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The Neurostimulationist will see 
you now: prescribing direct 
electrical stimulation therapies 
for the human brain in epilepsy 
and beyond
Peter N. Hadar 1, Rina Zelmann 1,2, Pariya Salami 1,2, 
Sydney S. Cash 1,2 and Angelique C. Paulk 1,2*
1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 
United States, 2 Center for Neurotechnology and Neurorecovery, Department of Neurology, 
Massachusetts General Hospital, Boston, MA, United States

As the pace of research in implantable neurotechnology increases, it is important 
to take a step back and see if the promise lives up to our intentions. While direct 
electrical stimulation applied intracranially has been used for the treatment of 
various neurological disorders, such as Parkinson’s, epilepsy, clinical depression, 
and Obsessive-compulsive disorder, the effectiveness can be  highly variable. 
One perspective is that the inability to consistently treat these neurological 
disorders in a standardized way is due to multiple, interlaced factors, including 
stimulation parameters, location, and differences in underlying network 
connectivity, leading to a trial-and-error stimulation approach in the clinic. An 
alternate view, based on a growing knowledge from neural data, is that variability 
in this input (stimulation) and output (brain response) relationship may be more 
predictable and amenable to standardization, personalization, and, ultimately, 
therapeutic implementation. In this review, we assert that the future of human 
brain neurostimulation, via direct electrical stimulation, rests on deploying 
standardized, constrained models for easier clinical implementation and 
informed by intracranial data sets, such that diverse, individualized therapeutic 
parameters can efficiently produce similar, robust, positive outcomes for 
many patients closer to a prescriptive model. We address the pathway needed 
to arrive at this future by addressing three questions, namely: (1) why aren’t 
we already at this prescriptive future?; (2) how do we get there?; (3) how far are 
we  from this Neurostimulationist prescriptive future? We first posit that there 
are limited and predictable ways, constrained by underlying networks, for direct 
electrical stimulation to induce changes in the brain based on past literature. 
We then address how identifying underlying individual structural and functional 
brain connectivity which shape these standard responses enable targeted and 
personalized neuromodulation, bolstered through large-scale efforts, including 
machine learning techniques, to map and reverse engineer these input–output 
relationships to produce a good outcome and better identify underlying 
mechanisms. This understanding will not only be a major advance in enabling 
intelligent and informed design of neuromodulatory therapeutic tools for a 
wide variety of neurological diseases, but a shift in how we can predictably, and 
therapeutically, prescribe stimulation treatments the human brain.
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1 A future neuromodulation clinic visit

This review focuses primarily on epilepsy because many of the 
recent innovations in neuromodulation and intracranial neural 
activity have come from this field. To illustrate the broader applicability 
of the reviewed approaches we  start by presenting a vignette of a 
possible future neuromodulation clinic visit for another disorder, 
clinical depression. Based on the advances in epilepsy 
neurostimulation, we  hope that implanted, responsive 
neurostimulation may one day become the standard of care for a 
wider variety of neurologic and psychiatric disorders.

July 1, 2054. Dr. Smith, a neuromodulation-trained neurologist, 
is seeing the fifth patient of the day with an implanted, closed-loop 
neurostimulator for depression (Figure  1). After consistent EEG 
findings were determined to be linked to depressive symptoms in the 
2030s, a closed-loop neurostimulator for depression was developed in 
the 2040s; neurostimulationists have been tracking various depressive 
symptoms and discovered clear categories that respond to specific 
neuromodulation parameters. By 2054 this approach is standard of 
practice. A robotic surgery was performed approximately a month 
before, and now the neurostimulator has been recording the patient’s 
brain activity for the last few weeks. Before the patient comes in, Dr. 
Smith checks the alert at the top right of his visors’ screen which 
indicates that, based on the last month of electrocorticography data 
collected, the patient falls into the “Depression-Severe-E” type with 
markers mapping to identified Research Domain Criteria matrices. 
The notification asks if he wants to load up the standardized initial 
neurostimulation parameters for this diagnosis, and Dr. Smith 
indicates yes. Informed by brain network imaging with AR glasses, Dr. 
Smith adjusts the parameters and the initial variable adjusting 
algorithm that can adapt to the initial phase of treatment. After Dr. 

Smith brings in the patient, they talk about how she is feeling, and she 
states that she is still feeling depressed. Dr. Smith implements the 
“Depression-Severe-E” parameter set, and the patient notes that she 
felt slightly brighter. Pleased with the initial response and that the 
system is detecting the right signals for closed loop adaptation, Dr. 
Smith said the full effect would take about 6–8 weeks to manifest, and 
they schedule a follow-up appointment in 2 months virtually, with a 
plan to modify the stimulation remotely at the next visit.

2 Introduction

While this vision of a future where neurostimulation can 
be  prescribed and customized for individual patients can appear 
far-fetched (Figure 1), the research currently being conducted, and 
which will be discussed in this review, is laying the groundwork to 
turn this neurotherapeutic stimulation approach into a reality. Of 
note, for the purposes of this article, we will be focusing primarily on 
epilepsy because many of the recent advances in neurostimulation and 
direct intracranial data have come out of this space. However, there 
are three major questions we can ask to get to this space: (1) Why 
aren’t we there now? (2) How do we get there? and (3) How far are 
we  from a Neurostimulationist prescription vision of personalized, 
closed-loop neurostimulation therapy?

To address the first question, a major reason the neuromodulation 
field has yet to reach this future ideal in large part is because the 
stimulation delivery system and approach require customized 
placement of intracranial electrodes to targets that vary in size and 
shape from person to person combined with an almost infinite 
stimulation parameter space (see below). Chronically and semi-
chronically implanted electrodes used to apply direct electrical 
stimulation (DES), including through responsive neurostimulation 
system (RNS) or deep brain stimulation (DBS) devices, involve voltage 
or current applied through intracranial leads (Herrington et al., 2016). 
Chronically implanted DES has become an important diagnostic and 
therapeutic tool for neuropsychiatric diseases ranging from 
Parkinson’s disease to obsessive compulsive disorder (OCD) to 
epilepsy and depression (Berger and Ojemann, 1992; Rizzone et al., 
2001; Mayberg et al., 2005; Bronstein et al., 2011; Rolston et al., 2011; 
Bourne et  al., 2012; Lozano and Lipsman, 2013; Revell, 2015; 
Herrington et al., 2016; Lozano et al., 2019; Goodman et al., 2020; Nair 
et al., 2020; Sheth et al., 2021; Scangos et al., 2021a; Shlobin et al., 2022; 
Vissani et al., 2023), with approaches recently expanding to tackling 
stroke and traumatic brain injury (Kundu et al., 2018; Baker et al., 
2023; Schiff et al., 2023). Semichronic implantations can involve DES 
via intracranial leads during ongoing monitoring for seizure networks 
up to 29 days and comprise many of the currently available data sets 
demonstrating how the brain responds to stimulation (Trebaul et al., 
2018; Basu et al., 2019; Mohan et al., 2020; Sheth et al., 2021; Scangos 
et al., 2021a; Paulk et al., 2022; Zelmann et al., 2023). Alternately, the 
chronically implanted DES devices are starting to be considered to not 
only neuromodulate underlying brain activity, but also serve as a 
neurotherapeutic tool to restore broader function.

