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Introduction: In past work we demonstrated different patterns of white matter

(WM) plasticity in females versus males associated with learning a lab-based

unilateral motor skill. However, this work was completed in neurologically intact

older adults. The current manuscript sought to replicate and expand upon

these WM findings in two ways: (1) we investigated biological sex differences

in neurologically intact young adults, and (2) participants learned a dynamic

full-body balance task.

Methods: 24 participants (14 female, 10 male) participated in the balance training

intervention, and 28 were matched controls (16 female, 12 male). Correlational

tractography was used to analyze changes in WM from pre- to post-training.

Results: Both females and males demonstrated skill acquisition, yet there were

significant differences in measures of WM between females and males. These

data support a growing body of evidence suggesting that females exhibit

increased WM neuroplasticity changes relative to males despite comparable

changes in motor behavior (e.g., balance).

Discussion: The biological sex differences reported here may represent an

important factor to consider in both basic research (e.g., collapsing across

females and males) as well as future clinical studies of neuroplasticity associated

with motor function (e.g., tailored rehabilitation approaches).
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1 Introduction

The human brain can be categorized into two main tissue types: gray matter (GM: cell
bodies (somas) that functions to receive and process information), and white matter (WM:
axon projections that functions to transmit nerve signals between GM regions or between
GM and the spinal cord). Neuroplasticity-related changes in these tissues can occur due
to development, disease, degeneration, or be associated with learning and experiences. In
essence, neuroplasticity can be operationally defined as a lifelong process where the brain
reorganizes neural networks (Sampaio-Baptista and Johansen-Berg, 2017; Fields, 2010;
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Guglielman, 2012; Kesselring, 2015). Historically, activity-
dependent changes in these tissues have mainly focused on changes
at the synapse of neurons, located in GM. However, our group and
others have demonstrated that neuroplasticity can occur beyond
the synapse and along the axon in WM (Sampaio-Baptista and
Johansen-Berg, 2017; Frizzell et al., 2021; Kirby et al., 2022; Reid
et al., 2017; Weber et al., 2019).

Magnetic resonance imaging (MRI) derived techniques are
commonly used to non-invasively examine and track structural and
functional changes in the brain (Hamaide et al., 2016; Sale et al.,
2017; Reid et al., 2017; Tardif et al., 2016). More specifically, MRI-
derived techniques such as diffusion-weighted imaging (DWI)
and myelin-water imaging (MWI) have been used extensively to
focus MRI-based research on WM characterization, development,
degeneration, and neuroplasticity (Kirby et al., 2022; Frizzell et al.,
2021; Reid et al., 2017; Sale et al., 2017; Scholz et al., 2009; Islam
et al., 2020; Weber et al., 2019; Lakhani et al., 2016).

Much of this previous literature acquires these in-vivo
microstructural measures from each voxel of an MRI image.
Averages of these values are usually taken across multiple voxels
making up regions of interests [ROIs; (Lakhani et al., 2016)].
However, these ROI analyses may be skewed by non-population-
specific atlases or by the inclusion of multiple fiber pathways within
a voxel or ROI. Additionally, tract-based analyses that determine a
whole tract mean measure may lead to less specificity and diminish
sensitivity to detect structural properties and change. Previous
literature has used tractography, computing individual’s WM tracts
to then determine tract profiles (Kirby et al., 2022; Deng et al., 2018;
Dayan et al., 2015; Yeatman et al., 2012; Baumeister et al., 2020).
Tract profiles are helpful in determining the potential locus of
change along a tract. New insights into WM change can be revealed
using tract profiles that are not obvious from mean measures
of that tract (Yeatman et al., 2012). These techniques have been
implemented in neurologically intact individuals (Baumeister et al.,
2020; Kirby et al., 2022), and in pathological populations, such
as those effected by multiple sclerosis [MS; (Reich et al., 2007;
Dayan et al., 2015)], Alzheimer’s disease (Zhang et al., 2019), and
Parkinson’s disease (Cousineau et al., 2017). While this technique
is a step in the right direction, it inherently relies on voxel-
wise measurements and averages along fiber pathways, potentially
diminishing sensitivity to detect change.

A tractography modality termed correlational tractography
[grounded in connectometry (Yeh et al., 2016)] has been recently
introduced to investigate WM tracts. This technique is based on
a model-free tractography method that tracks connectivity with
quantitative anisotropy (QA: the amount of anisotropic spins that
diffuse along the fiber orientation) using the local connectome
[the degree of connectivity between adjacent voxels in WM (Yeh
et al., 2016)]. The core hypothesis in connectometry is that the
associations between local connectomes and study variables tend
to propagate along a common fiber pathway. Accordingly, this
method focuses on tracking the difference instead of finding the
difference in the tract (Yeh et al., 2016). Its primary measure, QA,
is associated with axonal density (Yeh et al., 2010; Yeh et al., 2013b)
and has majorly focused on neurological injury, showing decreases
in QA associated with axonal loss or damage (Yeh et al., 2019b;
Shen et al., 2015). Tractography based on QA is robust against
peritumoral edema which contributes to more reliable results
(Zhang et al., 2013) and is less sensitive to partial volume effects

