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Parkinson disease (PD) is a neurodegenerative disorder that causes motor and

cognitive deficits, presenting complex challenges for therapeutic interventions.

Repetitive transcranial magnetic stimulation (rTMS) is a type of neuromodulation

that can produce plastic changes in neural activity. rTMS has been trialed

as a therapy to treat motor and non-motor symptoms in persons with

Parkinson disease (PwP), particularly treatment-refractory postural instability

and gait difficulties such as Freezing of Gait (FoG), but clinical outcomes

have been variable. We suggest improving rTMS neuromodulation therapy for

balance and gait abnormalities in PwP by targeting brain regions in cognitive-

motor control networks. rTMS studies in PwP often targeted motor targets

such as the primary motor cortex (M1) or supplementary motor area (SMA),

overlooking network interactions involved in posture-gait control disorders. We

propose a shift in focus toward alternative stimulation targets in basal ganglia-

cortex-cerebellum networks involved in posture-gait control, emphasizing the

dorsolateral prefrontal cortex (dlPFC), cerebellum (CB), and posterior parietal

cortex (PPC) as potential targets. rTMS might also be more effective if

administered during behavioral tasks designed to activate posture-gait control

networks during stimulation. Optimizing stimulation parameters such as dosage

and frequency as used clinically for the treatment of depression may also

be useful. A network-level perspective suggests new directions for exploring

optimal rTMS targets and parameters to maximize neural plasticity to treat

postural instabilities and gait difficulties in PwP.
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Introduction

Parkinson disease (PD) is a common neurodegenerative
disorder affecting motor and cognitive functions (Albin, 2023).
PD is a significant cause of disability in the aging population.
Distal limb bradykinesia is the defining symptom of the
disease, accompanied by rigidity, tremors, and balance and
gait disturbances (Davie, 2008; Bohnen et al., 2022b; Bologna
et al., 2023). Although PD is historically described as a motor
disorder, it is a complex cognitive-motor disorder (Sarter et al.,
2021). In line with the diverse array of motor and cognitive
symptoms associated with PD, current treatments take many
forms. Modern therapies include medications such as dopamine
replacement therapy, surgical interventions like deep brain
stimulation, and assistive treatments (e.g., physical, occupational,
or speech therapies) aimed at improving motor and non-
motor features. Although existing treatments frequently affect
significant improvements, important clinical features are refractory
to treatment. Treatment refractory postural instability and gait
disorders are common and morbid features of advancing PD. Even
when existing treatments are effective, there may be complicated
side effects. Chronic use of dopaminergic medications can lead
to behavioral problems and is associated with motor fluctuations
and troublesome involuntary movements. Surgical therapies, such
as deep brain stimulation, improve motor features, but only a
limited number of persons with Parkinson (PwP) are eligible, and
mood disorders are a common side effect (Skidmore et al., 2006;
Morgante et al., 2007).

Given the shortcomings of existing treatments, there has
been increased interest recently in repetitive transcranial
magnetic stimulation (rTMS) as a neuromodulation therapy
for PD. Since rTMS is non-invasive, it may present a safer
alternative treatment to invasive surgeries. rTMS is considered
to be more precise than existing medications, as it targets
regions in the brain that are interconnected both structurally
and functionally through direct and multisynaptic anatomical
connections (Siebner et al., 2022). rTMS causes changes
in neuronal excitability akin to long-term potentiation or
long-term depression, depending on which protocols are
employed and where stimulation is targeted. However, current
rTMS protocols show inconsistent efficacy as a treatment for
balance and gait abnormalities in PwP (Chung and Mak, 2016;
Xie et al., 2021).