As a case in point, this review article will use neuromodulation in 
patients with epilepsy as an example of getting closer to achieving this 
vision while addressing complex factors since the field of epilepsy 
neuromodulation has some of the more advanced neurostimulators 
involving varying stimulation timing and patterns with closed loop 

FIGURE 1

AI-rendered neurostimulation future. A Dall-E rendering of what a 
future clinic visit could look like when prompted, “Draw me a picture 
of a doctor’s office in 100  years, where a neurologist will be sitting 
with AR Goggles and a tablet, and a patient will be sitting on the 
chair. There will be a screen in the background that has a 3D picture 
of the patient’s brain and their brainwaves.”
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adaptation (Bergey et  al., 2015; Lee et  al., 2015; Nair et  al., 2020; 
Jarosiewicz and Morrell, 2021; Anderson et  al., 2024), adding the 
complication of variability to the complexity of the stimulation input 
and the possible output. This point is central to the answer of “Why 
aren’t we  there now?”, namely, the problem is that stimulation 
parameters, underlying brain regions, and effects of state can alter 
stimulation effectiveness. To address this challenge, recent advances in 
neurostimulation have progressed beyond individual detection or 
treatment and sought to combine them in an algorithmic approach. The 
NeuroPace RNS device, used for epilepsy, allows for the implementation 
of algorithmically-based detection of epileptiform features in neural 
activity which can be  partnered with a provider-determined 
neurostimulation treatment to personalize the neurostimulation to the 
patient’s seizure activity (Table 1; Bergey et al., 2015; Lee et al., 2015; 
Jarosiewicz and Morrell, 2021). Long-term use of this device has 
pointed to a possibility that the stimulation is modifying the underlying 
network (Kokkinos et al., 2019; Nair et al., 2020; Khambhati et al., 2021; 
Charlebois et al., 2022; Anderson et al., 2024), possibly related to this 
idea of a “neurotherapeutic” effect of stimulation.

Unfortunately, and related to the first main question of “Why 
aren’t we there now?” in this Neurostimulationist prescriptive vision, 
even with these advanced, responsive devices that can be customized 
to a patient’s neural activity, many patients still do not receive a 
therapeutic benefit from neurostimulation (Rolston et  al., 2011; 
Dougherty et al., 2015; Crowell et al., 2019; Scangos et al., 2021c; 
Shlobin et al., 2022). A significant factor is thought to be the trial-and-
error approach needed to stimulation setting adjustments (e.g., 
responsive neurostimulator or RNS for epilepsy, deep brain 
stimulation or DBS for Parkinson’s disease; Bronstein et al., 2011; 
Eisinger et al., 2019; Kokkinos et al., 2019; Nair et al., 2020), which can 
often lead to numerous failed trials and poor outcomes (Harvey and 
Winstein, 2009; Hardenacke et al., 2013; Dougherty et al., 2015; Kuhn 
et al., 2015; Crowell et al., 2019). Since it is still unclear how or why 
some neurostimulation parameters are effective, it is often difficult to 
determine which programmed neurostimulation parameter set is 
ideal for each patient at a given stage of their treatment (Cagnan  
et al., 2017, 2019; Herrington et al., 2016; Widge et al., 2017, 2018; 
Kokkinos et al., 2019). Further, the original idea of RNS for epilepsy 
is to use stimulation to stop the seizure when it is detected, but a 
recent paper has highlighted the possibility that any intermittent 
stimulation in between seizures could be enough to modulate the 
network and reduce seizure load (Anderson et al., 2024).

Another challenge is that the implantable chronic RNS devices 
can only record and stimulate in short snippets of time and require 
patient visits at the doctor’s office, and active participation of the 

patient with no alerts, giving the provider an incomplete picture of 
seizure activity and effects of stimulation (Table  1). An ideal 
arrangement would be to enable continuous recording, alert systems 
for the patient and provider, and, importantly, identify optimal 
stimulation parameters for that participant and adjust based on 
ongoing neural network changes. To get to this point, though, the next 
major question to address is “How do we get to that Neurostimulationist 
vision of personalized closed loop therapy?”

That path involves identifying common “standard” stimulation 
strategies for neurotherapeutic modulation which can be modified per 
participant, informed by models shaped by multi-participant data sets 
(including more than 100 individuals). Based on a growing body of 
literature, we propose that there is a consistency in neural responses 
with less variability than previously thought (Trebaul et al., 2018; Basu 
et al., 2019; Mohan et al., 2020; Paulk et al., 2022). Some degree of 
consistency could allow for standardization, personalization, and 
implementation of novel neurostimulation approaches. Further, the 
power of machine learning (Thangavel et  al., 2021) as well as 
improving connectivity measures using noninvasive imaging and 
other tools have revolutionized the DBS field for movement disorders 
and could be critical in identifying the ideal targets per participant 
(Horn et  al., 2017; Riva-Posse et  al., 2018; Horn and Fox, 2020; 
Middlebrooks et al., 2021). In the face of consistent response dynamics 
and major advances in connectomics and machine learning, we are 
closer to achieving a therapeutic neurostimulation approach based on 
standards instead of trial-and-error and our perspective piece aims to 
propose a way to get there (Bergey et al., 2015; Nair et al., 2020).

3 Why aren’t we there now? 
Stimulation input–output complexity 
and the need for identifying 
standardized stimulation responses 
across individuals

3.1 Are there too many possible inputs and 
outputs, or is there a pattern?

In addressing the first question of “Why aren’t we there now?,” the 
crux of the challenge of moving from trial-and-error approaches  
to a standardized, predictable prescriptive approach with 
neuromodulation, particularly in the epilepsy space, is the seemingly 
“infinite” number of stimulation pattern combinations and brain 
locations, underlying brain network features, and brain states 
(Figure 2). On one hand we have to deal with variability in stimulation 

TABLE 1 RNS now and in the future.

