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Introduction: Startle habituation and prepulse inhibition (PPI) are distinct 
measures of different sensory information processes, yet both result in the 
attenuation of the startle reflex. Identifying startle habituation and PPI neural 
mechanisms in humans has mostly evolved from acoustic-focused rodent 
models. Human functional magnetic resonance imaging (fMRI) studies have used 
tactile startle paradigms to avoid the confounding effects of gradient-related 
acoustic noise on auditory paradigms and blood-oxygen-level-dependent 
(BOLD) measures. This study aimed to examine the neurofunctional basis of 
acoustic startle habituation and PPI in humans with silent fMRI.

Methods: Using silent fMRI and simultaneous electromyography (EMG) to 
measure startle, the neural correlates of acoustic short-term startle habituation 
and PPI [stimulus onset asynchronies (SOA) of 60  ms and 120  ms] were 
investigated in 42 healthy adults (28 females). To derive stronger inferences 
about brain-behaviour correlations at the group-level, models included EMG-
assessed measures of startle habituation (regression slope) or PPI (percentage) 
as a covariate. A linear temporal modulator was modelled at the individual-level 
to characterise functional changes in neural activity during startle habituation.

Results: Over time, participants showed a decrease in startle response 
(habituation), accompanied by decreasing thalamic, striatal, insula, and 
brainstem activity. Startle habituation was associated with the linear temporal 
modulation of BOLD response amplitude in several regions, with thalamus, 
insula, and parietal lobe activity decreasing over time, and frontal lobe, dorsal 
striatum, and posterior cingulate activity increasing over time. The paradigm 
yielded a small amount of PPI (9–13%). No significant neural activity for PPI was 
detected.

Discussion: Startle habituation was associated with the thalamus, putamen, 
insula, and brainstem, and with linear BOLD response modulation in thalamic, 
striatal, insula, parietal, frontal, and posterior cingulate regions. These findings 
provide insight into the mediation and functional basis of the acoustic primary 
startle circuit. Instead, whilst reduced compared to conventional MRI, scanner 
noise may have disrupted prepulse detection and processing, resulting in low PPI 
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and impacting our ability to map its neural signatures. Our findings encourage 
optimisation of the MRI environment for acoustic PPI-based investigations in 
humans. Combining EMG and functional neuroimaging methods shows promise 
for mapping short-term startle habituation in healthy and clinical populations.

KEYWORDS

acoustic startle reflex, startle modulation, prepulse inhibition, startle habituation, 
functional magnetic resonance imaging, electromyography

1 Introduction

The startle reflex is an involuntary motor response to a sudden 
and intense sensory stimulus, and it is thought to represent a defensive 
mechanism (Graham, 1975). This reflex response is consistently 
observed across mammals, followed by arousal of the sympathetic 
nervous system (Yeomans et  al., 2002). Startle habituation and 
prepulse inhibition (PPI) are two forms of startle plasticity which 
result in the attenuation of the startle reflex response; however, these 
two processes reflect different information processing mechanisms 
(Geyer and Braff, 1982; review, Swerdlow et  al., 2016). Startle 
habituation occurs in response to a formerly novel startling stimulus 
on repeated presentation (Thompson and Spencer, 1966). It is a simple 
form of non-associative learning and reflects the redundancy of 
behavioural relevance of the stimulus over time (review, Rankin, 2009) 
occurring within a session (short-term habituation) and between 
sessions (long-term habituation) (Wang, 1993). PPI, on the other 
hand, is induced by prepulse-pulse pairing of sensory stimuli 
(Graham, 1975) with short intervals (Oranje et  al., 2006) and is 
expected to occur on first presentation. It is considered an operational 
measure of sensorimotor gating which, according to some models, 
serves as the protection of information processing, i.e., the prepulse 
filters the pulse leading to reduced startle amplitude (Braff and Geyer, 
1990). Clinical studies have shown startle habituation and PPI 
impairments in Parkinson’s disease (Zoetmulder et al., 2014; Chen 
et al., 2016), Huntington’s disease (review, McDiarmid et al., 2017), 
schizophrenia (Geyer and Braff, 1982; Meincke et al., 2004; Hammer 
et al., 2011; San-Martin et al., 2022), post-traumatic stress disorder 
(PTSD) (Pineles et al., 2016; Meteran et al., 2019), and schizotypal 
personality disorder (Cadenhead et al., 1993; Giakoumaki et al., 2020). 
These clinical impairments may reflect aberrations in attentional and 
gating mechanisms.

The primary startle pathway, which was first outlined in acoustic-
focused rodent models, consists of sensory information projections to 
the caudal pontine reticular nucleus (PnC) in the brainstem to cranial 
nerve VII which triggers the startle response. Pharmacological 
research in animals using acoustic startle paradigms has identified that 
the startle pathway is modulated by the hippocampus (Heuer et al., 
2023), medial prefrontal cortex (Bubser and Koch, 1994; Ellenbroek 
et  al., 1996) basolateral amygdala (Decker et  al., 1995; Wan and 
Swerdlow, 1997), thalamus (Kodsi and Swerdlow, 1997; Wolf et al., 
2010), and entopeduncular nucleus during acoustic PPI (Lutjens et al., 
2012). Indeed, a cortico-striatal-pallido-thalamic (CSPT) for PPI 
neural circuitry, which was originally reported from animal studies 
(Caine et  al., 1992), has been corroborated in human functional 
neuroimaging studies (review, Naysmith et al., 2021).

Neural circuitry involved in startle habituation, however, are not 
well understood. From acoustic-focused rodent models, it has been 
suggested that startle habituation occurs through synaptic depression 
in the PnC (Simons-Weidenmaier et al., 2006), yet its source is disputed. 
Decerebrate rats have shown short-term startle habituation (Fox, 1979; 
Leaton et  al., 1985), indicating modulation of the primary startle 
pathway from within the brainstem, yet vermal lesions have produced 
short-term startle habituation impairments in rats (Leaton and Supple, 
1986) which suggests cortical regions modulate acoustic primary startle 
pathway. Although limited, fMRI studies have identified changes in 
thalamic activity with tactile startle paradigms (McDowell et al., 2006), 
and brainstem activity with auditory startle paradigms (Kuhn et al., 
2020). Neural networks, including the Default Mode Network (DMN) 
(Hermann et al., 2020) have also been outlined during acoustic startle 
habituation with positron emission tomography (PET).

