Skip to main content

ORIGINAL RESEARCH article

Front. Hum. Neurosci.
Sec. Brain Imaging and Stimulation
Volume 18 - 2024 | doi: 10.3389/fnhum.2024.1453638
This article is part of the Research Topic Brain Stimulation Methods in Human Motor Neuroscience View all 4 articles

Syncing the Brain's Networks: Dynamic Functional Connectivity Shifts from Temporal Interference

Provisionally accepted
  • 1 School of Physical Education, Shenzhen University, Shenzhen, Guangdong Province, China
  • 2 Shanghai University of Sport, Shanghai, China

The final, formatted version of the article will be published soon.

    Background: Temporal interference (TI) stimulation, an innovative non-invasive brain stimulation approach, has the potential to activate neurons in deep brain regions. However, the dynamic mechanisms underlying its neuromodulatory effects are not fully understood. This study aims to investigate the effects of TI stimulation on dynamic functional connectivity (dFC) in the motor cortex. Methods: 40 healthy adults underwent both TI and tDCS in a double-blind, randomized crossover design, with sessions separated by at least 48 hours. The total stimulation intensity of TI is 4 mA, with each channel's intensity set at 2 mA and a 20 Hz frequency difference (2 kHz and 2.02 kHz). The tDCS stimulation intensity is 2 mA. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected before, during, and after stimulation. dFC was calculated using the left primary motor cortex (M1) as the region of interest (ROI) and analyzed using a sliding time-window method. A two-way repeated measures ANOVA (groupĂ—time) was conducted to evaluate the effects of TI and tDCS on changes in dFC. Results: For CV of dFC, significant main effects of stimulation type (P = 0.004) and time (P < 0.001) were observed. TI showed lower CV of dFC than tDCS in the left postcentral gyrus (P < 0.001). TI-T2 displayed lower CV of dFC than TI-T1 in the left precentral gyrus (P < 0.001). For mean dFC, a significant main effect of time was found (P < 0.001). TI-T2 showed higher mean dFC than tDCS-T2 in the left postcentral gyrus (P = 0.018). Within-group comparisons revealed significant differences between time points in both TI and tDCS groups, primarily in the left precentral and postcentral gyri (all P < 0.001). Results were consistent across different window sizes. Conclusion: 20 Hz TI stimulation altered dFC in the primary motor cortex, leading to a significant decreasing variability and increasing mean connectivity strength in dFC. This outcome indicates that the 20 Hz TI frequency interacted with the motor cortex's natural resonance.

    Keywords: Temporal interference, non-invasive brain stimulation, Dynamic Functional Connectivity, Resting-state fMRI, primary motor cortex

    Received: 23 Jun 2024; Accepted: 08 Oct 2024.

    Copyright: © 2024 Zhu, Tang, Qin, Qian, Zhuang and LIU. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: YU LIU, Shanghai University of Sport, Shanghai, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.