In this opinion piece, we offer suggestions for increasing
rTMS treatment efficacy for balance and gait disorders in
PwP. Most prior investigations of rTMS for motor deficits
in PD targeted motor targets such as the primary motor
cortex (M1) or supplementary motor area (SMA; Xie et al.,
2020; Rahimpour et al., 2021; Deng et al., 2022; Liu et al.,
2024). Our point of departure from exclusively stimulating
motor targets is informed by network-level framing of
PD pathophysiology. Although motor targets are a critical
source of motor programs and commands, targeting regions
involved in cognitive aspects of posture-gait control may better
improve motor functions as well as cognitive functions. We
emphasize targeting alternative connected regions of the basal
ganglia-cortex-cerebellum network (BG-Ctx-CB) implicated
in PD, specifically the dorsolateral prefrontal cortex (dlPFC),

cerebellum (CB), and posterior parietal cortex (PPC). We
suggest that targeting the BG-Ctx-CB network and using
plasticity-informed stimulation paradigms will result in more
consistently effective rTMS treatments for FoG motor deficits
in PwP.

A network approach to rTMS
targeting

PD reflects network-level disorders. BG dysfunction is the
root of many motor features of PD. Focusing on BG alone,
however, disregards its interactions with other regions such as
dlPFC, PPC, and the CB (Figure 1A). Studies suggest PD deficits
in cognitive control drive FoG, resulting from dysfunctions in
a distributed network of frontal and parietal cortical regions
(Rubino et al., 2014). Neuroimaging studies link cognitive
symptoms in PD to changes in dlPFC, premotor, and PPC
activity, and motor symptoms to changes in the interactions
between BG, cortex, and CB (Owen, 2004; Michely et al., 2015;
Caligiore et al., 2016, 2017).

While network interactions influencing PD features such
as postural instability and FoG are well-established, most
rTMS studies have focused on motor targets for treating these
sensorimotor deficits. The emphasis on motor targets is due to
their well-defined role in preparing and executing coordinated
movements and their attractive anatomical properties. However,
two-thirds of corticospinal projections originate from outside
motor targets in frontal premotor areas and parietal cortices
(Strick et al., 2021). Motor commands are influenced by higher-
level information such as goals, attention, and context originating
from other regions such as dlPFC and PPC (Gallego et al.,
2022). The dlPFC and PPC have critical roles in mediating
sensorimotor transformations and coordinating multifaceted
aspects of movement, such as movement planning, action
intentions, and decision-making (Andersen and Cui, 2009).
For PwP, it is likely that deficits in the performance of
these contextual and cognitive tasks influence movement and
disrupt everyday motor functions (Hausdorff et al., 2006).
Modulation of other regions outside of motor targets may be
more effective in the treatment of PD cognitive and motor
symptoms.

The choice of optimal stimulation targets should also consider
person-specific compensatory mechanisms. Compensation is the
brain’s adaptive response to ongoing neurodegeneration and may
have beneficial or detrimental effects depending on the context
and brain regions involved. As the disease progresses, certain
brain regions may exhibit increased or decreased activity to
offset motor and non-motor deficits (Blesa et al., 2017). This
compensatory mechanism can have varying outcomes, potentially
either alleviating or intensifying the symptoms and effects of
PD. Understanding these compensatory mechanisms is crucial
for guiding stimulation treatment strategies and targeting the
appropriate brain areas to either excite beneficial compensation
or inhibit harmful overactivity. In the sections that follow,
we present work that has investigated brain stimulation to
different nodes of BG-Ctx-CB networks involved in posture-gait
control.
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FIGURE 1

Basal Ganglia (BG)-cortex (Ctx)-cerebellum (CB) network, its functions, and the reciprocal interactions between each cortical and subcortical brain
region (A). Connections between BG and the thalamus, which also project to frontal, motor, and parietal cortices, as well as other downstream
connections between BG and the brainstem, are not shown in this diagram (see Bohnen et al., 2022a,b, for a more comprehensive illustration of
connections). Potential cognitive and sensorimotor improvements that could be achieved by targeting specific brain regions with repetitive
transcranial magnetic stimulation (rTMS). The targeted regions include the frontal cortex (B), cerebellum (CB) (C), and parietal cortex (D). The basal
ganglia (BG) are also depicted for context.