Identifying neural mechanisms underpinning startle habituation 
and PPI and, consequently, sensory information processing, should 
aim to build on the popularity of acoustic-focused animal models 
for better translation between animal and human research. 
Therefore, fMRI studies investigating acoustic startle habituation 
and PPI should implement auditory paradigms. However, the 
logistical challenges of the acoustic properties of fMRI, caused by the 
rapid switching of gradients, cause great difficulty for auditory 
experiments, which has led to the development of “fMRI-friendly 
paradigms” using tactile stimulation to elicit startle (Swerdlow et al., 
2016). Moreover, auditory stimuli can evoke blood-oxygen-level-
dependent (BOLD) responses in the auditory cortex, with BOLD 
response increasing with louder noise from gradient pulses (review, 
Peelle, 2014), and task-evoked BOLD responses, such as during 
working memory tasks (Tomasi et al., 2005). fMRI studies of acoustic 
startle modulation have overcome this issue of sound presentation 
with sparse sampling sequences, although how gradient-related 
noise during image acquisition affects BOLD response or the startle 
reflex response is unclear. The development of imaging acquisition 
sequences designed to reduce gradient noise would significantly 
improve auditory research in fMRI studies by removing the 
confounding effect of acoustic noise on the study, within analysis of 
the BOLD response, and to improve participant experience. In this 
context, Looping Star, a multi-echo zero echo time (ZTE) near-silent 
pulse sequence offers a novel approach to fMRI research. Looping 
Star is a multi-echo ZTE pulse sequence which produces T2* 
weighted gradient echoes, thus is a near-silent pulse sequence for 
fMRI research (Wiesinger et al., 2019). Looping Star is a 3D image 
acquisition sequence which minimises gradient-related acoustic 
noise by making incremental changes in gradient direction through 
refocusing the signal and excitation of the signal at the next gradient 
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into a continuous loop (Wiesinger et  al., 2019). Looping Star is 
0.5 dB above ambient room noise (Dionisio-Parra et  al., 2020), 
making it a desirable option for fMRI research to overcome the 
challenges from acoustic scanner noise, and has shown good 
sensitivity to BOLD in an auditory oddball task (Damestani 
et al., 2021).

The current study acquired simultaneous electromyography 
(EMG) to capture the startle reflex during scanning with Looping Star 
(Wiesinger et al., 2019) which looked to map the neural correlates of 
acoustic short-term startle habituation and PPI, respectively, across a 
young, healthy adult sample. Unlike our earlier fMRI studies that were 
conducted using tactile stimuli (Kumari et al., 2003, 2007, 2008), this 
study used an acoustic startle paradigm which was informed by task 
parameters used in our previous work (Kumari et al., 2003; Aasen 
et  al., 2005; Naysmith et  al., 2022). Investigating acoustic startle 
modulation in the fMRI environment in this study holds unique 
significance, particularly as acoustic paradigms to study sensory 
gating impairments have produced robust findings in disorders such 
as schizophrenia (Geyer and Braff, 1982; Meincke et  al., 2004; 
Hammer et al., 2011), PTSD (Pineles et al., 2016; Meteran et al., 2019) 
and schizotypal personality disorder (Cadenhead et  al., 1993; 
Giakoumaki et al., 2020).

We expected to replicate Naysmith et  al. (2022), with all 
participants showing habituation to pulse trials and PPI on SOA 60 ms 
and 120 ms to elicit a decrease in startle response of ~40%. For 
mapping startle habituation neural circuitry, we hypothesised that 
brainstem (Kuhn et al., 2020) and thalamic (McDowell et al., 2006) 
regions would be  observed during repeated presentation of pulse 
stimuli. Region of interest (ROI) activity (brainstem, thalamus) was 
expected to decrease with more startle habituation. Moreover, 
we hypothesised that ROI activity would linearly decrease over the 
task, and that the magnitude of this linear response decrement would 
be  associated with greater startle habituation. For mapping PPI, 
we  expected to observe neural responses from the hippocampus, 
thalamus, caudate, putamen, insula, globus pallidus, as previously 
observed in the neuroimaging literature (review, Naysmith et  al., 
2021). We hypothesised greater neural activity in these ROI during 
PPI trials (60 ms, 120 ms), compared to pulse trials.

2 Materials and methods

The study was approved by the Psychiatry, Nursing and Midwifery 
Research ethics committee at King’s College London (HR-19/20-18,771).

2.1 Participants

Forty-two participants aged 18–34 years (M = 23.71 years, 
SD = 3.64) (28 female: M = 23.64 years, SD = 3.49; 14 male: 
M = 23.86 years, SD = 4.05) took part after meeting inclusion criteria 
of good health, no hearing loss, no history of neurological/psychiatric 
illness, and without MRI contradictions. Initially, 52 volunteers were 
recruited, but five participants (one male, four females) were removed 
due to excessive movement in the scanner (>1 voxel/ 3 mm). Five 
subjects (four males and one female) were removed from the analysis 
for small or non-measurable startle responses (<70% response 
probability on pulse trials). Prior to data scoring, EMG response to 

each trial was reviewed, and any trial with evidence of ongoing blinks 
before stimulus onset were excluded. Scoring criteria were identical to 
those reported previously (Kumari et al., 2008, 2010).

In the sample, two participants were current smokers, one 
participant was an ex-smoker, and the remaining 39 participants did 
not smoke. Hormonal contraception use (n = 14 women) and 
menstrual cycle status were recorded in this sample. Caffeine and 
nicotine were prohibited on the day of assessment, and alcohol and 
recreational drug use was prohibited on the evening prior and the day 
of assessment.