when compared to tractography techniques using FA, generalized
FA (GFA), and anatomy in both phantom and in-vivo analyses
(Yeh et al., 2013b). Subsequently, correlational tractography has
been applied to cross-sectional analyses of WM tracts to correlate
findings in neuropsychological disorders (Hula et al., 2020; Yeh
et al., 2013a; Delaparte et al., 2017; Wang et al., 2019; Dresang
et al., 2021; Brownsett et al., 2024) and neurodegenerative
diseases (Sanchez-Catasus et al., 2021, 2022; Ghazi Sherbaf et al.,
2018; Mojtahed Zadeh et al., 2018). This new method has also
tracked longitudinal WM alterations at a group level, achieving
higher sensitivity and specificity than conventional tractography
(Yeh et al., 2016). Regarding longitudinal tracking, correlational
tractography has been used primarily to index degeneration and
neuronal damage from mild traumatic brain injury (Huang et al.,
2023; Li et al., 2022). To our knowledge, this technique has not
been used to study longitudinal changes facilitated by motor skill
acquisition and learning.

Biological sex differences may influence the mechanisms that
underly neuroplasticity (Marrocco and McEwen, 2016; McEwen
and Milner, 2017). Differences in overall brain size, as well as in
focused major brain structures was a popular area of research in
early neuroimaging studies comparing females and males (Agartz
et al., 1992; Coffey et al., 1998; Allen et al., 2002; Luders and Kurth,
2020). More specifically, microstructural values of WM tissue, such
as DWI-derived fractional anisotropy (FA: a measure of anisotropy
of water molecules’ diffusion in the brain), have been used to study
microstructural differences in females and males (Shin et al., 2005;
Westerhausen et al., 2003; Schmithorst et al., 2008; Liu et al., 2010;
Björnholm et al., 2017; Hasan et al., 2008; Ritchie et al., 2018; Takao
et al., 2014). These findings include female and male differences in
developmental, degenerative, and experience-dependent changes in
microstructural measures (Schmithorst et al., 2008; Toschi et al.,
2020; Kirby et al., 2024).

Functionally, sex differences have also been noted in GM
activation [i.e. the blood oxygen-level dependent (BOLD) signal]
during voluntary motor tasks with males showing a larger surface
area and higher variability in the BOLD signal during voluntary
motor tasks (Andrushko et al., 2023). We have also shown
differences between female and male-specific changes in WM
following complex motor skill acquisition, despite comparable
change in motor behavior (Kirby et al., 2024). Taken together,
this work suggested biological sex is an important variable with
demonstrable differences on both GM and WM during motor
tasks and learning, which are not explained by differences in
performance.

In our previous work, we studied a cohort of older adults
[mean age (standard deviation): 64.2 (8.5) years] in a lab-based
setting where they performed a unilateral reaching task (Kirby
et al., 2024); as such it is unclear whether similar effects apply
to different ages and/or motor learning tasks. While past work
has shown relationships between DWI-derived measures in WM,
with measures of motor learning (Frizzell et al., 2020, 2021; Kirby
et al., 2022; Sale et al., 2017; Reid et al., 2017; Lakhani et al., 2016;
Azzarito et al., 2021; Moore et al., 2017; Taubert et al., 2010; Borich
et al., 2014) very little work has considered how biological sex
impacts this relationship. Filling this knowledge gap will improve
our understanding of how biological sex impacts neuroplastic
change during motor learning and increase awareness of how WM
disease might impact females versus males differently. A better
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TABLE 1 Demographic breakdown.

Group Age [mean
(standard

deviation);
range]

Pre-existing
slackline

experience
[mean (standard

deviation);
range]

All participants 23.88 (3.48); 18 to 36
years

2.27 (1.16); 1 to 5

Balance trained
female participants

22.50 (2.99); 19 to 28
years

2.07 (1.16); 1 to 5

Balance trained
male participants

22.20 (2.14); 19 to 26
years

2.8 (1.25); 1 to 5

Control female
participants

24.56 (3.16); 18 to 31
years

2.38 (1.11); 1 to 5

Control male
participants

26.00 (3.89); 21 to 36
years

1.92 (0.95); 1 to 4

understanding can improve monitoring of disease progressions
that show differences between females and males (DeCasien et al.,
2022; Ferretti et al., 2018). Moving forward with rehabilitation
involves understanding the differences of pharmaceutical drug
benefits and risks between females and males (Wierenga et al.,
2024; Carey et al., 2017), as hormonal or sex-specific genotype
interactions may affect drug metabolism and treatment response
(Shulman, 2007; Abel et al., 2010; DeCasien et al., 2022; Ferretti
et al., 2018).