RNS for epilepsy Current reality Ideal future

ECOG recordings Few short epochs of recordings per day Live, 24/7 ECOG Recordings

Upload Patient uploads Continuously uploaded to cloud

Programming In-person visit Remote programming

Alerts None Physician alerted for increased seizure activity

Programming parameters Largely trial and error with increasing charge density

Machine Learning/Connectivity-based and Individualized Parameters 

automatically adapt to changing ECOG signal

Current recording, stimulation, and interface issues with the responsive neurostimulator systems with a future ideal hope of onboard models and neural data to better inform clinical decisions. 
ECoG, electrocorticography recordings.
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parameters including frequency, amplitude, waveform duration and 
more, and on the other hand, we  have variability in electrode 
placement relative to targeted networks and brain regions (Figure 2; 
Mikulan et al., 2020; Crocker et al., 2021; Russo et al., 2021; Parmigiani 
et  al., 2022; Paulk et  al., 2022). For instance, the Neuropace RNS 
device provides 12,672,000 total number of combinations of 
stimulation parameters (frequency X amplitude steps X burst duration 
steps X pulse duration steps) alone.

In addition to neurostimulation inputs and brain response 
outputs, the timing of stimulation can have a modulatory effect. Our 
group, for example, has previously shown that the brain state (e.g., 
sleep or awake) alters both stimulation responses and network 
connectivity (Pigorini et al., 2015; Stiso et al., 2019; Salami et al., 2020, 
2022; Zelmann et al., 2020, 2023; Russo et al., 2021); the latter, when 
mapped, could improve stimulation efficacy (Sheth et  al., 2021; 
Scangos et al., 2021a, 2021c; Bahners et al., 2022; Alagapan et al., 
2023). The neural impact and behavioral effectiveness of stimulation 
depend critically on the current physiological and behavioral state of 
the individual (Jiruska et al., 2010; Cagnan et al., 2017; Hoang et al., 
2017; Ezzyat et al., 2018; Solomon et al., 2018). However, little work 
has been done systematically exploring the potential role overall brain 
state plays in the effectiveness of stimulation (Kawaguchi et al., 1996; 
Peyrache et al., 2012; Usami et al., 2015, 2017, 2018; Zelmann et al., 
2023). In a previous study, we explored the differences in responses to 
single pulses during sleep versus wake (N = 17 wake, N = 13 asleep, 
Figure 3) and found that responses to single pulses during wake were 
overall smaller across participants (Zelmann et al., 2023). Further, 
stimulation-induced network connectivity selectively changed across 
the brain, with an increase in response variability during sleep 
(Zelmann et al., 2023). Factoring in the stimulation parameter space, 
effects of brain state, and underlying network connectivity of the 
individual, one could imagine just how daunting and possibly 
unpredictable the input (stimulation) and output (brain response) 
relationships could appear.

One answer to the next question, “How do we  get to that 
Neurostimulationist vision of personalized closed loop therapy?,” lies in 
the progress of data sharing initiatives, standardization of data sets, 
even intracranial brain recording data sets. There has been a 
substantial expansion of the interpretable and useable data to better 

understand how the human brain responds to intracranial stimulation 
as well as enable cross-site comparisons across a larger population of 
individuals (Holdgraf et al., 2019; Mercier et al., 2022; Duncan et al., 
2023). By extension, one issue could be that this expansion, and even 
democratization, of the intracranial stimulation space results in a 
notable increase in the modifiable variables to induce changes in 
activity. However, we would argue that the opposite may be true: By 
taking a wider view of these large data sets gathered and shared, 
response patterns could be  emerging across individuals and 
stimulation parameters that may make it possible to standardize 
neuromodulatory approaches.

3.2 The commonality of input–output 
relationships across individuals is informed 
by a mechanistic understanding of 
stimulation effects

One major reason we continue to ask “Why aren’t we there now?” 
is that we have a limited understanding of the mechanisms of how 
stimulation alters human brain activity, though this is changing, 
particularly in the past few years. Overall, primary stimulation 
parameters most often adjusted during therapies and in existing large 
data sets include electrode location, distance of the recording site to 
the stimulating electrode, current amplitude, pulse width, stimulation 
train duration, and stimulus frequency (Basu et al., 2019; Mikulan 
et al., 2020; Mohan et al., 2020; Crocker et al., 2021; Parmigiani et al., 
2022; Paulk et al., 2022). We posit that the factor with the largest 
impact on stimulation responses is frequency, which can range from 
single pulse electrical stimulation (SPES) occurring every 1–5 s to 
trains of stimulation up to 200 Hz (Figures 1, 4). SPES induces highly 
consistent local voltage response profiles per brain region (Matsuzaki 
et  al., 2013; Keller et  al., 2014a, 2014b; Matsumoto et  al., 2017; 
Yukihiro et al., 2017; Trebaul et al., 2018; Mikulan et al., 2020; Crocker 
et al., 2021; Parmigiani et al., 2022) and is used to map pathologies 
such as epilepsy (Boulogne et  al., 2016; Matsumoto et  al., 2017; 
Hebbink et al., 2020). Trains not only induce different neural dynamics 
compared to SPES (López, 2001; Brocker and Grill, 2013; Saito et al., 
2015; Boulogne et al., 2016; Basu et al., 2019; Yih et al., 2019; Kundu 

FIGURE 2

Stimulation parameters to induce neural responses. (A) Varying stimulation parameters used to induce behavioral and physiological changes. 
(B) Stimulation frequencies. The combination of stimulation parameters can therefore represent a massive and daunting space when stimulating 
intracranially to get a targeted response.
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et al., 2020; Parmigiani et al., 2022; Paulk et al., 2022), but form the 
basis for all therapeutically delivered stimulation (Garcia et al., 2005; 
Laxton et al., 2013; Mahlknecht et al., 2015; Chiken and Nambu, 2016; 
Herrington et al., 2016; Eisinger et al., 2019). High frequency train 
stimulation (above 100 Hz) has been shown to be  therapeutic in 
Parkinson’s disease and OCD (Rizzone et al., 2001; Bronstein et al., 
2011; Bourne et al., 2012; Provenza et al., 2019; Goodman et al., 2020; 
Grover et al., 2021; Sheth et al., 2021), but lower frequencies (<100 Hz) 
alter neural activity therapeutically in epilepsy (Lee et  al., 2015; 
Kokkinos et al., 2019; Nair et al., 2020) or memory consolidation 
(Ezzyat et al., 2017, 2018; Titiz et al., 2017; Mankin and Fried, 2020).