2.2 Procedure and paradigm

With participants lying comfortably in the MRI scanner, 
pneumatic MR-compatible headphones and radiotranslucent 
MR-compatible electrodes were provided and attached by the 
experimenter. Participants were told that the experiment was to 
measure their response to auditory clicks and no instructions were 
given as to attend or ignore these sounds. Participants were requested 
to stay relaxed whilst keeping their eyes open and focused on a black 
cross on a light grey background on the screen. Before the experiment 
began, they were played an example of the startle probe to ensure 
EMG was functioning correctly and a startle response was shown.

The acoustic stimuli consisted of a startle ‘pulse’ stimulus (40 ms, 
white noise, 115 dB) and a prepulse stimulus (20 ms, white noise, 
85 dB), as presented in our previous work (Naysmith et al., 2022). The 
prepulse and pulse stimuli were either presented alone or were 
coupled to form PPI trials. There were three types of PPI conditions 
with varying SOA (30 ms, 60 ms, 120 ms). The task included three 
runs, which were separate scanning series. Per Run, trials consisted of 
eight pulse trials, eight prepulse trials, and 24 PPI trials (eight PPI 
trials with 30 ms SOA, eight PPI trials with 60 ms SOA, eight PPI trials 
with 120 ms SOA). Run 1 consisted of four more pulse trials (trials 
1–4) than Run 2 and 3. This was designed to allow participants to 
acclimatise to the acoustic startle probes which was novel in Run 1. In 
total, Run 1 consisted of 44 trials, and Run 2 and 3 consisted of 40 
trials each. Trials were pseudo-randomly ordered to ensure that no 
trial type was repeated in a sequence, excluding trials 1–4 in Run 1. 
All participants were presented Runs 1–3 in the same order. Inter-
stimulus intervals ranged from 9 to 21 s (M = 15 s). There was a short 
interval of 3 minutes between each Run for the radiographer to 
commence the next sequence/Run.

2.3 EMG

A detailed list of all equipment can be  found in the 
Supplementary material. EMG was used to measure the startle reflex 
as an eyeblink. Two radiotranslucent, pre-gelled, MRI-safe electrodes 
were applied to the right orbicularis oculi muscle. One electrode was 
15 mm below the lateral canthus of the participant’s right eye, the 
other electrode was 15 mm below and 15 mm medial to the first 
electrode. Electrodes were placed perpendicular to the axis of the 
scanner. The ground electrode was placed behind the right ear. 
Electrodes were attached to the skin surface with adhesive medical 
tape. MR-safe cables, with insulating barriers (diameter 50 mm) to 
prevent the electrode cable from touching bare skin, were attached to 
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the electrodes and ran in parallel. The leads connected to the chamber 
cable, which was also taped to the outside of the MRI head coil. The 
chamber cable then ran out of the bore and through the connector 
panel into the control room via the waveguide.

2.3.1 EMG acquisition
The raw signal was acquired in real-time using AcqKnowledge 

(BIOPAC Systems Inc.). The EMG amplifier had its gain set to high 
(2000) and applied a band-pass filter (low-pass 500 Hz; high-pass 
100 Hz). The EMG amplifier was time-stamped with the MRI scanner 
to determine the onset of stimuli. EMG activity was continuously 
recorded with a sampling rate of 10 kHz, which characterised MRI 
noise during scanning.

2.3.2 EMG signal processing
EMG was captured within the MRI scanner and required 

additional signal processing which was suited to the frequency 
spectrum of Looping Star (Dionisio et al., 2018). The full process is 
detailed in the Supplementary material and is based on the six stages 
of EMG signal processing by Rose (2011) and Bullock et al. (2021).

2.4 fMRI

A 3 T General Electric MR750 Discovery scanner (GE Healthcare, 
Chicago) with 12-channel head coil was used. To reduce head 
movement, padding was used within the head coil for comfort. A 
standard T1-weighted inversion recovery-spoiled gradient echo 
(IR-SPGR) structural image was acquired in the anterior commissure-
posterior commissure (AC-PC) plane with the following acquisition 
parameters: echo time (TE) = 3.04 ms, repetition time (TR) = 7.35 ms, 
inversion time (TI) = 400 ms, flip angle (FA) = 11°, slices = 196, and 
slice thickness = 1.2 mm.

Multi-echo Looping Star images (Wiesinger et al., 2019) were 
acquired with the same acquisition parameters across runs: 
TEs = [0 ms, 17.9 ms, 35.8 ms], TR = 2.62 s, FA = 3°, spatial 
resolution = 3x3x3mm, receiver bandwidth (rBW) = ±31.25 kHz, 
undersampling factor per volume = 3.5, field of view (FOV) = 19.2 cm. 
The number of volumes and length of scan differed between the runs 
(Run 1 = 267 volumes; Run 2 = 242 volumes; Run 3 = 237 volumes).

2.4.1 fMRI pre-processing
Looping Star image reconstruction was based on 3D nearest-

neighbour gridding, followed by Fourier transformation and root-
sum-of-square coil combination, performed using a MATLAB (The 
MathWorks Inc, 2021) compiled executable running on the scanner. 
Echo 1 (TE = 0 ms) was not used for further analyses. An optimal 
combination of the echoes was used to improve the temporal signal-
to-noise ratio (tSNR) (Kundu et al., 2012) (see Supplementary material). 
The first four volumes were discarded from the echo 2 and echo 3 
image time series to assure that steady-state was reached.

For each participant, the functional time series for each run 
were pre-processed in SPM12.1 A standard pre-processing pipeline 
was used, excluding slice-timing correction as Looping Star is a 3D 

1 http://www.fil.ion.ucl.ac.uk/spm

sequence with no discrete slice time correction (Damestani et al., 
2021). Functional images were spatially normalised using unified 
segmentation, co-registered with the T1 image performed using 
the second echo of each fMRI series and the same transformation 
was then used to register the third echo timeseries onto the T1 
imaging also. Spatial normalisation parameters were derived by 
means of unified segmentation of the T1-weighted structural 
image. The resultant deformation fields were applied to the 
co-registered functional timeseries to normalise them to Montreal 
Neurological Institute (MNI) reference space. Functional images 
were then smoothed with a 6 mm full width at half maximum 
(FWHM) kernel.