Accordingly, the current study sought to extend work
investigating differences in WM plasticity to consider
younger adults learning a complex, whole body balance task.
Given prior uses of correlational tractography and previous
neuroimaging characterization of WM in females and males,
our primary hypothesis was that females and males would show
different patterns of WM change in widespread WM tracts,
specifically reflected in greater increases in QA in females as
compared to males.

2 Materials and methods

2.1 Experimental paradigm

The current study analyzed data from OpenNeuro [OpenNeuro
Dataset ds003138, “Tidying Up White Matter: Neuroplastic
Transformations in Sensorimotor Tracts following Slackline Skill
Acquisition” (Koschutnig et al., 2023)]. A total of 60 participants
were originally recruited for the study. After dropouts (7) and
noisy data (1), a total of 52 participants [24 balance training (14
female) and 28 controls (16 female)] were included [mean age
(standard deviation): 23.88 (3.48) years]. A fuller demographic
breakdown is included in Table 1. Participants engaged in a
slackline motor skill acquisition paradigm. Briefly, this began with
an MRI scan before their first training session. Participants then
worked with a professional slackline trainer for 90-minute sessions
spaced approximately one week apart until they had reached a
specified skill level. All participants reached the specified skill level
in three or fewer sessions [range = 2–3 sessions; mean (standard
deviation) = 2.29 (0.45)]. This included balancing on the slackline

for one minute, followed by walking forward one meter and then
backwards one meter. Once this skill level was reached, participants
took part in a second MRI scan within 24 hours. The current study
focused on pre- and post-training timepoints. All participants also
underwent a follow-up MRI scan three weeks after training, but this
was not included in the current analysis. All control participants
were scanned following a similar timetable but did not undergo
balance training.

2.2 MRI acquisition

MRI data were acquired at the MRI-Lab Graz, Austria on
a 3-Tesla (3T) Magnetom Skyra scanner (Siemens Healthineers,
Erlangen, Germany) using a 32-channel head coil. All scans
included a T1-weighted MPRage-Sequence (TR = 2400ms,
TE = 2.26ms, 288 slices, thickness 0.8 mm, flip angle = 8◦).
Multi-shell DWI data were acquired with a multi-band accelerated
echo-planar imaging sequence protocol (TR = 3500 ms, 68
slices, voxel size = 2 mm isotropic, multiband factor 4) with
an anterior-posterior phase encoding direction for three b-values
(b-values = 1000, 2000, and 3000 s/mm2; TE = 104ms, 113ms,
125ms; number of directions = 20, 30, and 64). Additionally,
one b0-image and one extra b0-image in the reverse phase-
encoding direction for each b-value was also acquired to correct for
magnetic susceptibility-induced distortions. Overall, the total time
of acquisition was about 14 minutes.

2.3 MRI processing

DWI data were corrected for echo planar imaging (EPI)
distortions (Andersson et al., 2012), as well as motion and eddy
corrected (Andersson and Sotiropoulos, 2016) using FSL’s Top-
up and Eddy tools. Correlational tractography was prepared and
carried out following DSI Studio (version: December 14, 2023).
This technique is based on a model-free tractography method
that calculates the spin distribution function (SDF: an orientation
distribution function defined as the density of diffusing spins that
have a displacement oriented at a direction during the diffusion
time) (Yeh et al., 2010; Yeh and Tseng, 2011) on a local connectome
scale (Yeh et al., 2016). By considering the possibility of more
than one principal diffusion direction, model-free tractography
methods are less susceptible to the partial volume of crossing
fibers. The measurement at the base of connectometry, QA, is
robust, specifically, to the free water effect (Yeh et al., 2013b).
The difference between QA and regular orientation distribution
function-based measures is that QA scales with spin density and the
isotropic component is discarded (regular orientation distribution
function is often min-max scaled to 0–1) (Yeh et al., 2013b).
QA is a metric for each resolved fiber population, unlike FA or
generalized FA (GFA), which is a metric for each voxel (Yeh et al.,
2010). These attributes of QA, specifically the consideration of
restricted diffusion, make it less affected by edema than FA and axial
diffusivity (Yeh et al., 2013b).

A connectrometry database was created in DSI Studio with
52 subjects (104 total scans – 52 benchmark and 52 post-
training scans). The diffusion data were reconstructed in the MNI
space using q-space diffeomorphic reconstruction (Yeh and Tseng,
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2011) to obtain the spin distribution function (Yeh et al., 2010).
A diffusion sampling length ratio of 1.25 was used. The output
resolution in diffeomorphic reconstruction was 2 mm isotropic.
The restricted diffusion was quantified using restricted diffusion
imaging (Yeh et al., 2017). QA (Yeh et al., 2013b) was extracted as
the local connectome fingerprint (Yeh et al., 2016) to be used in the
connectometry analysis. The difference between longitudinal scans
were calculated by post-training minus pre-training scans. Only
increased longitudinal changes were used in the analysis. Diffusion
MRI connectometry (Yeh et al., 2016) was used to derive the
correlational tractography (a deterministic tractography method)
that has longitudinal change of QA correlated with the desired
variable.