Dorsolateral prefrontal cortex (dlPFC)

An alternative cortical rTMS target for improving motor
impairments in PwP is the dlPFC. The dlPFC has a wide-
reaching influence over a swath of executive functions (Miller and
Cohen, 2001). Apart from cognitive deficits associated with PD,
motor deficits may also be explained partly by dlPFC dysfunction,
specifically as they relate to attentional processes (Cavanagh et al.,
2022). The ability to move seamlessly through the environment
depends upon the integration of sensory cues, motor commands,
and cognitive demands, all filtered by attentional processes. dlPFC
is instrumental in these attentional processes, exerting top-down
control through projections to premotor areas, thalamus, and
BG (Schall and Boucher, 2007). Cholinergic projections from the
basal forebrain to dlPFC are critical for attentional integration
and can be conceived as part of an Attentional-Motor Interface
(AMI) network, which also includes thalamic and BG connections
(Sarter et al., 2021; Albin et al., 2022). PD features such as
postural instability and FoG are linked to the degradation of these
cholinergic pathways (Stuart et al., 2020; Bohnen et al., 2022b). The
link between motor and attentional deficits in PwP is observed
in dual-tasking studies in which participants perform separate
cognitive and movement tasks simultaneously (Rochester et al.,
2004; Kelly et al., 2012; Salazar et al., 2017). In studies assessing
both motor and cognitive effects of dual-tasking, performance
declines occur in both domains (Kelly et al., 2012). For example,
dual-tasking during walking often results in FOG (Nutt et al.,
2011; Amboni et al., 2013; Peterson et al., 2015). This dual-task
interference may be partly explained by limited attentional capacity
for monitoring gait, posture, and complex movement, leading to

falls due to freezing of movement, loss of balance, and inadequate
rebalancing after movement errors (reviewed in Sarter et al., 2014).
It is not surprising, therefore, that attentional areas influence
posture-gait control (Shine et al., 2013; Zhou et al., 2021; Bardakan
et al., 2022). An additional important feature of dual-task walking
deficits in PwP has been associated with impairments in executive
functions such as set-shifting and response inhibition (Lord et al.,
2010; Plotnik et al., 2011). For instance, impairments in task
switching are correlated with FoG in PwP, offering further evidence
of the joint manifestations of cognitive and motor system deficits
within PD (Naismith and Lewis, 2010). One possible explanation
for these dual-tasking effects is that compensatory activity from
the dlPFC increases in PD, leading to more top-down control of
movement, and this compensatory activity is disrupted by dual-
tasking that also relies on dlPFC activity. Recent evidence has
demonstrated an upregulation of cholinergic neurotransmission in
dlPFC of cognitively impaired early-stage PwP (Van Der Zee et al.,
2022). Neuroimaging meta-analyses support this interpretation of
increased dlPFC activity in PD (Stuart et al., 2018; Herz et al.,
2021). It is conceivable that using excitatory rTMS to modulate
the excitability of the dysfunctional dlPFC within the cognitive-
motor control network could normalize its activity. This might
lead to more effective neural processing for attention and executive
functions related to posture and gait control, potentially alleviating
FOG during secondary tasks. It is also feasible that excitatory
rTMS can enhance dopamine release in the striatum, potentially
replenishing depleted neural reserves and alleviating the striatal
overload linked to FOG episodes (Strafella et al., 2001; Potvin-
Desrochers and Paquette, 2021).

Increased dlPFC activity in PD could reflect a necessary
compensatory response to ameliorate motor deficits in PD, or
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this excess activity could be detrimental to function. Overactivity
in the dlPFC may be considered wholly detrimental rather than
compensatory if the persistence of increased top-down control
occurs in contexts beyond dual-tasking. If dlPFC hyperactivity is
contributing to the motor deficits in PD, one treatment strategy
would be to downregulate dlPFC activity through rTMS treatments.
Due to its upstream and contextual influence on M1, designing
rTMS paradigms for dlPFC could more effectively counteract
the movement instability arising from attentional and control
deficits (Figure 1B). Most treatment studies to date emphasized
strengthening connections between dlPFC and M1 using excitatory
rTMS, leading to mostly null effects on motor performance
(Goodwill et al., 2017). Although well-intentioned, if dlPFC’s
compensatory role in PD results in an excess attentional focus
on the control of movement, as indexed by dual-tasking studies,
future treatments that reduce dlPFC activity using inhibitory rTMS
protocols may be more effective. Recent meta-analyses support
this notion (Goodwill et al., 2017). Further trials are warranted
to support this notion. Inhibitory rTMS protocols directed to the
dlPFC are one pathway of alternative treatments that could improve
motor function in PwP.