Fortunately, we are at a pivotal point as our group and others have 
been methodically mapping the stimulation input-response output 
space and, importantly, have been sharing these data as part of Open 
Data initiatives (Solomon et al., 2018, 2021; Basu et al., 2019; Holdgraf 
et al., 2019; Kundu et al., 2020; Mohan et al., 2020; Qiao et al., 2020; 
Crocker et  al., 2021; Sheth et  al., 2021; Adkinson et  al., 2022; 
Parmigiani et  al., 2022; Paulk et  al., 2022; Zelmann et  al., 2023). 
Multiple research centers are finding consistent and identifiable 
repertoires of stimulation responses across participants and patients 
per brain region and combination of these parameters (Matsuzaki 

et  al., 2013; Keller et  al., 2014a, 2014b; Matsumoto et  al., 2017; 
Yukihiro et al., 2017; Solomon et al., 2018, 2021; Trebaul et al., 2018; 
Basu et al., 2019; Kundu et al., 2020; Mohan et al., 2020; Crocker et al., 
2021; Huang et al., 2022; Paulk et al., 2022). We propose that a pattern 
is emerging across these efforts which is, namely, that multiple 
combinations of parameters can achieve a diverse, though limited 
repertoire of physiological responses. Indeed, the human brain could 
be  acting to convert stimulation input into a subset of replicable 
responses (Basu et al., 2019; Huang et al., 2022), which would enable 
chart a path to reliable treatments for a wide range of proposed 
neurological pathologies (Mayberg et al., 2005; Lozano and Lipsman, 
2013; Widge et al., 2017; Trebaul et al., 2018; Lozano et al., 2019; 
Mankin and Fried, 2020). This is likely why we found the same or 
similar waveform components across humans and even non-human 
primates with correlation values >0.75 between voltage responses 
between individuals per brain region (Grill et al., 2004; Grill and Wei, 
2009; Kent et al., 2015; Kanno et al., 2018; Yih et al., 2019).

To understand the patterns of these stimulation responses, we 
have to understand the mechanisms underlying stimulation to the 
human brain (Grill et al., 2004; Brocker and Grill, 2013; Herrington 
et al., 2016; Russo et al., 2024). For instance, a number of studies show 

FIGURE 3

Neural responses in sleep vs. wake. (A) Illustration of stimulation responses via stereo-EEG (sEEG) electrodes implanted in the brain. (B) Changes in a 
response to single pulse electrical stimulation (SPES) dorsolateral prefrontal cortex site during wake vs. sleep. (C) Measured changes in brain 
responses to SPES with stimulation at different sites of the brain during sleep and anesthesia compared to when the participants were awake 
(Zelmann et al., 2023).
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neural responses appear to involve slow voltage curves involving 
multiple peaks (N1, N2) thought to be associated with excitatory and 
inhibitory dynamics, with response variations involving changing 

amplitude or time courses (Figure 4; Matsuzaki et al., 2013; Keller 
et al., 2014a, 2014b; Kunieda et al., 2015; Matsumoto et al., 2017; 
Yukihiro et al., 2017; Trebaul et al., 2018; Basu et al., 2019; Mikulan 

FIGURE 4

Data reduction and predicting responses across participants and frequencies. (A–B) Responses to single pulse stimulation (A) or trains of stimulation 
(dark grey bar, B) or for different frequencies and currents (N  =  3). (C) Current  ×  frequency map of voltage responses across individuals for a voltage 
response (N  =  10). (D) Local stimulation responses across 21 participants with stimulation at the color coded sites shown in the MNI-mapped electrode 
locations on the left in the dorsolateral prefrontal cortex, illustrating the consistency of responses across individuals and stimulation sites (Paulk et al., 
2022). (E) Example dorsal anterior cingulate (dACC) and rostral anterior cingulate (rACC) stimulation responses after a train of stimulation to specific 
current and frequency levels across multiple individuals. (F) Cingulate and amygdala responses decomposed into principal components, with 94.5% of 
the variance of local, nearby voltage responses (bottom) explained by principal components 1 and 2. Linear models (LM) incorporating current and 
frequency with principal component (PC) coefficients can be used to predict responses (bottom; Basu et al., 2019). (G) General framework of the idea 
of an output attractor state type funneling of brain responses such as the CCEP or high frequency activity changes in spite of a wide variety of input 
stimulation parameters.
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et al., 2020; Crocker et al., 2021; Parmigiani et al., 2022; Zelmann et al., 
2023). These responses could also be due to thalamic feedback which 
could be mapped using imaging and other tools (Russo et al., 2024). 
Not surprisingly, these evoked responses can saturate with increasing 
stimulation amplitude (current) as the underlying tissue could 
be  either saturating in its responses or the inhibitory network is 
engaged to suppress overexcitation (Parmigiani et al., 2022; Paulk 
et al., 2022; Russo et al., 2024).

Another reported stimulation response type across studies 
involves changes in high gamma (30–200 Hz range) oscillatory power 
(Grill et al., 2004; Mohan et al., 2020; Scangos et al., 2021c, 2021a; 
Alagapan et al., 2023). These response repertoires can occur with the 
same ranges of stimulation parameters but with a high level of 
consistency within and across participants. Specifically, the trains of 
100–200 Hz pulses inducing the largest voltage responses (and a 
corresponding decrease in high frequency activity, HFA, 30–100 Hz) 
for a range of current levels (Basu et al., 2019; Mohan et al., 2020) are 
so consistent that we observe nonlinear “hot spots” of responses in the 
current x frequency matrices across individuals (Figure 4; Mohan 
et al., 2020). Notably, these hotspots are not small, localized points but, 
instead, show that there are similar responses to a range of similar 
frequencies, currents, and stimulation patterns across individuals and 
per brain region. These results could also be highlighting an important 
point about the brain: beyond certain frequencies, currents, or other 
ranges, either saturating responses or the inhibitory network could 
be engaged to limit local activity, effectively a temporary “lesion” of 
activity in that region or thalamocortical networks are engaged that 
can lead to predictable responses (Grill et al., 2004; Russo et al., 2024). 
Either way, ultimately, we are positing that there are a finite number 
of waveforms and amplitudes and frequency responses available 
across the full range of stimulation parameter combinations driven by 
features of underlying neural tissue.