2.4 Statistical analysis

As baseline motor skills and age may represent additional
factors affecting WM neuroplasticity [these variables impact motor
skill learning in general (Guadagnoli and Lee, 2004; Lillard and
Erisir, 2011)], an analysis to determine the relationship between
motor performance and neuroimaging results included a two-tailed
independent samples t-test between female and male groups to
test for significant pre-existing slackline motor skill differences,
age differences, and for final slackline skill. The final slackline skill
was assessed by the professional trainer from 1 (very bad) to 10
(excellent). Additionally, Spearman’s correlational analysis of mean
QA change in the three major highlighted tracts (outlined below)
with pre-existing slackline practice (ranked on a 5-point scale:
1 = never attempted, 2 = < 15 min, 3 = 15–30 min, 4 = 30–45 min,
5 = 45–60 min) and Pearson’s correlational analysis of mean QA
change in the three major highlighted tracts (outlined below) with
age were completed (Supplementary Data 3).

Our correlational tractography analysis used different t-statistic
thresholds (2.5, 3.0, and 3.5). The t-statistic is determined and
evaluated to pass the chosen threshold from a non-parametric
Spearman partial correlation analysis. This analysis is done at each
local connectome to investigate weaker and stronger correlations.
Using a range of t-thresholds led to higher sensitivity (high true
positives at low thresholds) and to higher specificity (high true
negatives at high thresholds). Additionally, based on the variety
of length thresholds used in previous research (Wang et al., 2019;
Hula et al., 2020; Delaparte et al., 2017; Dresang et al., 2021),
different length thresholds [15, 20, 25 voxel distances (30, 40,
50 mm)] were used at each t-threshold to remove fragmented
findings (similar to cluster size in cluster-based analyses). The
full in-depth explanation of connectometry as a deterministic
tractography method is described in Yeh et al. (2016) (additional
explanation of threshold parameters is included in Supplementary
Data 5). The cerebellum region was removed from analysis as
lower slices in the cerebellum are an area of high level noise in
DWI, that is suggested to be removed in DSI Studio tutorials (Li
et al., 2022). Additionally, sex focused analyses in the balance group
were rerun with the highest thresholds including the cerebellum,
showing similar final results (Supplementary Data 4). As the
cerebellum is a major area responsible for postural adjustments,
future work can focus on the complex WM fiber structure of
the cerebellum. Tracts were filtered and selected by topology-
informed pruning with 16 iterations (Yeh et al., 2019a). A randomly

permuted null distribution is also created with this t-threshold.
A total of 4000 randomized permutations were applied to the group
label to obtain the null distributions of the track length. A false
discovery rate (FDR) less than 0.05 indicated a highly confirmative
finding. Therefore, only tracts with an FDR < 0.05 were kept.
Three different correlational tractography analyses were run. To
initially determine differences between the control and intervention
group, the correlation between increase in QA and group was
determined using a nonparametric Spearman partial correlation,
while the effects of age and sex were removed using a multiple
regression model. Subsequently, to analyze the effect of biological
sex on WM neuroplasticity, an additional interaction variable of
Group × Sex was determined for each individual. The correlation
between increase in QA and this Group × Sex interaction was
then determined, while the effects of age were removed using a
multiple regression model. Lastly, to further analyze the effect of
biological sex, only individuals in the intervention group (n = 24)
were used to determine correlation between increase in QA and sex,
while the effects of age were removed using a multiple regression
model. Results of the sex effect analysis on the balance group for the
highest thresholds [t-threshold = 3.5 & length threshold = 25 voxels
(50mm)] were clustered by their respective tracts by DSI Studio and
only tracts making up more than 10% of the total association of sex
and QA increase were highlighted.

3 Results

3.1 Behavioral data

All subjects taking part in balance training reached the specified
skill level. There were no significant differences between female
and male pre-existing slackline skills (t-statistic = 1.405, p = 0.17,
Figure 1). There were also no significant differences between
female and male slackline rating after training completion (t-
statistic = 0.684, p = 0.50, Figure 2). Additionally, there were
no significant differences between female and male age in the
intervention group (t-statistic = 0.260, p = 0.80).

3.2 Neuroimaging

The effect of taking part in balance training was significantly
associated with an increase in QA at lower thresholds [(t = 2.5;
Length = 30mm, 40mm, 50mm; FDR < 0.05) & (t = 3.0;
Length = 30mm; FDR < 0.05)], but this effect was not significantly
associated at higher thresholds (Supplementary Data 1). The
Interaction effect of Sex × Group was highly associated with
increased QA from pre- to post-training across all thresholds
(Supplementary Data 2). Results were found in all three fiber types
(association, projection, and commissure fibers−Figure 3).

