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Background: Applying convolutional neural networks to a large number of 
EEG signal samples is computationally expensive because the computational 
complexity is linearly proportional to the number of dimensions of the EEG 
signal. We propose a new Gated Recurrent Unit (GRU) network model based 
on reinforcement learning, which considers the implementation of attention 
mechanisms in Electroencephalogram (EEG) signal processing scenarios as a 
reinforcement learning problem.

Methods: The model can adaptively select target regions or position sequences 
from inputs and effectively extract information from EEG signals of different 
resolutions at multiple scales. Just as convolutional neural networks benefit 
from translation invariance, our proposed network also has a certain degree 
of translation invariance, making its computational complexity independent of 
the EEG signal dimension, thus maintaining a lower learning cost. Although the 
introduction of reinforcement learning makes the model non differentiable, we 
use policy gradient methods to achieve end-to-end learning of the model.

Results: We evaluated our proposed model on publicly available EEG dataset 
(BCI Competition IV-2a). The proposed model outperforms the current state-
of-the-art techniques in the BCI Competition IV- 2a dataset with an accuracy of 
86.78 and 71.54% for the subject-dependent and subject-independent modes, 
respectively.

Conclusion: In the field of EEG signal processing, attention models that combine 
reinforcement learning principles can focus on key features, automatically filter 
out noise and redundant data, and improve the accuracy of signal decoding.
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1 Introduction

Significant progress has been made in the decoding and recognition of EEG signals based 
on deep learning network architecture. However, in order to achieve satisfactory accuracy, 
especially in cross subject EEG signal decoding tasks, the computational cost of model training 
is high, and it is still difficult to ensure satisfactory performance in decoding tasks (Liu et al., 
2023; Song et al., 2023; Acharjee and Ahamed, 2024; He et al., 2023).

At present, attention mechanisms and transfer learning are widely applied in the 
decoding task of EEG signals, aiming to improve the accuracy of cross subject EEG signal 
decoding (Altaheri et al., 2023; Zhang et al., 2020; Liu et al., 2023). In neural networks, 
attention mechanisms autonomously learn a set of weight coefficients to emphasize regions 
of interest in the input and suppress irrelevant background regions. In this way, neural 
networks can focus more on key information related to the task, improving the performance 
and efficiency of the model (Vaswani et al., 2017). Reference (Altaheri et al., 2023) proposes 
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an attention focused temporal convolution architecture aimed at 
optimizing the EEG data-driven motor imagery (MI) image 
classification task. This method integrates multiple strategies and 
significantly improves the performance of MI classification even 
while keeping the parameter size compact. This architecture utilizes 
a multi head self-attention mechanism aimed at accurately focusing 
and enhancing the most critical features in MI-EEG data. At the 
same time, a temporal convolutional network layer was introduced 
to deeply mine and extract complex temporal dimension advanced 
features. Zhang et al. (2020) utilized an attention mechanism based 
Long Short Term Memory (LSTM) neural network model, with deep 
learning and self -attention mechanisms at its core, to effectively 
capture and learn the complex information contained in EEG time 
series, thereby achieving precise differentiation and classification of 
left and right hand movement intentions. This approach not only 
broadens the perspective of EEG signal processing, but also provides 
new research ideas for brain computer interface technologies related 
to motor imagery (Zhang et al., 2020).

In recent years, there have been some advances in the research 
of attention mechanisms using neural networks for EEG signal 
processing, but there are still some challenges and limitations. For 
example, EEG signals usually have a low signal-to-noise ratio and 
are susceptible to various types of noise interference, such as 
motion artifacts, electromagnetic interference, etc., which 
increases the difficulty of signal processing. In addition, there are 
differences in brain structure and function among different 
individuals, resulting in high individual specificity of EEG signals, 
which makes it difficult to develop a universal EEG signal 
classification model. Meanwhile, EEG signals are highly complex 
and nonlinear, containing rich time-domain and frequency-
domain features. How to effectively extract and utilize these 
features is a challenge.