2.5 Statistical analysis

2.5.1 EMG
Analysis was conducted using SPSS Statistics (version 26) software 

package and applied an alpha level for significance testing at p < 0.05. 
Normality of data was tested with a Shapiro–Wilk test to determine 
use of parametric tests.

2.5.1.1 Calculating startle habituation
Raw startle amplitude was captured on each pulse trial. For each 

participant, an average startle amplitude was calculated across the 
pulse trials in each Run (Run 1, Run 2, Run 3). Then, the average 
startle amplitude response on pulse trials was calculated to produce 
a group average for Run 1, Run 2, and Run 3. An initial measure of 
startle habituation was conducted by comparing raw startle 
amplitude on pulse trials on each Run. Statistically lower startle 
amplitude on later Runs, compared to Run 1, would indicate 
startle habituation.

Secondly, startle habituation was quantified as a regression slope 
per participant using each participant’s linear regression on pulse trials 
across all three Runs:

 Y bX a= +( )

Y was the amplitude of the eyeblink response and was predicted 
by the log-transformed trial number (X). Each participant’s startle 
response amplitude on trial 1 in Run 1 was used as the intercept (a), 
and the regression slope (b) (i.e., the unstandardised beta coefficient) 
was the rate of startle habituation. Startle habituation slope values (b’) 
were then calculated for each participant based on Montagu’s (1963) 
formula:

 
′ = − −( )( )b b c a a

c was the standardised beta coefficient from the linear regression 
which illustrated changes in the regression slope (b) on the intercept 
(a). ā was the mean value of startle amplitude on pulse trials, 
excluding trial 1. A negative startle habituation slope value indicated 
more habituation, with a larger negative slope value meaning faster 
habituation to pulse trials. This approach is a desirable measure of 
startle habituation as b’ becomes independent of the initial startle 
amplitude which shows huge variability between participants.
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Raw startle amplitude to pulse trials on each Run was not 
normally distributed (Run 1: W = 0.869, p < 0.001; Run 2: W = 0.761, 
p < 0.001; Run 3: W = 0.870, p < 0.001). Thus, raw startle amplitude to 
determine habituation to the pulse trials was examined using a 
Friedman test.

2.5.1.2 Calculating PPI
To calculate PPI for each participant, raw startle amplitude across 

each SOA trial on each Run was calculated, and then the average raw 
startle amplitude was calculated across Run 1–Run 3. PPI was then 
computed for each participant, separately for each SOA on each Run, 
this took the average raw startle amplitude and calculated a percentage 
of change of raw startle amplitude on each PPI SOA trial type, 
compared to pulse trials. Overall PPI was calculated separately for 
each SOA across Run 1–Run 3.

 

a b

a

−( )







 x100

a was the startle amplitude over pulse trials and b was the startle 
amplitude over PPI trials. Percentage, rather than absolute amount of 
PPI (i.e., arithmetic difference between pulse and PPI trials), was 
used to minimise the influence of individual differences in startle 
responsiveness. A positive percentage showed a decrease in startle 
amplitude on the PPI trials, compared to the pulse trials, whereas a 
negative percentage would indicate an increase in startle amplitude 
on the PPI trials, compared to pulse trials.

Parametric tests were justified as data did not deviate from 
normality on 60 ms (W = 0.981, p = 0.710) and 120 ms SOA (W = 0.984, 
p = 0.802), however this was not the case for 30 ms SOA (W = 0.942, 
p = 0.032). PPI at each SOA (30 ms SOA, 60 ms, 120 ms) was compared 
using a repeated measures one-way analysis of variance (ANOVA) to 
examine PPI across the sample based on SOA. Age effects 
(Giannopoulos et al., 2022; de Oliveira et al., 2023), sex effects (Aasen 
et al., 2005; Naysmith et al., 2022), menstrual cycle phase (Jovanovic 
et al., 2004) and the influence of startle habituation (Blumenthal, 1997) 
were controlled, as they have been shown to affect PPI. Smoking 
effects have also been observed on PPI (Della Casa et al., 1998), thus 
PPI at each SOA (30 ms SOA, 60 ms, 120 ms) was compared using a 
separate repeated measures one-way ANOVA in the non-smoking 
sample (n = 40). For all ANOVAs described earlier, significant 
interaction or main effects were followed up by lower order ANOVAs 
and the analysis of simple main effects using t-tests. Repeated 
measures with more than two levels employed the Greenhouse–
Geisser epsilon (ɛ) correction.

2.5.1.3 Test reliability
Test reliability for raw startle response on pulse and PPI trials was 

dependent on normality of data. Consequently, for eliciting a startle 
response from the pulse trials in each Run, correlations (Spearman’s 
rho) with a 95% confidence interval were used, as a parametric test 
would not be  suitable. Positive correlations illustrate a linear 
relationship between measures, which can be used to reflect reliability. 
Whereas on each SOA across each Run, test–retest reliability of the 
startle amplitude on PPI trials was assessed with intraclass correlation 
coefficient (ICC) estimates and their 95% confidence intervals, which 
is suitable for normally distributed data. The type of ICC was single 
rater, and the definition of relationship was consistent.

2.5.2 fMRI
fMRI data were analysed using general linear models (GLM) 

factorial models (multiple regression) to probe startle habituation 
neural circuitry, and separate general linear models (GLM) factorial 
models (multiple regression) to probe PPI neural circuitry. We chose 
not to analyse PPI with SOA 30 ms in the fMRI analysis due to 
negligible PPI at this SOA. A one sample t-test showed that PPI did 
not significantly differ from zero across the whole group on 30 ms 
SOA PPI condition (t (41) = −0.275, p = 0.784), whereas SOA 60 ms (t 
(41) = 4.015, p < 0.001) and SOA 120 ms (t (41) = 2.338, p = 0.012) PPI 
conditions did significantly differ from zero.