Cerebellum (CB) and posterior parietal
cortex (PPC)

Another network-level stimulation target is the CB (Figure 1C),
which can modulate the neuronal excitability of interconnected
PPC regions (Casula et al., 2016). The BG and CB were historically
thought to interact via their common cortical outputs (Mirdamadi,
2016). Non-human primate research suggests that BG and CB
are also interconnected at the subcortical levels through the
subthalamic nucleus and deep cerebellar nuclei (Bostan and Strick,
2010; Bostan et al., 2013). There are dissociable cognitive and motor
networks within the CB, with anterior cerebellar lobules exhibiting
greater motor cortical associations, and the more posterior lobules
are associated with greater cognitive cortical areas (Buckner et al.,
2011; Bernard et al., 2012; Buckner, 2013). Studies investigating
tremor-related activity in PD have identified cerebellar structural
changes and indicated a role for cerebellar circuits, but further
research using neuroimaging, brain stimulation, and consistent
patient selection is required to clarify the specifics of cerebellar
modulation and its impact on tremors. Concerning FoG in PD,
disturbances to the BG-CB subcortical and cortical circuitry may
influence the observed abnormal functionality (Carrillo et al., 2013;
Bologna et al., 2015; Mirdamadi, 2016; Helmich et al., 2021). The
CB is shown to play a central role in regulating both cognitive
and automatic processes related to posture-gait control through its
influence on the cerebral cortex (Takakusaki, 2017). Stimulating
cerebellar regions offer promise in directly influencing the CB-
BG-Ctx cortical circuitry, thereby improving functionality and
potentially alleviating FoG symptoms in PD.

The compensatory role of CB in PD may contribute to
maintaining normal motor and non-motor function in the early
stages of the disease (Wu and Hallett, 2013; Bostan and Strick,
2018). Examining CB function in healthy individuals and PwP can
provide valuable insights into treating motor and cognitive deficits
(Rahimpour et al., 2021). PwP with greater cerebellar connectivity

BOX 1 Spaced Learning: Spaced learning involves repeated training
sessions with long intervals in between and it is critical for dynamic
motor memory stabilization (Overduin et al., 2006; Smolen et al.,
2016). This phenomenon is due to changes in synaptic strength,
where cumulative exposure to spaced stimuli promotes the
formation of long-term memory traces. Metaplasticity, which refers
to changes in synaptic plasticity such as long-term potentiation
(LTP) or depression (LTD), has been shown to exhibit both additive
and stabilizing effects. The spacing between stimulations is a key
factor that determines the type of metaplasticity observed.
Specifically, research indicates that increasing the timing between
stimulations promotes additive metaplasticity effects (Thomson and
Sack, 2020). Theta burst stimulation applied at short intervals does
not produce cumulative LTP effects (Lynch et al., 2013). For
example, iTBS with eight- to fifteen-minute intervals between
sessions did not result in any significant differences compared to
sham stimulation (Thomson et al., 2019). Animal and human studies
have demonstrated that longer intervals (50 + minutes) between
TBS sessions are necessary to augment LTP (Kramár et al., 2012;
Lynch et al., 2013; Cao and Harris, 2014; Cole et al., 2020). These
findings suggest that TBS may be a promising method for inducing
additive metaplastic changes in network activity levels, thereby
preventing homeostatic metaplasticity from stabilizing stimulation
effects. Future research on the potential of spaced TBS to induce
long-lasting neuroplasticity in the human cortex is a promising
avenue to explore and can have significant implications for
designing effective rehabilitation programs for PwP with balance
and gait disturbances (Figure 2).

show higher levels of performance in motor tasks (Festini et al.,
2015). Similarly, medicated PwP with cognitive and motor deficits
show reduced levels of cerebellar-whole brain and within cerebellar
connectivity in comparison to healthy age-matched participants
when measured with resting-state fMRI (Festini et al., 2015). As
past studies have done, excitatory rTMS protocols through the
CB have the potential to enhance cognitive and motor pathways
that are not effectively targeted by solely focusing on the M1
(Nardone et al., 2020).