In order to address these challenges in the field of EEG signal 
decoding, a new attention based task driven visual processing 
framework was developed using GRU neural network in this article. 
Our model considers the implementation of attention mechanisms in 
visual and EEG signal processing scenarios as a reinforcement 
learning problem, and is sufficiently versatile to be applied to static 
images, EEG signals, or as a perception module for agents interacting 
with environmental information such as static images and EEG signals.

This model is based on the GRU neural network, which first 
processes the sampling of various local features at different positions 
of the EEG signal to obtain local features, then integrates these local 
features to obtain global features, and finally forms the dynamic 
feature expression of EEG signal samples. That is to say, it is not 
processing the entire EEG signal sample at once, but at each step, the 
model selects the next location to process based on past information 
and task requirements. The number of parameters and the amount of 
computation performed in our model can be controlled independently 
of the size of the EEG signal, which is in stark contrast to convolutional 
networks. The time complexity of convolutional neural networks is 
linearly related to the dimension and number of channels of the EEG 
signal. We describe an end-to-end optimization process that allows for 
direct training of models for a given task and maximizes performance 
metrics that may depend on the entire decision sequence made by the 
model. This process uses backpropagation to train neural network 
components and policy gradients to address the non-differentiability 
brought about by the introduction of reinforcement learning.

Experiments have shown that our model can learn effective task 
specific strategies to determine its position on several image 
classification tasks and EEG signal classification problems. Our results 
also indicate that GRU neural networks based on reinforcement 
learning may be better than current mainstream baseline models in 
handling clutter and nonlinear non-stationary EEG signals.

2 Related work

Significant progress has been made in research on the attention 
mechanism of neural networks used for EEG signal processing in 
recent years (Xie et al., 2024; Liu et al., 2023; Hu et al., 2024; Cao et al., 
2023). This attention mechanism enables neural networks to pay more 
attention to key information in the input sequence when processing 
EEG signals, thereby improving the accuracy and efficiency of the 
model. Firstly, in terms of EEG signal acquisition, the 
electroencephalograph collects EEG signals through electrodes and 
digitizes them for storage and analysis. However, due to the high level 
of noise and interference in EEG signals, it can have an impact on the 
performance and accuracy of neural network models. Therefore, 
denoising and filtering processing have become important 
preprocessing steps to remove unnecessary signals and noise. 
Furthermore, in terms of feature extraction of EEG signals, neural 
network models can automatically extract time and frequency 
features. These features include amplitude, frequency, phase, slope, 
and waveform, which help to understand the mechanisms and 
functions of brain activity.

After introducing attention mechanism into neural network 
models, the model can be more flexible and efficient in processing 
EEG signals. The attention mechanism allows the model to weight 
different parts of the input data, that is, assign different weights to 
different parts. In this way, the model can focus more on key 
information related to the task, while ignoring irrelevant or noisy 
information. For example, in EEG signal classification tasks, attention 
mechanisms can help models recognize features related to specific 
categories, thereby improving classification accuracy (Zhang et al., 
2023; Han et al., 2023).

In addition, attention mechanisms can also be used for event 
correlation analysis of EEG signals. By simultaneously inputting 
stimulus or task time points and EEG signals into a neural network 
model, and introducing attention mechanisms, we can observe the 
changes in EEG signals before and after stimulus or task 
occurrence, as well as the model’s attention to different time 
points. This helps to study the brain’s response mechanisms to 
stimuli or tasks, and reveals the functional connectivity patterns 
of the brain network (Tang et al., 2024). In summary, research on 
the attention mechanism of neural networks used for EEG signal 
processing has made some progress, but still faces some challenges 
and limitations.

Future research can further explore how to optimize the 
structure and parameters of neural network models to improve 
their performance and accuracy in EEG signal processing tasks. 
Meanwhile, with the continuous development of deep learning 
technology, it is believed that more innovative methods will 
be applied in the field of EEG signal processing, providing strong 
support for the development of neuroscience and brain computer 
interface technology.
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In recent years, reinforcement learning has been widely studied in 
EEG signal processing and analysis (Prabhakar and Lee, 2022; 
Mahapatra and Bhuyan, 2022). The strategy gradient method in 
reinforcement learning aims to optimize the policy function to enable 
agents to better adapt to the environment and achieve task objectives. 
An agent is an entity in reinforcement learning that can perceive 
environmental states, perform actions, and optimize its action choices 
based on environmental feedback (rewards or punishments). In EEG 
signal classification tasks, an agent can be seen as an intelligent system 
that predicts or classifies different brain activity states (such as 
attention, relaxation, thinking, etc.) by analyzing EEG signals.