3.3 Proposed intervention: limiting the 
parameter space guided by large data sets

An alternative, grounded on recent studies and shared dataset, is 
that a combination of the limited but diverse repertoire of responses 
could explain the complexity observed in different contexts or brain 
states. Further analysis is needed to test this central hypothesis and the 
generalizability of these findings, especially whether they can predict 
stimulation parameters that induce brain region specific stimulation-
induced neural biomarkers identified in the literature as being 
clinically relevant (Lee et al., 2015; Miocinovic et al., 2018; Provenza 
et al., 2019; Nair et al., 2020; Basu et al., 2021; Middlebrooks et al., 
2021; Provenza et al., 2021; Sheth et al., 2021; Scangos et al., 2021a, 
2021c; Bahners et al., 2022; Alagapan et al., 2023; Merk et al., 2023). 
However, even at a first pass, we propose that we can generate maps 
or atlases per stimulated sites in different regions (e.g., cingulate vs. 
lateral frontal lobe) by taking into account multidimensional 
stimulation parameters and demonstrate common response properties 
across participants (Figure 4). To highlight this point, in a data set of 
N = 52 participants with n = 750 possible stimulation sites and n = 6,500 
recording sites mapped to a common MNI space, we have found 
similar response patterns to SPES across individuals (indicated by 
different colors) when examining nearby contacts to the stimulation 
sites (in the dorsolateral prefrontal cortex) as well as in the 

contralateral homologous region (Figure 4). Indeed, this type of large 
data set mapping across individuals will, we  propose, be  key to 
answering the next question of “How do we  get to that 
Neurostimulationist vision of personalized closed loop therapy?” by 
reducing the stimulation space to a subsampled set of critical 
parameters for modulating human brain activity.

Further support for this idea of clustered response profiles in the 
neural activity comes from comparing the evoked potentials in 
response to local stimulation across individuals, thus allowing us to 
predict responses to combinations of stimulation parameters. In a 
smaller initial data set of awake participants (N = 18 with stimulation 
in the dorsal anterior cingulate cortex, dACC, and the rostral anterior 
cingulate cortex, rACC), we  have successfully used principal 
components analysis (PCA) dimension reduction techniques on the 
voltage time series combined with generalized linear models (GLM) 
to predict voltage responses from stimulation parameters (Figure 4; 
Basu et al., 2019). Not only did the first two principal components 
generated from voltage responses explain 94.5% of the variance across 
individuals, but also PCA combined with GLM allowed us to predict 
stimulation responses to different frequency and current steps. 
Emphasizing how consistent this pattern is across individuals, 
we could also predict responses in different patient participants from 
a subset of other participants using the same underlying GLMs (Basu 
et al., 2019; Paulk et al., 2022). Further, responses cluster across the 52 
total participants using PCA and k-means clustering tools.

Of course, this work would need to be  expanded upon using 
GLM, PCA, and clustering analyses to identify optimal minimal 
clusters in a significantly larger data set (N > 100 s of individuals; Basu 
et al., 2019; Mohan et al., 2020; Paulk et al., 2022; Zelmann et al., 2023) 
with more variation due to varying states (sleep vs. wake; Zelmann 
et al., 2023) to demonstrate that, not only do responses cluster to a 
limited repertoire of responses, but also these responses are predictable 
across ranges of stimulation parameters, brain states, and across 
individuals. However, the standardized mapping, common 
predictability of the evoked responses, and overall nonlinear hot spot 
response profiles emphasize a central point: We do not need to sample 
every frequency x current x pulse duration step per widespread brain 
region but could use a general atlas to navigate, and narrow, the 
massive parameter space.

4 How do we get there? 
Personalization through machine 
learning and connectivity analyses

While standardizing our neurostimulation approaches and 
limiting the search space are important steps, the promise of 
neuromodulation treatment will need to incorporate personalized 
features of the individual, characterized by personalized 
neuroanatomical (structural), functional (correlated activity), and 
effective (directional) connectivity of each individual brain (Friston, 
2011; Donos et  al., 2016; Horn et  al., 2017; Crocker et  al., 2021; 
Charlebois et  al., 2022). Brains are wired differently between 
individuals, especially in the patient populations engaged in this 
neuromodulatory space (such as those with epilepsy) compared to the 
brains of healthy controls (Charlebois et al., 2022). However, recent 
identification of clinically relevant neural biomarkers in the neural 
signals combined with machine learning (ML) and connectivity 
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analyses on brain data could be the keystone leading to personalized 
neurostimulation maps and could even inform clinical management. 
Therefore, the development of this multimodal and predictive 
approach could be critical to answering the second question:” “How 
do we  get to that Neurostimulationist vision of personalized closed 
loop therapy?”

4.1 Brain network connectivity is key for 
personalized neurostimulation treatment

4.1.1 Stimulation responses are constrained by 
network connectivity and neural architecture

Personalization of stimulation treatment needs to be framed in 
the context of brain location. Stimulation location has a substantial 
impact on the response (Stoney et al., 1968; Brocker and Grill, 2013; 
Gunalan et  al., 2018; Solomon et  al., 2018; Trebaul et  al., 2018; 
Anderson et al., 2019; Stiso et al., 2019; Adkinson et al., 2022). Axonal 
stimulation, for example, is known to increase the spatial spread of 
neuronal activation beyond the site of stimulation (Nowak and 
Bullier, 1998a, 1998b; Donos et al., 2016; Horn et al., 2017; Anderson 
et al., 2019; Stiso et al., 2019; Crocker et al., 2021; Paulk et al., 2022) 
and is linked to increased therapeutic effectiveness in depression and 
Parkinson’s disease treatment (Bourne et al., 2012; Horn et al., 2017; 
Riva-Posse et al., 2018; Crowell et al., 2019; Goodman et al., 2020; 
Middlebrooks et al., 2021; Scangos et al., 2021a, 2021c, 2021b). Yet, 
there could be diagnostic and therapeutic reasons to focally target a 
small grey matter area (cortex) as opposed to stimulating entire 
networks, such as diagnostically identifying eloquent versus 
pathologic tissue (Berger and Ojemann, 1992; Borchers et al., 2012; 
Trébuchon and Chauvel, 2016; Britton, 2018; So and Alwaki, 2018). 
Functional connectivity reflects ongoing physiological correlations 
between regions (Bowyer, 2016; Solomon et al., 2018; Hebbink et al., 
2019; Crocker et al., 2021) while structural connectivity represents the 
mapped anatomical connections between regions (e.g., white matter 
connectivity; Basser et al., 2000; Friston, 2011; Donos et al., 2016; 
Crocker et al., 2021; Scangos et al., 2021a; Adkinson et al., 2022). 
We and other groups have found that stimulation connectivity maps 
to both functional connectivity (locally) and structural connectivity 
(distally; Solomon et al., 2018; Crocker et al., 2021; Scangos et al., 
2021a, 2021c; Adkinson et al., 2022; Paulk et al., 2022) and are affected 
by pathological changes in the networks (Matsumoto et al., 2017; 
Figure  5). As stimulation connectivity (the spatial spread of 
stimulation responses) is also determined by the brain region location, 
we hypothesize that there are consistent, and robust, brain region-
specific nonlinear stimulation response maps that operate with 
separate rules for local (near the stimulation site) and distant (>30 mm 
from stimulation) recording sites shaped by both functional (local) 
and structural (distant) connectivity (Figure 5; Crocker et al., 2021). 
In the case of epilepsy, this connectivity may have possibly been 
modulated by seizure networks.

