
et al., 2022).

Degeneracy plays a significant role in the brain’s ability to 
recover from stroke and other vascular insults, which is highly 
relevant to our study of brain-behavior relationships and neural 
plasticity. Neural networks exhibit a remarkable capacity for 
reorganization, where multiple pathways can compensate for 
damaged regions, thereby supporting functional recovery. Fornito 
et  al. (2015) discussed how degeneracy in neural networks 
facilitates recovery by enabling multiple neural pathways to 
compensate for damaged regions. Similarly, Crofts et al. (2011) 
found evidence of compensatory mechanisms through changes in 
functional connectivity after stroke, highlighting the role of 
alternative pathways in neural reorganization. Guggisberg et al. 
(2014) further demonstrated that the brain’s adaptability through 
degeneracy is crucial for regaining lost functions, with 
reorganization influenced by the severity and location of the 
stroke. Additionally, Carter et  al. (2012) emphasized that 
rehabilitative training can enhance the brain’s ability to utilize 
redundant pathways for functional recovery. Together with such 
findings, our study aims to elucidate the complex interplay between 
brain connectivity and behavior through the lens of degeneracy. By 
incorporating these insights, we  emphasize the critical role of 
neural redundancy and flexibility in supporting diverse cognitive 
and behavioral phenotypes, thus advancing our understanding of 
the brain-behavior code.

Despite the promising results, several limitations should 
be acknowledged. First, the study’s reliance on RSFC data from a 
single dataset (HCP) may limit the generalizability of the findings 
(Smith et al., 2013; Glasser et al., 2013). Second, while our sample 
size is substantial future research should replicate these analyses 
using diverse datasets and across different populations to validate 
the robustness of the identified archetypes and their associated 

behavioral traits (Shridhar et al., 2022). Additionally, while SOMs 
are powerful tools for clustering and visualization, they also have 
limitations, such as sensitivity to parameter selection. The extensive 
parametrization process used in this study aimed to mitigate these 
issues, but further refinement and comparison with other clustering 
techniques could enhance the reliability of the results. Finally, the 
multidimensional nature of the results, while informative, can 
complicate interpretation.

As a natural consequence of our seminal, mainly methodological 
contribution, we  expect future studies to delve deeper into 
degenerate regional and network encoding of behavior. Future 
research directions include the applications of our methods to other 
large-scale neuroimaging datasets, such as the UK Biobank and the 
ABCD Study, to validate SOM-based approaches for the study of 
degeneracy across diverse populations and age groups. Also 
developing more intuitive visualization and interpretation tools will 
help understanding these complex relationships. Moreover, 
longitudinal studies will be crucial to investigate the stability and 
evolution of the identified functional connectivity archetypes over 
time to understand how brain-behavior relationships develop 
across the lifespan. Finally, future studies may explore the 
integration of additional statistical mixture approaches, such as 
Bayesian Kernel Machine Regression (BKMR) and Weighted 
Quantile Sum (WQS) regression (Invernizzi et al., 2022), to further 
dissect the complex relationships between brain connectivity 
and behavior.

Concluding, this study presents a novel framework for 
understanding the degeneracy in the brain-behavior code, 
demonstrating that distinct functional connectivity patterns can 
be associated with similar psychometric profiles. We contribute to 
the literature by providing empirical evidence for the degenerate 
coding of behaviors in the human brain. These findings challenge 
traditional models often assuming linear and region-specific 
associations between brain and psychometric measures. The use of 
self-organizing maps and consensus clustering provides a powerful 
approach for uncovering these patterns, underscoring the 
importance of considering neural degeneracy and adaptability in 
cognitive neuroscience. These advanced machine learning 
techniques can support future research in this exciting area, 
offering the potential to further understand the complex code 
underneath brain-behavior interactions and contributing to the 
development of more effective interventions for cognitive and 
emotional disorders.
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