The core of the strategy gradient method lies in directly modeling 
and optimizing the strategy to find the optimal strategy. The strategy 
here is a mapping that maps the state to the probability distribution of 
each action. The policy gradient theorem states that the gradient of the 
policy function is directly proportional to the product of the expected 
cumulative rewards based on this policy function, which provides a 
theoretical basis for optimizing strategies.

In the basic framework of reinforcement learning, agents take certain 
actions based on the state given by the environment and receive rewards 
based on the results of the actions. The goal of an intelligent agent is to 
learn a strategy that enables it to select the action that can receive the 
maximum reward in different states. The policy gradient method 
estimates the policy gradient and updates the policy parameters based on 
the gradient to gradually enable the agent to learn better policies.

In multi-agent systems, policy gradient methods can be extended to 
handle the learning and decision-making problems of multiple agents 
(Shin et  al., 2024). The method based on multi-agent reinforcement 
learning can automatically extract and select key features from raw EEG 
signals, reducing reliance on manual experience each intelligent agent 
estimates policy gradients based on its own experience and updates policy 
parameters based on the estimated gradients. The interaction between 
intelligent agents is inevitable in this process, and through the strategy 
gradient method, intelligent agents can learn how to better act in 
interaction with other intelligent agents.

Overall, the machine learning framework using policy gradient 
methods provides an effective method for optimizing strategies in 
reinforcement learning, enabling agents to gradually learn the optimal 
behavioral strategy through trial and error.

The method proposed in this article is based on GRU continuously 
integrating signal features in the time dimension and making 
decisions on how to act, making the algorithm framework more 
universal. Meanwhile, the decision-making process adopts the strategy 
gradient method for end-to-end optimization, without relying on 
greedy action choices. We further demonstrate how this universal 
architecture can be used for efficient signal decoding in EEG signals. 
Introducing GRU (Gated Recurrent Unit) based on reinforcement 
learning to implement attention mechanism has the following 
advantages in solving the challenges faced by EEG signal processing:

 1. The attention mechanism based on reinforcement learning can 
help models automatically focus on important features when 
processing EEG signals, ignoring noise and irrelevant information, 
thereby improving decoding quality. Reinforcement learning can 
adapt to different noise environments by continuously optimizing 
model parameters, further improving the robustness of the model.

 2. Based on reinforcement learning attention mechanism, the 
model can be continuously optimized through interaction with 

the environment, learning the specific features of different 
individual EEG signals, which can enable the model to better 
adapt to individual differences.

 3. GRU, as a variant of Recurrent Neural Network (RNN), has the 
ability to process time-series data and capture temporal 
dependencies in EEG signals. By combining attention 
mechanisms, GRU can more effectively extract complex 
features from EEG signals, including both time-domain and 
frequency-domain information.

3 Dataset and model

3.1 Dataset

The BCI competition IV-2a (BCI-2a) dataset is an important 
electroencephalogram (EEG) dataset widely used in research and 
competitions on brain computer interfaces (BCI). This dataset consists 
of EEG data from 9 subjects who were required to perform four 
different motor imagery tasks during the experiment, namely left 
hand, right hand, foot, and tongue motor imagery. These motor 
imagery tasks are based on the BCI paradigm of prompts, requiring 
participants to imagine themselves performing corresponding 
movements according to the arrow prompts on the screen.

Each participant conducted two sessions on different dates, with 
each session consisting of 6 runs and 48 trials. Each trial corresponds 
to a complete experiment, starting from the subject seeing the prompt 
and ending with completing the imagination task. Each exercise 
imagination experiment takes 4 s, with a sampling frequency of 
250 Hz. The collected EEG data is band-pass filtered between 
0.5-100 Hz. During this process, EEG data is recorded for subsequent 
analysis and processing. This dataset contains a total of 5,184 samples.