To more directly test this interaction of stimulation response, 
structural connectivity and epilepsy, attempts have been made to 
better understand the amalgamated structural-functional network 
interplay, through structural, diffusion, and functional imaging as well 
as IEEG, between MRI-negative and-positive temporal lobe epilepsy 
(TLE) among key TLE network nodes which is an excellent example 
of personalized application of stimulation along the lines of “How do 

we get to that Neurostimulationist vision of personalized closed loop 
therapy?” The seizure onset network in TLE has been associated with 
neuronal disorganization on histology, IEEG, structural and diffusion 
imaging, and it is thought to be due in part to seizure activity and 
aberrant neuronal connections (Van Paesschen et al., 1997; Frater 
et al., 2000; Yogarajah and Duncan, 2008; Lemkaddem et al., 2014; 
Ferrari-Marinho et al., 2015; Gleichgerrcht et al., 2015; Alizadeh et al., 
2019). While this interplay between structural neuronal 
disorganization and the seizure onset was described in TLE-mesial 
temporal sclerosis (MTS)—particularly in the ipsilateral hippocampus 
and CA1 subfield—similar findings were not seen in MRI-negative 
TLE (Shah et al., 2019a, 2019b). Recent studies in TLE have indicated 
decreased neurite density in the ipsilateral temporal region, both in 
MRI-negative and MRI-positive TLE (Sone et al., 2018; Winston et al., 
2020). Other modalities, such as fMRI and ASL, have shown 
differences in  local and global functional connectivity between 
MRI-negative and MRI-positive TLE (Vaughan et al., 2016; Lee et al., 
2021). PET imaging has also been used to identify seizure onsets in 
MRI-negative TLE (Gok et al., 2013). The structural and functional 
networks of MRI-negative and-positive TLE differ by modality, but 
also differ relative to one another.

4.2 Biomarkers  +  machine learning: neural 
biomarkers may allow for real-time 
personalized targets for stimulation

While other clinical markers, like heart rate for vagal nerve 
stimulation (VNS) devices, and MRI biomarkers, especially for 
surgical resections, have been widely available for many years, an 
exciting development in the field of neuromodulation in the past few 
years has been the identification of clinically relevant neural 
biomarkers associated with stimulation that can be used to diagnose 
and treat brain dysfunction. For example, stimulation-induced 
decreases in gamma (31–150 Hz) oscillations in the amygdala 
(Scangos et al., 2021a) and increased beta-band (13–30 Hz) oscillations 
in the subcallosal cingulate (Alagapan et al., 2023) have both correlated 
and been mapped to the alleviation of depression symptoms. Some 
devices, like the Medtronic DBS platform, have also relied on tracking 
local field potentials (LFPs) to provide operators with helpful 
information to adapt the stimulation parameters (Yang et al., 2023). 
For instance, in a recent study involving long-term tracking of local 
field potential (LFP) dynamics with stimulation, researchers 
demonstrated that stimulation improved independently measured 
depression scores which mapped to LFP biomarkers in the subgenual 
cingulate (Veerakumar et al., 2019; Alagapan et al., 2023). Additionally, 
future clinical applications involving voltametric measurements of 
neurotransmitters could help produce a better understanding of the 
underlying mechanisms involved in responses in neurostimulation 
and provide another source of feedback; in addition, this could 
be used to elucidate some of the synergistic effects of medications and 
stimulation (Albert et al., 2009; Van Gompel et al., 2010; Chang et al., 
2012; Paek et al., 2013).

This work highlights a direct correlation between intracranial 
stimulation brain responses, biomarkers of pathological brain 
dynamics, and therapeutic efficacy in Parkinson’s disease, OCD, 
epilepsy, and depression (Nair et  al., 2020; Sheth et  al., 2021; 
Scangos et al., 2021a, 2021c; Bahners et al., 2022; Alagapan et al., 
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2023). Clinically relevant biomarkers have taken the form of 
induced intracranial oscillations in specific frequency bands 
(Provenza et al., 2019, 2021; Basu et al., 2021; Scangos et al., 2021a), 
voltage responses to identify connected sites (Miocinovic et  al., 
2018; Sheth et  al., 2021; Scangos et  al., 2021c, 2021a), and 
combinations of LFP features including network connectivity 
(Alagapan et al., 2023). Interestingly, SPES responses have been 
mapped to targets involved in mood (where modulation involves 
trains of stimulation), highlighting the usefulness of different 
patterns of stimulation in predicting and engaging clinically 
relevant biomarkers (Adkinson et al., 2022). Therefore, as the field 
has begun to identify targeted intracranial biomarkers for 
stimulation efficacy, it becomes essential to both understand and 
predict stimulation input–output relationships on the level of the 
physiological signal.

In the field of epilepsy, efforts have also been made to identify 
response-predictive biomarkers. For instance, invasive and 
non-invasive connectivity measures have been used to predict the 
patient’s response to RNS, suggesting that network connectivity can 
serve as biomarkers of RNS therapeutic effectiveness and identify 
the patients who may benefit from such treatments (Fan et al., 2022; 
Scheid et al., 2022). While these studies focus on modulation within 
the seizure onset area, some studies aimed to predict the 
effectiveness of neurostimulation within the thalamus (Aiello et al., 
2023; Yang et  al., 2023). Aiello et  al. reported that higher theta 
power in the anterior nucleus of the thalamus (ANT) recorded 
during the DBS device implant was associated with better treatment 
outcomes, although it is not clear whether this benefit could 
be realized by a reduction in this power (or other changes within 
the ANT).

