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Objective: In the past, the localization of seizure onset zone (SOZ) primarily relied 
on traditional EEG signal analysis methods. However, due to their limited spatial 
and temporal resolution, accurately pinpointing neural activity was challenging, 
thereby restricting their clinical applicability. Compared with traditional EEG 
signals, SEEG signals have superior spatial and temporal resolution, and can more 
accurately record neural activity near epileptic foci, making them better suited for 
studying SOZ. In addition, the traditional EEG signal analysis methods still have 
limitations, mainly focusing on the analysis of local signal features, while ignoring 
the complexity and interconnection of the overall brain network. How to more 
accurately locate SOZ is still not well resolved. The purpose of this study is to 
develop an effective positioning method for more accurate positioning.

Method: To overcome these limitations, this study proposed a model integrating 
brain functional network analysis with nonlinear dynamics. We utilized weighted 
phase lag index (WPLI) to construct brain functional network, epilepic network 
connectivity strength (ENCS) as the feature, and introduced persistence entropy 
(PE) for feature fusion, subsequently employing support vector machine (SVM) 
classification.

Results: The proposed method was verified on the HUP-iEEG dataset, our 
solution identified the SOZ with 0.9440 accuracy, 0.9848 precision, 0.8974 recall 
rate, 0.9340 F1 score and 0.9697 area under the ROC curve across patients, 
which outperforms the existing approaches. It exhibits a 2.30 percentage point 
enhancement in  localisation accuracy along with a 2.97 percentage points in 
AUC compared to others.

Conclusion: Our method consider the interactions between nodes in brain 
network connections, as well as the inherent nonlinear and non-stationary 
properties of neural signals, to be more robust.
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1 Introduction

Epilepsy is a chronic neurological disorder caused by abnormal discharges of neurons in 
the brain, now ranking as the second most common neurological condition globally. During 
a seizure, electrical activity in the brain is disrupted, allowing for dysfunction and impaired 
communication between areas of the brain, which leads to a number of temporary symptoms 
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including loss of consciousness, staring spells, and movement 
disorders. According to the World Health Organisation, approximately 
5 million people worldwide are diagnosed with epilepsy annually. In 
high-income countries, an estimated 49 out of every 100,000 people 
are diagnosed with epilepsy each year. In low-and middle-income 
countries, this number may be as high as 139 per 100,000 people 
diagnosed with epilepsy, so nearly 80% of epilepsy cases occurring in 
these regions. Among epilepsy patients, 20–30% suffer from medically 
refractory epilepsy, whose resistance to conventional antiepileptic 
medications makes it difficult to achieve significant results with 
conventional treatment (Kharibegashvili, 2020). In this challenging 
context, surgery has emerged as a potential treatment to explore, 
particularly through resection of the suspected epileptogenic zone 
(EZ), the specific brain region that triggers seizures. The idea behind 
surgical removal of EZ is to eliminate seizures by pinpointing and 
removing areas of abnormal activity in the brain. However, this 
procedure may involve an impact on normal brain tissue, especially if 
the EZ is adjacent to a functionally important brain region. This can 
lead to surgical risks and potential neurological damage. Even after 
surgical removal of the epileptogenic zone, there is still a risk of 
seizure recurrence. This may occur due to the surgery failing to 
completely remove the epileptogenic tissue, or other brain regions 
being activated. To better understand these complexities, researchers 
employ various neuroimaging techniques, such as functional magnetic 
resonance imaging (fMRI), electroencephalography (EEG), stereo 
electroencephalography (SEEG), and positron emission tomography 
(PET), to study patterns of brain activity and connectivity to unravel 
the complex processes involved in the propagation of epilepsy.

SEEG is a technique employed to record electrical signals in 
epilepsy or other neurological disorders (Gao et  al., 2018). By 
implanting multiple electrodes into the patient’s brain, it can capture 
electrical signals from deeper brain regions, aiding doctors to determine 
the location and extent of seizure onset points. Additionally, SEEG can 
also furnish more precise information about brain function location 
prior to surgical intervention, thus preventing unnecessary damage to 
normal brain tissue. Compared with traditional intracranial EEG, SEEG 
boasts superior spatial resolution, precision, safety, and controllability 
(Pei et al., 2021). Consequently, SEEG stands out as a powerful tool for 
conducting accurate epilepsy brain electrical signal analysis. In recent 
years, mounting studies have shown that epilepsy is not only a static 
brain dysfunction, but also a complex pathophysiological process 
involving dynamic brain networks (Sun et al., 2010). Therefore, utilizing 
SEEG as an brain electrical signal acquisition technology and using a 
dynamic brain network analysis method for epileptic disorders is of 
great significance for the localisation of seizure onset zone (SOZ).