Figure 1 shows one EEG signal sample collected by subject 1. The 
sample contains 22 channels, with each channel shown as a separate 
signal in Figure 1.

For the 9 subjects in the dataset, two sessions were conducted on 
different dates. Each session includes 288 samples generated by each 
participant. The samples from one session are used to train the model 
proposed in this paper, while the samples from the other session are 
used to evaluate the model.

3.2 Reinforcement learning attention 
model

Specifically, the agent is built using GRU as the basic neural 
network, as shown in Figure 2. It samples EEG signals through sensors 
in the time domain, gradually integrates global information over time, 
and takes action at the next time node through an action 
neural network.

3.2.1 Multi scale receptors
At each time step t , the Agent observes the environment through 

EEG sampling sequences tx . Agent samples information from 
electroencephalogram (EEG) tx  through limited field of view receptors 
Retinaf , observing several local EEG sequences.

Specifically, multi-scale sensors focus on multiple time-domain or 
frequency-domain domains related to tasks, and limited field of view 
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FIGURE 1

One of the EEG signal samples collected by subject 1.

FIGURE 2

The architecture of reinforcement learning attention model.
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receptors sample task related information near 1tl −  from EEG 
signals tx , which are formally represented as ( )Retina 1f ,t tx l − . The 
selection of 1tl −  is achieved by the location network.

The multi-scale sensor is centered around 1tl −  and uses 
different resolutions from near to far. High resolution is used in 
the vicinity of 1tl − , while resolution decreases sequentially in 
further positions. We  refer to neural networks with different 
resolutions as multi-scale networks, which are implemented by 
sampling and integrating time-frequency domain EEG signals of 
varying lengths. A multi-scale network generates a multi-scale 
feature vector tMS  through a multi-scale perceptron, as shown in 
Equation 1:

 ( )1, ;ψ−=t MS t t MSMS f x l
 (1)

Where MSψ  is the parameter of the multi-scale neural network.

3.2.2 State sequence
At each time step, the Agent maintains a state sequence that is a 

mapping of environmental information (EEG signal sampling) 
collected by multi-scale sensors. That is, EEG signals are decoded into 
environmental knowledge and used as input for Agent action neural 
networks to generate actions, i.e., to determine where to deploy 
sensors. Thus, it can perceive specific EEG signal segments at specific 
locations and achieve an attention mechanism characterized by high 
selectivity. The state sequence of the Agent is generated by the hidden 
unit th  of the underlying network GRU, and each time step is 
dynamically updated, as shown in Equation 2:

 ( )h _ 1, ;ψ−=t GRU t t hh f h MS
 (2)

Among them, the multi-scale sensor samples the feature vector 
tMS  from the EEG signal as the output of the multi-scale neural 

network, completes the sampling of the EEG signal, and serves as the 
input of the GRU component.

3.2.3 Action
At each time step, the action that the Agent needs to complete is 

implemented by a localization neural network, which determines the 
sampling position tl  of the multi-scale sensor EEG signal through the 
localization neural network.

In the model proposed in this article, location actions are 
randomly selected from the parameterized distribution of location 
network ( );l t lf h ψ at time t , which is obtained from Equation 3:

 ( )_ output~ ( ;ψ⋅t l t ll p f h|
 (3)

Here, lf  represents the position neural network, and lψ  is the 
parameter of the neural network.

Similarly, environment actions are derived from a distribution 
conditional on the output of the action network, and the action at time 
t  is obtained from Equation 4:

 ( )_ output~ ( ;ψ⋅t a t aa p f h|
 (4)

Here, af  represents the neural network that generates the action, 
aψ  is the parameter of the neural network, and ta  is the action 

generated at time t .
For EEG signal classification, it is formulated using 

SOFTMAX output.

3.2.4 Reward
The input of the intelligent agent is multi-scale sensors sampling 

EEG signals at specific positions 1tx +  and reward 1tr + , with the goal of 
maximizing the cumulative rewardR. The reward R is defined by 
Equation 5 as follows:

 

1

1

T
t t

t
R rγ −

=
= ∑

 
(5)

Here, the definition of reward signal tr  is: 1tr = if the  
EEG signal is correctly classified after ttime steps, 
otherwise 0tr = .