FIGURE 5

Location and network shapes neural responses. (A) Individual participant where stimulation took place (left column) and white matter tracts mapped 
across the brain for different targets. (B–C) Similarity scores calculated between 1D connectivity matrices between stimulation sites and recording 
sites, with similarity between a given network and the stimulation network (Crocker et al., 2021). The 1D connectivity matrices involve concatenating all 
connection values between the stimulation site and the recording sites (with a subset shown in A), with the connection values either being the strength 
of the stimulation response from that stimulation site (top), the connectivity measured from the ongoing resting state activity (left bottom 1D matrices), 
or the DTI connectivity as measured from the DTI weighting from the stimulation and recording ROIs (right bottom 1D matrix).
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We posit that predicting these stimulation parameter 
combination-biomarker relationships could only truly be bolstered 
using machine learning (ML) tools. In an answer to the second 
question of “How do we  get to that Neurostimulationist vision of 
personalized closed loop therapy?,” tools provided through mML, a field 
within artificial intelligence (AI) that helps build algorithms to better 
understand data and predict potential outputs. While unsupervised 
machine learning can help us discover some novel biomarkers by 
better understanding the data, supervised machine learning 
techniques are typically used to link biomarkers and neurostimulation 
parameters to clinically relevant findings. Deep learning, a subfield 
within machine learning, is used especially in some of the complex 
data sets to help discover complex patterns; the aptly-named neural 
network models, which mimic the brain by using layers of connected 
simple functions (like neurons) to process data, serve as a key 
component of deep learning. ML approaches offer a more general 
toolkit where multiple neural features can be combined nonlinearly to 
associate responses with stimulation parameters, unconstrained by 
previous assumptions of stimulation input–output response oscillatory 
relationships (Alagapan et al., 2023; Merk et al., 2023). As stimulation 
parameter space and its relationship to neural activity is indeed 
complex, ML provides an additional powerful set of tools, particularly 
to reverse engineer a stimulation response relative to stimulation 
parameters (Prato and Zanni, 2008; Roy et al., 2019; Hecker et al., 
2021; Huang et al., 2022). Recently, considerable advances using ML 
have related stimulation to neural oscillations (Schmidt et al., 2020), 
classifying responses to amygdala stimulation (Sendi et al., 2021), 
identifying stimulation-induced biomarkers of alleviating depression 
(Alagapan et al., 2023), EEG determination of brain age (Paixao et al., 
2020), EEG signatures of consciousness (Sun et al., 2019; Kashkooli 
et al., 2020; van Sleuwen et al., 2021), sleep (Abou et al., 2020; Sun 
et al., 2020), and seizures (Brandon Westover et al., 2013; Johansen 
et al., 2016; Struck et al., 2019), and chronic DBS/RNS recordings to 
decode seizures, emotion, and movement (Merk et al., 2022, 2023). 
The powerful combination of ML, biomarkers and stimulation has 
been highlighted recently with identifying stimulation-related LFP 
biomarkers best mapped to clinically relevant depression scores on a 
per-patient basis (Alagapan et al., 2023).

As one answer to “How do we get to that Neurostimulationist 
vision of personalized closed loop therapy?,” we  propose the 
per-patient basis of using ML combined with network connectivity 
as well as personalized biomarker tracking are all key steps toward 
enabling optimized and personalized treatment plans. Indeed, if 
we are able to harness these tools in combination with closed loop 
algorithms that can adapt to ongoing biomarker changes while 
being monitored by trained medical providers (Sun and Morrell, 
2014; Widge et al., 2017; Basu et al., 2021; Jarosiewicz and Morrell, 
2021), we  might be  that much closer to an onboard treatment 
system that could give patients freedom from symptoms with 
reduced need for in-person clinic visits.

In other words, we are at a pivotal and data-rich era of shared 
intracranial data where clinical decision making could be informed by 
advanced ML approaches to get us to the original prescriptive 
Neurostimulationist visit (Figure 1). In addressing the question “How 
do we  get to that Neurostimulationist vision?” by laying out a 
stimulation atlas roadmap, personalized network connectivity, and 
ML techniques, we could be that much closer to an envisioned robust 
clinical neuromodulatory treatment.

5 How far are we from implementing 
the neurostimulation visit of the future 
and tailoring treatment with 
responsive neurostimulation?

While neurostimulation approaches are currently used in 
neurologic and psychiatric diseases, the standardization and 
personalization approaches previously described have yet to be fully 
implemented in clinical practice, which is one reason we continue to 
ask the third question of “How far are we from a Neurostimulationist 
prescription vision of personalized, closed-loop neurostimulation 
therapy?.” However, an encouraging result is that some patients with 
severe epilepsy have been receiving implanted responsive 
neurostimulation devices for the last decade with promising results.

5.1 Neurology implementation: aiming at a 
moving target?

As the epilepsy field has moved from a lesional to network 
approach to intervention, closed-loop, chronic neurostimulation 
through the NeuroPace responsive neurostimulator (RNS) has 
become the intervention of choice for some of the most difficult 
epilepsy cases. However, the current approach to RNS in epilepsy 
relies primarily on trial and error, which, itself, addresses the third 
question of “How far are we from a Neurostimulationist prescription 
vision of personalized, closed-loop neurostimulation therapy?” and 
highlights the need for identifying standardized results, underlying 
mechanisms, and developing ML models. In the typical workup to 
be able to implant RNS devices, patients will undergo a battery of tests 
which include structural MRI, functional MRI, PET scans, and 
intracranial EEG recordings to capture seizure onsets and spread. 
More recently, the RNS device has been used to target various nuclei 
of the thalamus as an alternative mode of therapy, especially in 
patients with multi-focal or broad epilepsy (Roa et al., 2022; Sisterson 
et al., 2022; Nanda et al., 2024). The use of thalamic RNS was inspired 
by the promising result of thalamic DBS trials, in which some patients 
benefited from thalamic stimulation (Fisher et al., 2010; Li and Cook, 
2018; Fisher, 2023). Candidates for a thalamic RNS receive 
stereoelectroencephalography (sEEG) electrodes within various nuclei 
of the thalamus to ensure the involvement of the thalamus within the 
seizure network (Gadot et al., 2022). This is crucial for RNS use since 
the device sends a stimulating signal upon sensing an appropriate 
neural signature, such as the onset of a seizure (Sun et al., 2008; Sun 
and Morrell, 2014). Based on these results, the physicians determine 
the ideal location to implant the RNS electrodes (within the seizure 
focus or a specific thalamic nuclei). More frequently, the RNS 
electrode targets the seizure onset zone directly (very often in the 
mesial temporal lobes, since temporal lobe epilepsy is among the most 
common variants).