3.3 Intervention sex effect

The effect of participating in balance training was highly
associated with an increase in QA for females only, as there were
no tracts significantly associated with the increases in QA for males

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1432830
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1432830 August 22, 2024 Time: 17:58 # 5

Kirby et al. 10.3389/fnhum.2024.1432830

FIGURE 1

Bar graph comparing female and male mean pre-existing slackline experience (5-point scale: 1 = never attempted, 2 = < 15 min, 3 = 15–30 min,
4 = 30–45 min, 5 = 45–60 min) and standard deviation.

FIGURE 2

Bar graph comparing female and male mean post-training slackline rating [1 (very bad) to 10 (excellent)] and standard deviation.

across any thresholds (Table 2). Tracts significantly associated
with increased QA in females were similar to the Sex × Group
interaction results above (Figure 3 visually compared to Figure 4).
Mean QA increase along all the fibers in the cluster of significant
tracts from Figure 4 on the individual level is visualized in Figure 5.
Tracts having a significant association with an increase in QA
in females for the highest thresholds (t-threshold = 3.5 & length
threshold = 25 voxels; Figure 4) were used for the following tract
breakdowns and results (Figures 6, 7 and Table 2).

Results were clustered by their respective tracts, and majorly
found in projection fibers, with significant tracts also noted in
association and commissure fibers (Figure 6). Only tracts making

up more than 10% of the total tracts significantly associated with
QA increase for females at the highest thresholds [t-threshold = 3.5
& length threshold = 25 voxels (50mm)] were highlighted [the left
cortico-spinal tract (CST), arcuate fasciculus (AF), and tapetum of
the corpus callosum (CC)] (Table 3 and Figure 7).

3.4 Correlations

Spearman’s correlation analysis showed no significant
correlations between mean QA increase in the three highlighted
WM tracts and pre-existing slackline skill (Supplementary Data 3).
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FIGURE 3

Tracts with increased QA significantly associated with the interaction of Sex and Intervention at a t-threshold of 3.5 and length threshold of 25 voxels
(50mm). Tractography is rendered by directional colors (red: left-right; green: anterior-posterior; blue: superior-inferior).

TABLE 2 Number of tracts with a Sex-effect on QA increase (FDR < 0.05).

t-threshold FEMALE:
Tracts @
Length

Threshold 15
voxels

(30 mm)

MALE: Tracts
@ Length

Threshold 15
voxels

FEMALE:
Tracts @
Length

Threshold 20
voxels

MALE: Tracts
@ Length

Threshold 20
voxels

FEMALE:
Tracts @
Length

Threshold 25
voxels

MALE: Tracts
@ Length

Threshold 25
voxels

2.5 18135 0 22919 0 36821 0

3.0 20295 0 111749 0 57795 0

3.5 57111 0 23179 0 7488 0

FIGURE 4

The cluster of tracts with increased QA significantly associated with females in the balance group (Analysis: main effect = biological sex,
covariate = age, cohort = balance group). Note only tracts significantly associated with QA increase is shown for females as there were no tracts
significantly associated with QA increase in males. Results shown for t-threshold of 3.5 and length threshold of 25 voxels (50 mm). Tractography is
rendered by directional colors (red: left-right green: anterior-posterior blue: superior-inferior).

Pearson’s correlation analysis showed no significant correlations
between mean QA increase in the three highlighted WM tracts and
age (Supplementary Data 3).

4 Discussion

4.1 Summary

The current study characterized widespread QA increases in
female human brains associated with balance skill acquisition. This
is the first study to our knowledge that employed correlational
tractography to investigate WM anisotropy increases associated
with motor skill acquisition. The results of our analyses in this

younger cohort (mean age = 23.88 years) support our past findings
of structural differences between female and male neuroplasticity
reported in our previous study with an older cohort (Kirby et al.,
2024), similarly showing females exhibiting greater anisotropy
increases than males.

4.2 Behavioral changes

All subjects that took part in balance training reached the
specified skill level in 2 or 3 90-minute sessions. Notably, in line
with our previous research findings (Kirby et al., 2024), there
were no discernible differences in performance measures between
females and males (pre-existing slackline experience, number of
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FIGURE 5

Individual scatter plot data of QA increases. Tracts used for this mean QA comparison are all tracts that showed a significant association with the
increase in QA for females from Figure 4. Group means and standard deviations included (middle, larger points) showing larger QA increases for
females (black) than males (gray) tracts.

FIGURE 6

The significant cluster of tracts in Figure 4 (tracts showing a significant association with QA increase in females in the balance group) were clustered
by their respective tract types (projection, association, or commissure) by DSI Studio to better determine areas of change. Bar graph breaking down
the type of tracts that were shown in Figure 4. Results were majorly found in projection fibers, with significant tracts also noted in association and
commissure fibers.

sessions to reach skill level, or post-training slackline skill rating).
While performance assessments reveal comparable outcomes
between females and males in the current study, neuroimaging
provides insights into the differences that may underlie these
observed behaviors.