Administering excitatory rTMS to the CB could enhance
motor control and sensorimotor processes in the PPC. Reductions
in cortical volume involving the PPC may contribute to the
manifestation of FoG in PwP (Rubino et al., 2014). Although
cortical volume loss is not treatable, stimulating the PPC through
rTMS either directly or indirectly can promote activity (Figure 1D).
Excitatory cerebellar stimulation increased PPC excitability in
stroke patients who showed improved gait and balance functions
and this approach could also be translated into cerebellar
stimulation to encourage network-level modulation to mitigate
FoG (Koch et al., 2019). Applying excitatory rTMS to the lateral
CB has been seen to have an excitatory effect and influence cortical
connections to the PPC in healthy individuals (Casula et al., 2016).
An excitatory rTMS approach to sensorimotor regions of PPC and
lateral and posterior lobules of CB (e.g., Crus I/II, lobules VI-IX)
could mitigate cognitive-motor dysfunctions of FoG in PwP.

Maximizing the effects of
stimulation (frequency, dosage,
rTMS-state-dependence interaction)

In addition to considering the desired treatment brain targets,
treatment regimens themselves are critical when designing rTMS
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FIGURE 2

Spaced learning stimulation protocol. During stimulation, participants perform a task to activate a network of interest. Repetitive transcranial
magnetic stimulation (rTMS) is delivered at intervals of 60 minutes, promoting additive potentiation to neural activity in networks.

paradigms. Factors such as stimulation frequency, dosage, and
brain state during stimulation can affect brain and behavioral
responses. Although rTMS has been used in translational research
to improve cognitive-motor function in PwP, mixed and weak
results may be attributed to the use of suboptimal treatment
regimens (Chung and Mak, 2016; Xie et al., 2021).

In clinical contexts, there are two main categories used for
rTMS: standard repetitive TMS (rTMS) and patterned rTMS
using theta burst stimulation (TBS). Both stimulation categories
have subtypes that lead to increased cortico-spinal excitability
[rTMS: > 5Hz, intermittent TBS (iTBS)] and decreased cortico-
spinal excitability [rTMS: < 1Hz, continuous TBS (cTBS)] (Huang
et al., 2005; Gamboa et al., 2010; McCalley et al., 2021). TBS has
gained popularity in recent years due to its ability to produce
the same changes in excitability as standard rTMS but in about
one-tenth of the stimulation duration, and the effects last longer
than those from standard rTMS (Klomjai et al., 2015; Wischnewski
and Schutter, 2015). The choice of frequency should be driven by
intended effects on the target location and connected networks.
For example, stimulating the dlPFC with excitatory iTBS could lead
to enhanced activity in other connected frontal regions. Applying
iTBS to the CB would induce circuitry changes to the cortex via
deep cerebellar nuclei and thalamus through complex projections.
Open questions remain about the nature of the excitatory and
inhibitory effects of these frequencies in areas outside of the M1
(Siebner et al., 2022). One possible approach involves using fMRI
to establish the relationship between stimulation and functional
connectivity and between stimulation and FoG. This allows for
the optimization of rTMS protocols, which can be used to

develop effective therapeutic interventions based on idealized brain
network function mediating behavior.

Another important variable in defining rTMS treatment
paradigms for PD is stimulation dosage. “Dosage” is defined as
the number of pulses administered in one treatment day. One
possible explanation for the heterogeneity of outcomes in the use
of rTMS for motor symptom treatment in PwP is inadequate
dosing of stimulation. Most studies focusing on motor symptoms
in PwP have been limited to small dosages of around 2,000
pulses and short treatment durations between one and three
days. The most effective PD treatment studies so far have been
those that greatly increased the dosage and duration of the
treatment course, with approximately 10,000 pulses delivered over
weeks (Chou et al., 2015). Inadequate rTMS dosing was similarly
proposed to be an issue for the use of rTMS as a treatment for
depression (Hutton et al., 2023). New treatment regimens such
as the Stanford Accelerated Intelligent Neuromodulation Therapy
(SAINT) demonstrated the safety, tolerability, and enhanced
clinical effectiveness of an accelerated, high-dose iTBS treatment
paradigm (Cole et al., 2020). The SAINT protocol demonstrates
the promise of incorporating spaced learning principles for the
timing between sessions to enhance rTMS treatments’ effectiveness
(see Box 1). Additional research is necessary to determine
the appropriate dosage for neuromodulatory therapies aimed at
alleviating FoG symptoms in PwP.