The model proposed in this article uses partially observable 
Markov decision processes, and the learning objective of the agent is 
a stochastic strategy P with parameter ψ , as shown in Equation 6:

 ( )( )1:, | ;π ψ= t t tP l a s
 (6)

Among them, the strategy functionπ is simulated by the GRU 
mentioned above, and 1:ts  is the mapping of the interaction between 
the agent and the environment, implemented by the hidden unit th  of 
the GRU, 1: 1 1 1 t 1 t 1 t 1 t, , , , x ,l ,a , , x ,= … … …ts x l a - - - .

3.3 Training

Overall, the intelligent agent in the model proposed in this article 
is constrained by a set of parameters ψ , { }, ,MS h aψ ψ ψ ψ= , where 

MSψ  is the parameter of the multi-scale sensor, hψ  corresponds to the 
core network, and aψ  corresponds to the action network. By 
continuously optimizing this set of parameters to maximize 
cumulative rewards.

The above goal is essentially the continuous optimization of 
strategies by intelligent agents to achieve maximum returns, which is 
formally defined as Equation 7:

 
( ) ( ) ( ) [ ]

1: 1:; ;
1

T T

T
tp s p s

t
J E r E Rψ ψψ

=

 
= = 

  
∑

 
(7)

( )1: ;Tp s ψ  is determined by strategy.
To accurately solve the above problem. It can be transformed into 

the following Equation 8:

 

( ) ( )

( )

1: 1:
t 1

1:
1 1

; log | ;

1 log | ;

ψ ψ

ψ

ψ π ψ

π ψ

=

= =

∇ = ∇  

≈ ∇

∑

∑∑

T
p T t t

M T
i i i
t t

i t

J E s u s R

u s R
M

 

(8)
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Among them, 1:
i
ts  represents the state of the GRU hidden unit, 

which is the interaction result with environmental information, where 
i 1 M= … . ( )1:log | |;ψ π ψ∇ i i

t tu s  is the gradient of GRU, which can 
be  calculated using standard gradient backpropagation (Wierstra 
et al., 2007).

The working principle of learning rule is that the Agent samples 
the interaction sequence 1:Ts  using the current strategy, and 
continuously optimizes the Agent parameter ψ  to obtain a cumulative 
high reward, increasing the probability of corresponding actions that 
receive the cumulative high reward.

At the same time, there may be a high square difference between 
the above equation and. The state value function [ ]tE Rπ  can 
be introduced for optimization (Ingolfsson et al., 2020), as shown in 
Equation 9:

 
( ) [ ]( )1:

1 1

1 log | ;ψ ππ ψ
= =

∇ −∑∑
M T

i i i
t t tt

i t
u s R E R

M
 

(9)

The value function plays a role in smoothing expected returns, 
utilizing historical information, guiding strategy selection, and 
balancing exploration and utilization in reinforcement learning, 
effectively avoiding high variance.

In addition, in our proposed model, the action network and 
multi-scale perceptron are trained through gradient descent method, 
while the localization network is trained through 
reinforcement learning.

4 Experiment

4.1 Method effectiveness verification

To validate the effectiveness of the algorithm, we evaluated our 
method on the toy dataset MNIST and translational MNIST. We first 
described the common design choices in all of our experiments:

Retina and position encoding: Retina encoding ( )etina ,Rf x l
extracts k  square plaques centered on position l . The size of the first 
plaque is w wg g×  pixels, and the width of each adjacent plaque is 
twice that of the previous one. Then, adjust all k  patches to w wg g×  
and assemble them together.

Multi scale perceptron network: Multi scale perceptron 
network ( ),MSf x l  consists of two ordinary fully connected 
layers. The output g  of a multi-scale network is 
defined as ( ) ( )( )Re MS lg ct Linear h Linear h= + , where 

( )( )( )MS Re ,h ct Linear x lρ=
 
and

 
( )( )Relh ct Linear l= . For the

 

model proposed in this article, the dimensions of gh  and lh  are 128, 
while the dimensions of g  are 256.

Location network: The strategy for location l is defined by a two 
component Gaussian with fixed variance. The position network 
outputs the average value of the position policy at time t and is defined 
as ( ) ( )l GRU GRUf h hLinear= , where GRUh  is the state of GRU.