2.5.2.1 Whole group analysis of fMRI data

2.5.2.1.1 Modelling fMRI analyses at the individual-level
Participant-specific response maps which were generated by means 

of a fixed-effects (first-level) analysis. The first-level design matrix 
modelled the five experimental conditions (pulse trials, prepulse trials, 
PPI SOA 30 ms trials, PPI SOA 60 ms trials, PPI SOA 120 ms trials) and 
an implicit control condition of rest (baseline). Realignment parameters 
(x, y, z, pitch, roll, yaw) were included in first-level models as nuisance 
covariates associated with head movement. The contrast image [pulse 
trials > baseline] was designed to explore startle habituation, and the 
contrast images [PPI SOA 60 ms > pulse trials; PPI SOA 120 ms > pulse 
trials] were designed to explore PPI with two SOA.

To permit us to test for changes in the amplitude of brain 
responses to startle cues, a first order temporal modulator for each 
experimental condition was added to the design matrix at the 
individual-level. Following parameter estimation, a contrast of 
parameter estimates for the relevant temporal modulator was 
generated and taken forward to group-level analysis.

2.5.2.1.2 Modelling fMRI analyses at the group-level
These maps were subsequently taken forward to second-level 

random-effects modelling under the GLM. For startle habituation 
analyses, the linear regression model predicted the blood oxygen level 
dependent (BOLD) signal across the sample with experimental matrix, 
and group as a nuisance covariate. The two linear regression models 
for PPI predicted the BOLD response across the whole sample on each 
contrast with the experimental matrix, and age, sex, menstrual cycle 
phase and startle habituation regression slope values were included as 
nuisance covariates. In both cases, sex was a nuisance covariate to 
control for previously reported sex differences in startle habituation 
and PPI (Abel et al., 1998; Kofler et al., 2001; Kumari et al., 2004). Age 
was not a nuisance covariate for startle habituation as previous findings 
do not report age effects (de Oliveira et al., 2023). Menstrual cycle 
phase was controlled in the PPI regression models, as previous findings 
document menstrual-cycle related variability on PPI (Jovanovic et al., 
2004; Kumari et al., 2010). Startle habituation has been shown to affect 
PPI (Blumenthal, 1997), and thus was controlled. In addition, the 
relationship with startle habituation and PPI EMG-assessed measures 
were examined with startle habituation regression slope values and PPI 
values were included as covariates in each fMRI analysis, respectively.

2.5.2.2 ROI and whole brain analyses
A ROI approach was taken using a priori defined ROI for the startle 

habituation analysis: i) thalamus and ii) brainstem, consisting of pons 
and midbrain, and i) thalamus, caudate, putamen, insula, hippocampus 
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and globus pallidus, and ii) brainstem, consisting of pons and midbrain 
for the PPI analysis. Here, peak-level correction within a small volume 
was used (pFWE < 0.05). ROI mask details can be  found in the 
Supplementary material. The whole brain analysis was conducted to 
explore startle habituation-related activity using cluster-based inference 
to determine significance (pFWE < 0.05). This was not conducted for PPI 
as ROI activity has been established in several human functional 
neuroimaging studies (review, Naysmith et al., 2021).

3 Results

3.1 Startle habituation

3.1.1 EMG
The startle habituation slope value across the whole group was −1.36, 

which significantly differed from 0 (t (41) = −3.729, p < 0.001, d = 0.58) 
with a moderate effect size. However, raw startle amplitude was lowest on 
Run 3, compared to Run 1 and 2 (Table 1), yet startle amplitude did not 
statistically differ between Runs (χ2 = 3.571, df = 2, p = 0.168). This may 
be  associated with spontaneous startle recovery resulting from a 
two-minute break to begin the next series. Comparisons of raw startle 
amplitude between Runs would therefore capture the spontaneous startle 
recovery and affect measures of startle habituation. There were significant 
and positive correlations between startle amplitude on pulse trials in all 
three Runs (Run 1 and 2: r = 0.872, df = 41, p < 0.001; Run 1 and Run 3: 
r = 0.859, df = 41, p < 0.001; Run 2 and 3: r = 0.912, df = 41, p < 0.001) 
indicating good internal consistency. Correlations were significant after 
Bonferroni corrections (p = 0.016). The 95% confidence intervals ranged 
from 0.748 to 0.953 across all three correlations.

3.1.2 fMRI
Firstly, we identified significantly greater BOLD activity within 

the right thalamus (pFWE = 0.048) in the startle habituation ROI 
mask during pulse trials, compared to baseline (Figure 1). This 
BOLD activity decreased with increasing startle habituation 
(indicated by negative startle habituation slope values) (Figure 2). 
In addition, BOLD activity was observed in the brainstem and left 
thalamus in the startle habituation ROI mask during pulse trials, 
compared to baseline, but this was not significant after multiple 
comparisons correction (thalamus: puncorrected < 0.001, pFWE = 0.147; 

brainstem: puncorrected < 0.001, pFWE = 0.164); this BOLD activity also 
positively correlated with startle habituation (Figure  2). Lastly, 
we observed significantly more BOLD activity in a cluster with a 
peak in the right putamen, extending to insula, on pulse trials, 
compared to baseline (pFWE = 0.014), and this activity also correlated 
with startle habituation slope. Table 2 reports all neural activity.

Next, the temporal modulation analysis also showed a significant 
model fit within the left (pFWE = 0.026) and right thalamus (pFWE = 0.052) 
in the startle habituation ROI mask during pulse trials, compared to 
baseline. Neural responses in two clusters also showed significant 
changes across time on pulse trials, compared to baseline: the first 
cluster extending to the right caudate and thalamus (pFWE = 0.013), and 
the second cluster extending to the left caudate, thalamus, cingulate 
gyrus, and hippocampus (pFWE = 0.024). Table 3 reports all neural activity.