4.3 Neuroimaging

There were no discernible differences in performance measures
between females and males even though QA increases showed

differences. This structural evidence aligns with functional studies
highlighting variations in fMRI activation patterns between females
and males during similar task performance (Hugdahl et al.,
2006; Lissek et al., 2007; Gorbet and Sergio, 2007; Andrushko
et al., 2023). For instance, Gorbet and Sergio (2007) found no
performance discrepancies between females and males in a visuo-
motor task of increasing complexity, yet identified differences in
fMRI activity. Lissek et al. (2007) showed higher activation in
females during simple and complex finger tapping tasks, while
both groups achieved comparable error rates. These current
findings further suggest that females and males may rely on

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1432830
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1432830 August 22, 2024 Time: 17:58 # 8

Kirby et al. 10.3389/fnhum.2024.1432830

FIGURE 7

The 3 WM tracts with the highest percentage of tracts associated with increased QA in females with balance training [t = 3.5, Length = 25 voxels
(50 mm)]. The portion of the tracts associated with the QA increase associated with females (A) and the full model tract (B). The model tracts are
derived from Yeh et al. (2018) to better portray the full WM tract of interest. CST L = left cortico-spinal tract, AF L = left arcuate fasiculus, CC
T = tapetum of corpus callosum.

distinct brain regions or tissue types to achieve comparable
outcomes.

Correlational tractography identified several tracts that were
identified in the Group × Sex interaction across all connectometry
threshold values. However, group effects were only noted at lower
thresholds. The importance of biological sex in these results was
highlighted by the increase in QA for females across all threshold
values, while males failed to show any change. The current study
supports the importance of including data that are disaggregated by
biological sex in analyses and builds on prior work in this research
area (Tannenbaum et al., 2019; White et al., 2021; Kirby et al., 2024;
Andrushko et al., 2023; Rechlin et al., 2022; Arnegard et al., 2020).
Differences in biological sex in neuroimaging analyses have been
shown across diverse techniques (Toschi et al., 2020; Schmithorst
et al., 2008; Liu et al., 2010; Björnholm et al., 2017; Gorbet
and Sergio, 2007). On a large scale, males demonstrate greater
variability in cortical surface area measures, subcortical volume,
and cortical thickness, across the brain (Wierenga et al., 2020).
Additionally, males have a larger cortical surface area, while females
show a greater cortical thickness for many regions (Wierenga et al.,
2020; Ritchie et al., 2018). Functionally, females and males show
different patterns in GM activation during voluntary motor tasks.
Similar to the structural results, functional MRI shows that males
demonstrate a larger surface area and higher variability of BOLD
signal (Andrushko et al., 2023).

While cross-sectional studies are important, identifying
different patterns of change can aid in further understanding
neural development, degeneration, and plasticity. Previously, we
had suggested possible female versus male differences in WM
neuroplasticity during motor learning of a unilateral task (Kirby
et al., 2024). The current study builds on this past work in two
ways. First, we considered change in young, healthy individuals
as they completed balance training. Second, we investigated

change across a broad network of WM including projection,
association, and commissural tracts. It is important to show these
patterns across the lifespan in both younger and older cohorts
because of the effect age has on WM (Peters, 2002), as well as the
previous MRI work that has been done to identify female and
male differences in development and degeneration. Toschi et al.
(2020) used advanced multi-shell diffusion MRI to suggest that
age-related brain changes related to degeneration begin up to
14 years earlier in males than females. They also suggested that
the promyelinating effects of female hormones may protect from
age-related vulnerabilities in the myelination process (Bartzokis,
2004). Other work demonstrated sex-specific WM development,
with females showing a faster rate to matured WM levels (Wang
et al., 2012; Schmithorst et al., 2008). While studies relating
WM structural and functional measures to motor performance
and skills in females and males are scarce (Schmithorst, 2009;
Schmithorst and Holland, 2006, 2007; Schmithorst et al., 2008)
determined differing structural and functional neural correlates of
cognition between females and males during development. The
culmination of studies suggested a greater dependance on WM
by females during development, potentially moderated by specific
information processing demands. On a more macroscopic scale,
it has been reported that females show a greater association of
intelligence to WM volume, while GM volume correlates more
strongly with intelligence in men on both a global (Gur et al., 1999)
and regional scale (Haier et al., 2005) in the brain. Outside of DWI
and functional MRI, magnetic resonance spectroscopy studies
have also demonstrated WM regions in which N-acetyl-aspartate
concentrations correlate with intelligence in females but not in
males (Jung et al., 2005; Pfleiderer et al., 2004).