Core Network: In the model proposed in this article, the core 
network is Gated Recurrent Unit (GRU), which was used as the core 
network in experiments conducted on MNIST and EEG signal 
classification tasks.

The translation MNIST dataset is a dataset generated based on 
MNIST, which is generated by placing numbers at a random position 
in a relatively larger blank image (such as 60 60× , 100 100× ), mainly 
to verify the feature capture ability of our proposed method. Figure 3 
shows the classification error rate of the translated MNIST dataset 
with blank images of 60 60× . We chose two fully connected networks 
(64 and 256 units respectively) and a convolutional network (One 
convolutional layer, 8 10 10×  convolutional kernels, fully connected 
layer with 256 units) for the comparison method. From the graph, it 
can be seen that when using four multi-scale perceptron, our proposed 
method achieves the same accuracy as convolutional neural networks. 
When using six multi-scale perceptron, our method achieves the best 
performance. This is because our proposed reinforcement learning 
based attention model can better focus attention on the object of 
interest. Meanwhile, experiments have shown that our proposed 
model can achieve good accuracy regardless of whether the numbers 
are centered or not.

4.2 Classification of EEG signals

Based on the BCI 2a dataset, this paper designed two different 
experiments to evaluate the proposed model. One is dependent on the 
evaluation of the subjects, and the other is independent evaluation 
with the subjects.

For subject dependent evaluation trials, the selection of training 
and testing sets is consistent with the original competition, where 
samples from one session are used for training and samples from 
another session are used for evaluation.

For subject independent evaluations, i.e., cross subject evaluations, 
we use samples from 8 subjects in the BCI 2a dataset as the training 
set, and samples from the remaining one subject as the testing set, 
such as samples from subjects 1–8 as the training set and samples from 
subjects 9 as the testing set.

In this experiment, the classification decision is only made at the 
thN  time step, where the value of N is the dimension of a single sample. 

Action networks are implemented through fully connected networks. 
The number of hidden nodes in the basic network GRU is 256, and 
hyperparameters such as learning rate and positional policy variance 
are determined using random search. The total number of parameters 
for the entire model is 472,077. The determination and classification of 
rewards are directly related to whether they are correct. If the agent 
classification is correct, the reward for thN  time step is 1, otherwise it 
is 0. In addition, the reward for all other time steps is 0.

We first tested the ability of our training method to successfully 
learn multi-scale perception strategies by using it to train a 
reinforcement learning based GRU model with up to 7 multi-scale 
perceptron networks on the BCI-2a EEG dataset. The multi-scale 
perceptron used in this experiment is just a 2×7 patch, which is only 
enough to capture a portion of two EEG signal channels. Therefore, 
the experiment also tested the ability of GRU based on reinforcement 
learning to combine information from multiple multi-scale 
networks. Please note that since the introduction of multi-scale 
networks is always random, a single multi-scale network is actually 
a classifier that can obtain a single random 2×7 patch as input. 
We also trained a standard feedforward neural network with a fully 
connected neural network layer of 256 neurons as the baseline. 
We see that each additional introduction of multi-scale networks 
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improves the performance of GRU based on reinforcement learning 
until it reaches the minimum value of 6 multi-scale networks. 
Among the 6 multi-scale networks introduced, it has more 
advantages in classification performance on EEG datasets than 
models such as fully connected networks. This proves that the model 
can successfully learn to combine information from multiple multi-
scale networks.

Figure 4 shows a comparison of the classification performance 
between the proposed model and some typical models in the field of 
motor imagery EEG signal classification (Altaheri et  al., 2023), 
including EEGNet (Lawhern et al., 2018), EEG-TCNet (Ingolfsson 
et  al., 2020), TCNet Fusion (Musallam et  al., 2021), etc. The 
experiment used the same hyperparameter settings as the original 
text, and the preprocessing, training, and evaluation procedures were 

FIGURE 3

Comparison of various model errors under the translation of the MNIST dataset.