Across the group, the contrast magnitude (akin to the slope of the 
change in response amplitude) was significantly associated with 
startle habituation in the right thalamus (pFWE = 0.042) in the startle 
habituation ROI mask during pulse trials, compared to baseline, but 
the left thalamus was not significant after multiple corrections 
(pFWE = 0.150). Two clusters, one in the left parietal cortex, insula, 
superior temporal gyrus, hippocampus and caudate (pFWE < 0.001), 
and the other cluster in the right insula and thalamus (pFWE = 0.029) 
was also significantly associated with startle habituation. Thalamic 
activity and neural responses in both clusters reflected a decrease in 
the startle-related BOLD response as the task progressed. Moreover, 
the whole brain analysis also outlined five clusters during pulse trials, 
compared to baseline, which correlated with startle habituation and 
showed the opposite pattern of behaviour across time, whereby a 
greater increase in neural response amplitude was associated with 
more startle habituation (indexed by a negative startle habituation 
slope value). Table 3 reports all neural activity.

3.2 PPI

3.2.1 EMG
On average, the 30 ms SOA PPI condition did not elicit a PPI 

response in this sample, and SOA 60 ms and 120 ms produced a 9–13% 
decrease in startle response (Table  1). Consequently, there was no 
significant main effect of SOA (F = 0.901, df = 1.611, 59.621, p = 0.411, 
ɛ = 0.806), when controlling for age, sex, menstrual cycle phase, and 
startle habituation. There were no interactions between SOA and sex 
(F = 0.298, df = 1.611, 59.621, p = 0.695, ɛ = 0.806), SOA and age 
(F = 1.228, df = 1.611, 59.621, p = 0.293, ɛ = 0.806), SOA and menstrual 
cycle phase (F = 0.799, df = 1.611, 59.621, p = 0.430, ɛ = 0.806) or SOA 
and startle habituation (F = 2.235, df = 1.611, 59.621, p = 0.295, ɛ = 0.806). 
ICC estimates indicated excellent reliability in eliciting a PPI response 
across all three Runs on all three SOA (30 ms: 0.933; 60 ms: 0.960; 
120 ms: 0.947), with the 95% confidence intervals ranging from 0.887 
to 0.961 on 30 ms, 0.933 to 0.977 on 60 ms, and 0.911 to 0.970 on 120 ms.

When current smokers (n = 2) were removed from the analysis, the 
30 ms SOA PPI condition did not elicit a PPI response in this sample, 
and SOA 60 ms and 120 ms produced a 10–14% decrease in startle 
response. Again, there was no significant main effect of SOA (F = 0.267, 
df = 1.622, 56.773, p = 0.720, ɛ = 0.811), when controlling for age, sex, 
menstrual cycle phase, and startle habituation, nor any interactions 
between SOA and sex (F = 0.347, df = 1.622, 56.773, p = 0.664, 
ɛ = 0.811), SOA and age (F = 1.046, df = 1.622, 56.773, p = 0.345, 

TABLE 1 Mean (standard error of the mean, SEM) startle amplitudes (mV) 
on pulse trials, startle habituation slope value, and PPI (percentage).

Measure Overall mean (SEM)

Raw startle amplitude [mV]

Run 1 2.80 (0.33)

Run 2 2.91 (0.40)

Run 3 2.32 (0.23)

Startle habituation slope values

Whole task −1.36 (0.37)

PPI [%]

30 ms SOA −1.13 (4.17)

60 ms SOA 12.99 (3.23)

120 ms SOA 9.67 (3.99)
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ɛ = 0.811), SOA and startle habituation (F = 1.828, df = 1.622, 56.773, 
p = 0.176, ɛ = 0.811), or SOA and menstrual cycle phase (F = 0.635, 
df = 1.622, 56.773, p = 0.502, ɛ = 0.81). The analysis revealed that sex 
(F = 9.509, df = 1, 35, p = 0.004, ɛ = 0.811) and menstrual cycle phase 
(F = 9.795, df = 1, 35, p = 0.004, ɛ = 0.811) were significant covariates. 
Bonferroni pairwise comparisons, adjusted for the menstrual cycle 
phase and sex, revealed significant differences between 30 ms SOA and 
60 ms SOA (p = 0.010). These findings indicate that, while the overall 
effect of SOA was not significant, SOA differed significantly when 
accounting for the menstrual cycle phase and sex. ICC estimates 
indicated excellent reliability in eliciting a PPI response across all three 
Runs on all three SOA (30 ms: 0.919; 60 ms: 0.955; 120 ms: 0.949), with 
the 95% confidence intervals ranging from 0.863 to 0.954 on 30 ms, 
0.924 to 0.975 on 60 ms, and 0.913 to 0.971 on 120 ms.

3.2.2 fMRI
No significant neural activity in the PPI ROI mask was observed 

when analysing data on either contrast [PPI 60 ms SOA > pulse trials; 
PPI 120 ms SOA > pulse trials].

4 Discussion

Building upon acoustic-focused rodent models of startle modulation, 
this silent fMRI study used Looping Star (Wiesinger et al., 2019) to map 

the neural correlates of acoustic short-term startle habituation and PPI 
within healthy young adults. The auditory startle paradigm was presented 
without the confound of gradient-related acoustic noise associated with 
fMRI and produced reliable startle responses. We  reported startle 
habituation neural circuitry which was comprised of thalamic, brainstem, 
striatal, and insula regions, with BOLD response in these regions 
decreasing with increasing startle habituation. Moreover, we observed 
changes in thalamic, caudate, cingulate gyrus, and hippocampal BOLD 
response amplitude across time during pulse trials, compared to baseline. 
The degree of change in thalamic, insula and parietal BOLD responses 
correlated with startle habituation, with neural activity decreasing over 
time with startle habituation. Whereas changes in BOLD response in 
frontal, dorsal striatal, and posterior cingulate regions increased over 
time with startle habituation. Combined EMG measures were necessary 
for providing information on the direction of relationship between fMRI 
BOLD response during startle habituation, and behavioural changes in 
acoustic startle response. On the other hand, we  did not observe 
significant neural activity during PPI conditions (60 ms and 120 ms 
SOA), compared to pulse trials and acoustic PPI was markedly lower in 
the MRI environment, compared to our previous laboratory-based PPI 
findings (Naysmith et al., 2022), which may have impacted correlations 
with anatomical structures.

