AUTHOR=Dias Marcelo , Dörr Felix , Garthof Susett , Schäfer Simona , Elmers Julia , Schwed Louisa , Linz Nicklas , Overell James , Hayward-Koennecke Helen , Tröger Johannes , König Alexandra , Dillenseger Anja , Tackenberg Björn , Ziemssen Tjalf TITLE=Detecting fatigue in multiple sclerosis through automatic speech analysis JOURNAL=Frontiers in Human Neuroscience VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2024.1449388 DOI=10.3389/fnhum.2024.1449388 ISSN=1662-5161 ABSTRACT=
Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by central nervous system demyelination and axonal degeneration. Fatigue affects a major portion of MS patients, significantly impairing their daily activities and quality of life. Despite its prevalence, the mechanisms underlying fatigue in MS are poorly understood, and measuring fatigue remains a challenging task. This study evaluates the efficacy of automated speech analysis in detecting fatigue in MS patients. MS patients underwent a detailed clinical assessment and performed a comprehensive speech protocol. Using features from three different free speech tasks and a proprietary cognition score, our support vector machine model achieved an AUC on the ROC of 0.74 in detecting fatigue. Using only free speech features evoked from a picture description task we obtained an AUC of 0.68. This indicates that specific free speech patterns can be useful in detecting fatigue. Moreover, cognitive fatigue was significantly associated with lower speech ratio in free speech (