After a patient is implanted with the RNS device, the patient 
undergoes a several-week period of recording baseline brain activity 
and seizures; the seizures are registered when the patient swipes a 
magnet indicating that an event occurred. Over time, the neurologist 
will work with a specialist from NeuroPace to adapt the detection 
parameters to capture these events. Once the seizures are thought to 
be  adequately captured by the detection parameters, stimulation is 
turned on and parameters are modified over several weeks, typically by 
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increasing the charge density. Over subsequent office visits, the 
neurologist and the NeuroPace specialist will modify the detection and 
stimulation parameters to try to capture as many seizures as possible 
and to abort them as well. This entire process can take months for an 
acceptable response, and for some patients ongoing visits are required, 
year-after-year, to chase these seizures and improved the responsiveness 
of the neurostimulation (Figure 6). Some studies aim to reduce the time 
of achieving favorable outcomes. For example, similar electrographic 
patterns can be identified between patients who have just received the 
RNS device and existing RNS patients who have already seen substantial 
improvement in their seizure control (Arcot Desai et al., 2022). In this 
case, similar stimulation parameters may be  suggested for the new 
patients, with the goal of reducing the number of visits required to 
achieve the same favorable response. However, since it now appears that 
a substantial portion of the benefit arises from long-term epilepsy 
network reorganization, it may be time to consider a possible better way 
(Kokkinos et al., 2019; Khambhati et al., 2021; Kundu et al., 2023).

While to date RNS has been used for over a decade, we are only 
now learning about its true mechanism of action which could involve 
more long-term network remodeling than short term seizure 
interruption. Indeed, this point alone highlights why we continue to 
ask, and are not able to fully answer, “How far are we  from a 
Neurostimulationist prescription vision of personalized, closed-loop 
neurostimulation therapy?” For instance, temporal lobe epilepsy has 
shown significant improvement with RNS, with some studies showing 
a 58–70% median seizure reduction, and a major focus of the field has 
been better tailoring the RNS approach to improve seizure control in 
a consistent and methodical way (Yang et al., 2022). Although the 
mechanism of action of RNS was originally thought to be immediate 
and abortive, based on stopping epileptogenic activity early before it 
could proceed into a seizure, recent studies have challenged this 
assumption due to the extensive daily stimulation and gradual 
response to treatment, which instead points to long-term remodeling 
of epileptogenic networks (Nair et al., 2020). Recent work indicates 

that there is a frequency-dependent connectivity change based on 
intracranial EEG in the first year of RNS that correlated with seizure 
reduction and support the network reorganization hypothesis 
(Khambhati et al., 2021). Notably, these epileptogenic networks are 
not static, and change in response to resection and neurostimulation. 
Following temporal lobectomy, there are widespread functional 
connectivity changes, especially in the contralateral hippocampus and 
thalamus, and can be dependent on the extent of resection (Busby 
et al., 2019; Morgan et al., 2019). A recent 9-year follow-up study of 
RNS outcomes shows that over 50% of patients are RNS responders 
(≥ 50% reduction in seizures) after 1 year, and over 70% respond at 
3 years (Nair et al., 2020; Jarosiewicz and Morrell, 2021). Some early 
RNS studies have shown that increased connectivity to the medial 
prefrontal and cingulate cortices, among other locations, were 
associated with better seizure control (Charlebois et  al., 2022). 
Additionally, these connectivity changes are not just be  due to 
interruption of seizure activity; instead, RNS induces chronic network 
changes that predict better outcomes in TLE (Khambhati et al., 2021). 
RNS, because of its chronic, closed-loop neurostimulation and 
electrocorticography (ECOG), has the potential to improve seizure 
control through a network-based approach and elucidate seizure 
networks. Not only this, but timing stimulation to periods outside of 
seizures or timed to periods of sleep could prove to be more beneficial 
(Anderson et al., 2024; Suresh et al., 2024).

These is most likely the route to address the central question of 
“How do we  get there?” By combining the machine learning and 
network approaches, we may be able to limit the neurostimulation 
parameter space for our patients to enable improved and more flexible 
seizure control. Through incorporating a patient’s various imaging 
scans, intracranial EEG, and in-vivo neurostimulation results during 
intracranial EEG monitoring, we would be able to develop brain maps 
to help guide the RNS placement, seizure detection parameters, and 
therapeutic stimulation parameters for every patient. Based on the 
known long-term network changes associated with a good response 
to RNS, understanding and treating the patient’s brain and connections 
in a holistic way becomes the priority as opposed to solely interrupting 
seizures; various brain states (awake v asleep) and the extent of 
epileptiform activity present will likely play a larger role in this 
approach as a result. While there would be  some degree of 
standardization through the limited neurostimulation parameter 
space, the approaches would be individualized and likely different for 
every patient; it could be determined that the ideal treatment for a 
given patient is to implant a region outside the seizure onset zone that 
can help modulate the network and to target EEG activity that is not 
necessarily epileptic in nature in order to help control seizures. By 
standardizing and personalizing neurostimulation treatments in this 
manner, the hope is that this methodical approach to neurostimulation 
will lead to consistently good outcomes in epilepsy and other brain 
diseases and disorders.

6 Conclusion

Our perspective piece shows that while we  have not yet 
implemented a standardized and personalized approach to 
neurostimulation therapy and management, recent advances have 
removed substantial limitations and brought us much closer to that 
goal, which we address by asking (1) Why aren’t we “there” now? (2) 

FIGURE 6

Effect of neurostimulation on seizure control over time. In this graph 
of 62 patients who underwent RNS implantation at the 
Massachusetts General Hospital up until 2021, the cohort 
demonstrates an overall decrease in the number of long episodes 
per month compared to the initial baseline during the first 3-months 
after implantation. Long episodes often represent prolonged ictal 
activity captured on the ECOG recording of the RNS device. Each 
color is a different patient.
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How do we  get there? and (3) How far are we  away from a 
Neurostimulationist prescription vision? Some of the concerns about 
large parameter spaces of inputs (stimulation), outputs (brain 
responses), and modulatory factors (awake v. asleep brain states) have 
been assuaged through mechanistic understandings of stimulation 
effects and big data approaches; this in turn has enabled a smaller 
neurostimulation parameter space to be  revealed, which can 
be  amenable to standardization. Beyond standardization, another 
major concerning limitation was accounting for personalization, 
specifically the differences in individual patient brains. However, this 
has proven to not be insurmountable, since neurostimulation responses 
have been shown to be constrained by connectivity and neuroanatomy, 
and recent machine learning approaches in biomarker analyses have 
opened the door to a future of personalized neurostimulation maps for 
individual conditions. Finally, the recent successes in implementing a 
responsive neurostimulation device for epilepsy treatment and 
management provide optimism in eventually bringing these advances 
from the computer desk to the patient’s bedside. As research continues 
into the standardization, personalization, and clinical implementation 
of brain neurostimulation, we move closer to a future where brain 
neurostimulation therapies can be  a consistently effective form of 
treatment for brain diseases and disorders: Just as an orthopedic cast 
can now reset the bones of a fractured limb with a high degree of 
accuracy, so too will brain stimulation treatments eventually repair 
disorders of the brain in a dependable manner.
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