Firstly, our findings illustrate cortical (insula), subcortical 
(thalamic, putamen) regions, and the brainstem underpin the 
neurofunctional basis of short-term startle habituation, which have 
previously been reported (McDowell et al., 2006; Kuhn et al., 2020). 

FIGURE 1

Left parasagittal slices in the lateromedial plane (top) and inferior–superior axial slices (below) show thalamus, brainstem, putamen, and insula regions 
which comprise the startle habituation neural circuitry. Greater BOLD response in these areas, identified with ROI (thalamus, brainstem) and cluster-
based analysis (putamen, insula), was observed during pulse trials, compared to baseline.
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Indeed, modelling startle habituation metrics from simultaneous 
EMG acquisition captured the direction of the relationship between 
acoustic startle habituation and neural activity. Furthermore, the 
study captured a greater linear decrease in thalamic, insula and 
parietal lobe activity with more startle habituation, revealing an 
association between the increments or decrements in brain responses 
across time in these regions and the temporal characteristics of the 
reflex responses to repeated pulse stimulus. McDowell et al. (2006) 
suggested that startle habituation may be mediated by the reticular 
activating system (RAS), as decreasing thalamic and cortical activity 
may implicate the RAS which projects to other neural substrates via 
through ascending tracts to the cerebellum, thalamus, cortex, and 
limbic structures (Yeo et al., 2013) to elicit and inhibit the startle 
response. Our findings showed a decrease in thalamic activity with 

decreasing startle amplitude (habituation), which may illustrate a 
reduced need for sensory processing and relay through the thalamus 
during startle habituation and implicating the RAS in acoustic short-
term startle habituation. On the other hand, Hermann et al. (2020) 
correlated preserved startle habituation in minimally conscious 
patients with cortical PET metabolism in large-scale networks 
including the DMN and salience network. This was thought to reflect 
cortical mediation of the startle pathway, leading to reduced startle 
during habituation. The current study observed increasing neural 
responses over the task in frontal, dorsal striatal, and posterior 
cingulate regions which correlated with startle habituation. This may 
illustrate cortical mediation of the primary startle circuitry, possibly 
in relation to the repeated startle stimuli being perceived as 
inconsequential and carrying no threat or functional significance in 

FIGURE 2

Significant ROI activity correlated positively with startle habituation slope values.

TABLE 2 Neural activity observed during the startle habituation across the whole sample.

Brain region Hemisphere MNI coordinates T k p
FWE

x y z

ROI analysis

Thalamus
R 22 −24 0 4.02 11 0.048

L −2 −16 14 3.53 6 0.147a

Brainstem L −4 −14 −6 3.54 5 0.164a

Whole brain analysis

Cluster: putamen, extending to insula R 30 −12 8 4.65 149 0.014

aDoes not survive FWE corrections.
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the given context, and thus short-term startle habituation. Overall, 
our findings may lend support to both cortical and brainstem sources 
of startle habituation, both of which are associated with the common 
role of the thalamus and non-specific nuclei projections through the 
cortex, and/or connectivity between the networks which are linked 
to volitional behaviour and consciousness (Leon-Dominguez and 
Leon-Carrion, 2019). Indeed, these theories could not have been 
explored without illustrating the direction of relationship between 
BOLD and startle habituation, and the functional changes in neural 
activity associated with startle habituation using a combined 
EMG-fMRI approach. Moreover, the application of an acoustic startle 
paradigm to explore startle habituation would not have been possible 
in this study without the use of the silent fMRI sequence.

Secondly, we aimed to outline the neural correlates of acoustic 
PPI, of which our previous tactile PPI research in healthy adult 
populations identified striatal, thalamic, hippocampal, insula, 
inferior frontal gyrus and supramarginal gyrus/inferior parietal 
activity on 120 ms SOA PPI condition (Kumari et al., 2003, 2007). 
However, we note low PPI (9–13%) across our sample, as previous 
EMG studies have demonstrated up to an 80% decrease in the startle 
response in healthy volunteers (Meyhofer et  al., 2019; Lei et  al., 
2021), but no significant neural activity during PPI (60 ms and 
120 ms SOA), compared to pulse trials. In this healthy sample, PPI 
may have been lower than our previous lab-based findings 
(Naysmith et  al., 2022) due to the MRI environment. Similarly, 

Heidinger et al. (2019) observed a 20% and a 35% decrease in startle 
response on acoustic PPI trials with 60 ms and 120 ms SOA, 
respectively, whereas in the mock scanner acoustic PPI was larger 
(60 ms SOA: 43%; 120 ms SOA: 85%). Schulz-Juergensen et al. (2013) 
did not observe PPI responses in the healthy or patient population 
on PPI trials (120 ms and 480 ms SOA) in the MRI, but EMG data 
collected outside of the MRI in the healthy controls showed a 55% 
decrease in startle amplitude (120 ms SOA). Although this was a 
young sample (7–13 years), and maturation of the PPI response may 
also have produced less PPI.

There may be several reasons to linked with the low PPI in this 
MRI experiment. Acoustic PPI is influenced by changes in the 
acoustic environment (Basavaraj and Yan, 2012). The acoustic 
harmonics of Looping Star may have affected PPI, such as small 
differences in prepulse (85 dB) to background noise (68 dB to 97 dB) 
(Blumenthal et  al., 2005). In this study, the maximum PPI trials 
generates is 13%, whereas these same stimuli generated 44% PPI 
outside of the scanner with a 70 dB noise background in our previous 
work (Naysmith et  al., 2022). The MRI environment may have 
produced a floor effect on PPI which, consequently, affected 
correlations with neuroanatomical structures of PPI which have 
previously been reported. Further research is needed to probe low 
PPI in this instance and would demonstrate the need for a white noise 
(70 dB) background in future imaging research, including for silent 
fMRI sequences.