It was important to investigate if the differences in WM
neuroplasticity during motor learning occurred outside of the CST,
as neuronal activity that is needed to perform a task usually depends
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TABLE 3 Sex-effect specific tract breakdown for females [t = 3.5,
Length = 25 voxels (50 mm)].

Tract type Specific tract % of tracts

Projection Corticospinal Tract L 28%

Association Arcuate Fasciculus L 18%

Commissure Corpus Callosum
Tapetum

12%

Specific tracts that account for less than 10% of the connectometry result are not reported.

on the task demands and increases with parametric changes in task
difficulty (Prvulovic et al., 2005; Peters et al., 2020; Wnuk et al.,
2018; Andrushko et al., 2021; Danielson et al., 2024; Van Ruitenbeek
et al., 2023). Therefore, a full body balance task may recruit more
widespread neural activity than the unilateral task from Kirby
et al. (2024). Different tasks may lead to more or less observed
differences between females and males. Tracts only associated with
increases in females were found in all three fiber types. Similar to
our previous work (Kirby et al., 2024), females showed an increase
in QA associated with motor skill acquisition in projection fibers,
mainly the CST (Figures 5, 6). Similarly, select neuroplasticity
research during motor learning has focused on unilateral training
primarily associated with projection fibers resulting in contralateral
brain changes (Lakhani et al., 2016; Kirby et al., 2022; Frizzell et al.,
2020, 2021; Sale et al., 2017; Reid et al., 2017). For example, Reid
et al. trained participants in a motor task with their left hands and
reported increases in FA along the right contralateral CST (Reid
et al., 2017). In addition to projection tracts, association tracts
showed significant QA increases in females. While most commonly
associated with language, the AF (specifically the portion of the
AF associated with QA increase in females in the current study –
Figure 6) does include connections to the ventral premotor cortex
(vPMC). This is a region within the broader premotor cortex, which
plays a key role in motor planning and execution (Binkofski and
Buccino, 2006; Purves et al., 2001; Kakei et al., 2001). In addition to
projection and association tracts, our previous work highlighted the
CC (a major commissural tract) as a potential area of significance
in motor skill acquisition (Frizzell et al., 2021). This has built on
past work associating the CC with motor and visuomotor task
activation (Weber et al., 2005; Tettamanti et al., 2002; Fabri et al.,
2014; Gawryluk et al., 2011; Mazerolle et al., 2008; D’Arcy et al.,
2006; Gawryluk et al., 2014b; Mazerolle et al., 2010; Gawryluk et al.,
2014a), as well as, FA measures in this region positively correlating
with performance during a motor learning session (Vien et al.,
2016).

4.4 Clinical relevance

While adding to the female/male neuroscience literature is
generally important on a research-level, this is also very important
for understanding disease and optimizing rehabilitation. A more
focal and consistent neural processing by females would not need
an increased speed of signal transmission from a large cortical
surface area, but instead would be focused on neural transmission
across WM structures for efficient signal transmission (Andrushko
et al., 2023; Kirby et al., 2024). As identified in this research,
females show a greater increase in anisotropy values in WM during

motor learning. This has direct connection to similar results in an
older cohort taking part in a different task (Kirby et al., 2024), as
well as a more indirect connection (motor research compared to
cognition research) to research showing a higher WM dependence
by females during development (Schmithorst and Holland, 2006,
2007; Schmithorst, 2009). Speculatively, the current study adds
to this by potentially suggesting a higher WM dependence in
motor skill acquisition as well. Although this may be beneficial
in healthy, neurologically intact populations, to facilitate efficient
nervous signal transmission, this approach may be detrimental in
the presence of a neurological injury. For example, with stroke
and MS, injury to WM interrupts axon signal transmission,
resulting in impairment. As the incidence and presentation of many
neurological conditions and movement disorders differ between
sexes (Meoni et al., 2020), a higher WM dependance may be the
reason behind more severe result of WM injury and disease in
females (Tomita et al., 2015; Kim et al., 2010; Phan et al., 2019;
Persky et al., 2010; Golden and Voskuhl, 2017; Voskuhl, 2020;
Koch-Henriksen and Sørensen, 2010).

Along with WM disease, traumatic brain injury (TBI)
commonly causes WM damage (Guerrero-Gonzalez et al., 2022;
Wright et al., 2021; Narayana, 2017). Studies have highlighted
varying recovery trajectories and outcomes for females vs. males
following TBI (Gupte et al., 2019; Mikolić et al., 2021; Haynes and
Goodwin, 2023). Furthermore, hormonal influences, particularly
progesterone which is commonly associated with females, may be
neuroprotective when used as a TBI treatment (Wright et al., 2007).
As hormonal fluctuations have been shown to effect neuroplasticity
(Catenaccio et al., 2016; Pawluski et al., 2016; Barha and Galea,
2010; Saleki et al., 2022), common sex-related hormones like
testosterone, estrogen, and progesterone may be the basis for
observed female and male differences. Understanding WM changes
is important for exploring targeted therapeutic strategies that
harness neuroplasticity for improved recovery. This also extends
to sex differences in neonatal brain injury and repair, as infant
sex can play a role in disease onset, course and resolution
(Rosenkrantz et al., 2019). Although many explanatory factors have
been identified in sex-specific WM injury outcomes, incorporating
learning-induced WM changes into this phenomenon should be
discussed.