The behavioral and neural activity, referred to as ‘brain state’,
during stimulation is another often overlooked factor that may
be critical for designing effective rTMS therapies. The large inter-
and intra-individual variability of brain and behavior responses to
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rTMS therapies in PD could be reduced by controlling the brain
state at the time of stimulation. Current rTMS interventions are
often administered during a brain state termed ‘rest’ when the
participant is in a quiet, still position (Bradley et al., 2022). One
potential difference in treatment outcome may arise from variations
in the ‘rest’ brain state between individuals. If the goal is to
improve movement, it may be more effective to deliver stimulation
while the brain networks responsible for generating movement are
engaged (Cattaneo and Silvanto, 2008; Silvanto and Cattaneo, 2014;
Pitcher et al., 2021; Bradley et al., 2022; Goldenkoff et al., 2023).
Controlling the behavioral state, such as by asking participants
to perform a goal-directed behavior, could reduce neural activity
fluctuations by constraining the pattern of interactions between
brain regions engaged in cognitive-motor control. Administering
brain stimulation adaptively when the individual generates a motor
response might not only produce distinct effects on long-range
connectivity in the engaged network during stimulation but also
lead to marked modulators of plasticity mediating cognitive-motor
control.

The studies reviewed here demonstrate the frequency, dose, and
state-dependent effects of rTMS on brain activity and behavior.
The consequences of repeated stimulation in such circumstances
have not been fully explored. Future research should consider
increasing the dosage of rTMS and delivering distinct stimulation
frequencies based on ongoing physiology to design more effective
treatments for cognitive-motor impairments in PwP. Additionally,
matching the behavioral state during stimulation to target specific
neuronal populations involved in cognitive-motor control may
provide another avenue to reduce heterogeneity and increase the
efficacy of neuromodulation treatments in PD. Understanding the
frequency, dose, and state-dependent effects of neural stimulation
is critical to improving clinical outcomes by identifying the factors
that affect response to rTMS.

Conclusion and future directions

In this opinion piece, we have outlined how taking a network
view of PD may lead to selecting more effective rTMS targets for
alleviating postural imbalances and FoG in PwP. While rTMS to
motor targets has been a standard intervention, recent insights
suggest that targeting a node through specific brain circuits
involved in cognitive-motor control, such as dlPFC, CB, and PPC,
could increase the effectiveness of neuromodulation of aberrant
brain networks in PD. This network approach also raises the
prospect of delivering multi-site rTMS concurrently to modify
connectivity in brain networks in clinical contexts. The precise
interactions between brain regions and stimulation are complex
and require a causal grounding of clinical neurostimulation in
specific neural circuit alteration. Emphasis should be placed
on neural mechanisms of treatment using neurophysiology and
neuroimaging to increase the reliability of these interventions.
Additionally, choosing the correct frequency, increasing the rTMS
dosage, and integrating brain state manipulations into stimulation
sessions may provide more effective and lasting changes than
currently demonstrated. Future work should focus on which rTMS
parameters, such as iTBS or cTBS, would be most effective at
improving symptoms at the different targets. To fully harness the

therapeutic potential of rTMS in PwP, it is crucial to gather data
across all disease stages, identify optimal stimulation timing within
the disease course, and determine the duration of stimulation
effects on brain activity and behavior outcomes. By evaluating
factors such as medication status and disease progression, we can
develop an adaptive, individualized stimulation protocol for each
patient, maximizing therapeutic outcomes and quality of life while
maintaining pragmatic treatment goals.
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