TABLE 3 Neural activity observed during the startle habituation using linear temporal modulator across the whole sample.

Brain region Hemisphere MNI coordinates T k p
FWE

x y z

Changes in BOLD response amplitude across time

ROI analysis

Thalamus
R 12 −22 18 3.94 9 0.052

L −16 −24 18 4.24 4 0.026

Whole brain analysis

Cluster: caudate and thalamus R 4 4 8 6.73 181 0.013

Cluster: caudate, thalamus, cingulate gyrus, and hippocampus L −14 −26 22 5.22 153 0.024

Positive association with startle habituation and linear change in BOLD response

ROI analysis

Thalamus
R 22 −26 6 4.03 14 0.042

L 10 −32 6 3.46 2 0.150a

Whole brain analysis

Cluster: insula and thalamus R 30 −26 8 5.24 144 0.029

Cluster: parietal cortex, insula, superior temporal gyrus, hippocampus and 

caudate
L −46 −36 20 5.05 531 <0.001

Negative association with startle habituation and linear change in BOLD response

Whole brain analysis

Cluster: frontal lobe extending to middle and inferior frontal gyrus L −28 10 38 4.88 320 0.001

Cluster: putamen extending to insula and temporal gyrus R 28 4 −8 4.14 120 0.052

Cluster: posterior cingulate gyrus extending to occipital gyrus R 4 −60 10 4.06 135 0.036

Cluster: frontal lobe extending to medial frontal gyrus L −12 −20 50 4.19 145 0.029

Cluster: inferior frontal gyrus extending to insula 52 4 10 4.10 101 0.083a

aDoes not survive FWE corrections.
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Finally, the current study demonstrated the utility of 
combining electrophysiology and fMRI to study startle 
modulation. In this study, simultaneously acquired EMG data can 
be used to demonstrate reliability and construct validity of the 
paradigm, in addition to promoting stronger inferences about 
brain-behaviour relationship by exploring changes in startle 
response and the primary startle circuitry (review, Wendt et al., 
2023). In this instance, the precise nature of this relationship 
pairing BOLD responses with startle behaviour (EMG measures 
and BOLD) is thought to indicate the physiology of startle 
modulation, meaning that the level of brain activation might 
influence the magnitude of the startle response, or during PPI, the 
degree of inhibition caused by the prepulse. This suggests that 
there might be a continuous influence that modulates the primary 
startle circuitry, affecting how the brain responds to stimuli and 
how the BOLD signal is generated, as opposed to changes in BOLD 
signal associated with the stimulus itself or the motor response to 
the startle. This research should encourage the electrophysiology 
measures during fMRI to explore the impact of neural circuitry 
on behaviour.

There are inherent limitations of Looping Star which result from 
adaptations of the sequence for near-silent scanning, for example 
Dionisio-Parra et al. (2020) reported more signal dropout in Looping 
Star, compared to GRE-EPI, with a 15.9% signal dropout in grey matter 
which was related to the low temporal signal to noise ratio (SNR). It may 
be that the inability to map PPI neural correlates is associated with low 
SNR yet it should be emphasised that startle habituation neural circuitry 
was mapped. Future research directions for Looping Star will look to 
increase temporal SNR and demonstrate the application of a reliable, 
silent fMRI sequence.

There are several limitations in the current study. Firstly, the 
acoustic startle paradigm which was designed to explore two forms of 
startle plasticity may have affected startle habituation and PPI. A 
combination of pulse and PPI trials in the acoustic paradigm may 
produce a shift in baseline startle response. Although our findings are 
in line with McDowell et al. (2006) which used a pulse-only paradigm, 
it may be that combining stimuli type may have influenced short-term 
startle habituation. Moreover, startle responses to the pulse trials 
habituate, but responses to the prepulse trials do not thus, comparing 
startle magnitude on pulse trials to PPI trials will still show an 
inhibited startle response despite the smaller startle response to pulse 
trials (Blumenthal, 1997; Quednow et al., 2006). Finally, although sex 
effects and menstrual cycle phase were controlled in analyses, 
differences may have affected the findings, such as a larger cohort of 
females in this sample, compared to males, as previous literature has 
documented less PPI in women, compared to men (Swerdlow et al., 
2016), and more PPI during the follicular phase, compared to luteal 
phase (Kumari et al., 2010).

5 Conclusion

This study measured acoustic short-term startle habituation, 
acoustic PPI, and related underlying neural activity in the young, 
healthy adults using simultaneous EMG acquisition and an 
innovative silent fMRI sequence, Looping Star (Wiesinger et  al., 
2019). Here, we observed a decrease in thalamic, striatal, insula, and 
brainstem regions during short-term startle habituation. Startle 
habituation was associated with altered cortical activity which may 

be consistent with RAS mediating the startle reflex response. Our 
findings in this healthy population may also encourage future 
clinical studies to probe clinical disorders such as Huntington’s 
disease (review, McDiarmid et  al., 2017), which show startle 
habituation deficits and disturbances in RAS function (review, 
Garcia-Rill, 1997). The current study also examined acoustic PPI but 
did not observe significant neural activity and PPI was low in our 
sample. This may be associated with the MRI environment creating 
a floor effect which was not seen in our previous work using a 70 dB 
noise background. Further optimisation of acoustic PPI in the silent 
MRI environment in healthy participants is needed. These findings 
will pave future research using acoustic startle paradigms and 
combined EMG-fMRI for startle modulation research and will also 
inform sensory information processing mechanisms in healthy 
populations which, with further development, can be  used as a 
blueprint for clinical research in disorders with aberrant PPI and 
startle habituation.
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