FIGURE 4

The accuracy of the proposed model and the comparison model in completing the subject dependent EEG signal 4-classification task on the BCI 2a 
dataset κ- fraction.
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completely consistent. From the graph, it can be seen that the accuracy 
of the model proposed in this article is 86.78%, κ- The score is 0.83, 
achieving higher accuracy compared to the three comparison methods 
(Liu et al., 2023).

The average confusion matrix of the method proposed in this 
article and the three comparison methods is shown in Figure 5. As 
shown in the figure, the classification performance of the four types of 
motor imagery, including left hand, right hand, tongue, and foot, has 
achieved more ideal results.

Figure 6 shows a comparison of the classification accuracy between 
the proposed model and the most mature EEG classification algorithms 
currently available (Altaheri et al., 2023). The methods used in the 
comparison are S-CNN (Schirrmeister et al., 2017), EEGNet: CNN 
(Lawhern et  al., 2018), DBN-AE (Hassanpour et  al., 2019), 
MLCNN&MLP (Amin et al., 2019), EEG-TCNet (Ingolfsson et al., 
2020), AMS-CNN (Li et al., 2020), TCNet-Fusion (Musallam et al., 
2021), AI-CNN (Amin et al., 2022), AMB-CNN (Altuwaijri et al., 2022). 
The results show that the proposed algorithm can adaptively select EEG 
signal slices or position sequences using reinforcement learning 

methods and extract information from EEG signals only by processing 
the selected regions at high resolution. Compared with other state-of-
the-art EEG signal classifications, it has shown certain advantages.

In addition to evaluating subject dependent EEG signal 
classification tasks, we also explored subject independent, i.e., cross 
subject EEG signal classification tasks, which are more important tests 
of model generalization ability. The methods used for comparison are 
AG-CNN (Zhang et al., 2020), MLCNN&AE (Amin et al., 2019), 
EEGNet (Lawhern et al., 2018), AMB-CNN (Altuwaijri et al., 2022), 
EEG-TCNet (Ingolfsson et al., 2020), TCNet-Fusion (Musallam et al., 
2021), as shown in Figure 7. Based on the BCI 2a dataset, the proposed 
model demonstrated good generalization ability in cross validation 
experiments and had certain advantages in classification accuracy.

5 Conclusion

This article introduces a new attention model based on 
reinforcement learning GRU neural network. This network takes 

FIGURE 5

The average confusion matrix between the proposed model and the comparison model.
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multi-scale windows as inputs, uses the internal state of GRU units to 
select the next focal position, and generates control signals in a 
dynamic environment. Although the model is non differentiable, the 
proposed unified architecture utilizes policy gradient methods for 
end-to-end training from input to action. This model has several 
attractive features. Firstly, in the field of EEG signal processing, 
attention models incorporating reinforcement learning principles can 
focus on key features, automatically filter out noise and redundant 
data, and enhance the accuracy of signal decoding. This mechanism 

effectively improves the robustness and adaptability of the model by 
continuously adjusting model parameters and flexibly responding to 
changing noise environments. Secondly, by leveraging deep 
interaction with dynamic environments, the attention mechanism 
based on reinforcement learning continuously optimizes the 
performance of the model, learning the characteristic information of 
each individual’s EEG signal. This personalized learning ability 
enhances the model’s tolerance for individual differences. At the same 
time, GRU can accurately capture the complex temporal dependencies 

FIGURE 6

The cross validation accuracy of various classic algorithms in the subject 4-classification task, and κ- score.

FIGURE 7

The cross validation accuracy and performance of various classic algorithms in subject independent (cross subject) 4-classification task and κ- score.
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in EEG signals and introduce attention mechanisms. GRU not only 
consolidates its analytical ability in the temporal dimension, but also 
greatly broadens the perspective of feature extraction, achieving 
efficient analysis of multidimensional information in both the time 
and frequency domains of EEG signals.

Experiments have shown that in nonlinear EEG signal 
classification tasks, GRU based on reinforcement learning can achieve 
competitive results compared to convolutional architectures and other 
machine learning based methods. In addition, our method allows for 
many interesting extensions. For example, another action can be used 
to enhance the network, allowing it to terminate at any point in time 
and make the final classification decision. This makes this method a 
potential EEG signal processing method that competes with models 
such as CNN and EEG net.
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