4.5 Future work and limitations

The current study focused on identifying greater anisotropy
increases in females over males in a motor skill acquisition
paradigm. This was mainly because previous connectometry
analyses focused on QA decreases associated with degeneration
(Moshchin et al., 2023; Huang et al., 2023) and increases in
QA associated with cognitive rehabilitation (Brownsett et al.,
2024). However, prior work identified decreases in anisotropy as
helpful for neuroplasticity. For example, our past work identified a
decrease in anisotropy in older males during motor skill acquisition
(Kirby et al., 2024). Additionally, Taubert et al. (2010) investigated
neuroplasticity during balance training, observing reductions in
FA associated with learning. FA and other anisotropy measures
have only demonstrated low sensitivity to a single neurobiological
process (Jones et al., 2013) making the ability to characterize
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the exact mechanism behind neuroplasticity changes a limitation
of the current study. Future work can include both traditional
diffusion tensor imaging-based metrics along with complex metrics
such as QA (tractography comparison in Yeh et al. (2013b))
to aid in better understanding neurophysiology associated with
motor skill acquisition changes. As Fields (2015) has pointed out,
conduction velocity along WM is changed to optimize timing
of information transmission through neural circuits. Therefore,
attenuated increases in myelination or anisotropy values of a
certain WM path may occur to increase efficiency of a network.
Future work should better elucidate what increase/decrease in
anisotropy is specifically showing in regard to neuroplasticity as
decreases may also be positive in some instances.

The current study highlights the importance of different brain
tissue types in females and males. As training-induced alterations
in different types of brain tissue likely operate on different
time-scales and may further change in follow-up assessments
(Weber et al., 2019; Zatorre et al., 2012), the focused hypothesis
on the effect of motor skill acquisition at two timepoints is
a limitation of the current study. It is important to better
understand the timing of these changes, especially in both GM
and WM regions. Speculatively, females and males may take part
in similar neurophysiological changes, but at different timescales.
These suggestions warrant further investigation into the biological
implications underlying these observations.

As this study used publicly available data, our analysis was
restricted to the previously collected data. The current study
dataset was unique in terminating training and initiating the
post-training timepoint once an individual passed a specified
behavioural performance test, indicating they had reached a
measurable skill level. However, the nature of the task makes it
difficult to quantitatively measure pre-existing skills or comparison
of final skill level outside of the passing test, reflected in the
discrete behavioral measures used. Greater challenges in a training
paradigm may lead to greater changes in WM measures (Lakhani
et al., 2016). Therefore, it is important for future work to measure
a wide variety of pre-existing motor skill competencies and to
note that complexity, task-specific goals, and baseline motor skill
competency represent additional factors that may affect WM
neuroplasticity, as these have previously been shown to impact
motor skill learning in general (Guadagnoli and Lee, 2004; Wulf
et al., 2010).

Finally, as mentioned above, the most studied sex-based
hormones, estrogen and testosterone, are known to affect
neuroplasticity (Catenaccio et al., 2016; Pawluski et al., 2016; Barha
and Galea, 2010; Saleki et al., 2022). Therefore, it is important for
future work not only to include the effect of biological sex, but also
to define how hormones effect WM changes. There are other data
suggesting that hormonal balance can affect neuroplasticity even
at the cellular level (Catenaccio et al., 2016; Laube et al., 2020).
However, given the current analysis, consideration of these effects
is beyond our scope. Future work could consider how these factors
interact.

5 Conclusion

The current study suggests that female and male differences
in WM neuroplasticity during motor skill acquisition may be

detectable using MRI-derived DWI measures and connectometry.
The current study builds on past work (Kirby et al., 2024)
by considering change in young, healthy individuals as they
completed balance training and by investigating change across
a broad network of WM including projection, association, and
commissural tracts. Importantly, we discovered differences in WM
changes for females versus males despite both groups reaching
a similar level of balance motor skill. These findings suggest
that there are distinct patterns of change that take place in
female versus male brains to support motor skill acquisition. We
provide further support for the importance of including sex-
based analyses, as females and males may exhibit differences
in neural mechanisms (Toschi et al., 2020; Kopec et al., 2018;
Rogojin et al., 2023). As pathophysiology of many illnesses and
their resulting rehabilitation differ between females and males, our
data suggest that future work should consider how differences
in biological sex affect patterns of both structural and functional
change associated with motor learning. These differences in
tissue dependance likely have important clinical implications for
understanding impairment severity and rehabilitation strategies for
each sex independently.
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