Currently, domestic and international research on SOZ localisation 
have focused on the use of high frequency oscillations (HFO) rates, 
functional connectivity and graph theory, phase-amplitude coupling, 
or hybrid methods, with fewer studies on SOZ localisation using brain 
networks. For instance, Wu et al. (2021) utilized K-centre clustering to 
identify HFOs and used the detected HFO concentrations to localise 
SOZ. A. Nazar and Sanjay (2023) automated the discovery of HFOs 
from multichannel intracranial EEG signals, which led to epileptic zone 
localisation by calculating the HFO rate/min. Similarly, Sadek et al. 
(2023) enhanced and automated HFO localisation by developing 
unsupervised clustering methods based on the analysis tool to improve 
and automate HFO detection, used a CNN feature extractor to finally 
localise seizure regions. Grattarola et al. (2022) used correlation and 

phase-locked values to quantify the coupling between different brain 
regions and extracted FN metrics to perform epileptic focal zone 
detection by training a GNN. Jiang et  al. (2022) estimated the 
directional connectivity through the information flow and inferred the 
excitation-inhibition ratio from 1/f power slopes, and later combined a 
balanced random forest model with resting state connectivity to localise 
epileptic focal areas. It is worth noting that although these methods 
have made useful attempts to localise SOZ, we must recognise that there 
are still some obvious shortcomings and limitations of the existing 
methods. Primarily, these methods usually focus on localised signal 
features, neglecting the complexity of brain networks. Epilepsy, as a 
network disease, involves complex interactions among multiple brain 
regions. Focusing solely on specific signals or changes in individual 
channels may not provide a comprehensive understanding of the 
disease mechanism, thereby affecting the accuracy and 
comprehensiveness of lesion localisation. Additionally, the features used 
for localisation, such as HFO rate, are inherently limited since HFO do 
not always occur in the early stages of seizures and not all epileptic 
patients exhibit significant HFO, which makes it possible that, in some 
cases, these methods may overlook the presence of epileptic foci or lead 
to inaccurate localisation. Therefore, this paper proposes the utilization 
of a weighted phase lag index (WPLI) to construct a functional brain 
network from the perspective of phase synchronisation in order to 
locate epileptogenic zone more comprehensively and accurately. This 
approach is anticipated to overcome the shortcomings of existing 
methods and better reflect the nature of epilepsy as a network-based 
disease, thereby providing a more feasible way to improve the treatment 
of epilepsy patients. In addition, HFO and phase-amplitude coupling 
methods are usually based on certain modelling assumptions, such as 
signal linearity and stability. However, the neural activities of the human 
brain reflected in SEEG are complex activities characterised by 
nonlinear dynamics, and the neural signals may exhibit nonlinear and 
nonstationary properties in epileptic states, leading to the violation of 
model assumptions. Therefore, in this paper, we  will leverage the 
nonlinear dynamics features to further elucidate the dynamic 
behaviours of the lesion area, and integrate the brain functional network 
features with nonlinear dynamics features to establish a comprehensive 
localisation model that takes into account the patient’s brain functional 
connectivity patterns and dynamic behavioural features, thereby 
enhancing the accuracy and reliability of the localisation of SOZ. With 
this approach, we expect to provide epilepsy patients with more precise 
diagnosis and treatment plans, ultimately improving their quality of life.

The second section of this paper describes the dataset used in this 
paper and the methodology applied in the experiments. The third 
section describes the experimental procedure and the results obtained 
from the experiments. The fourth section discusses the innovations of 
this paper. The fifth section summarises the findings of this paper, and 
the final section briefly describes the shortcomings of this paper and 
the directions for future research.

2 Materials and methods

In this study, we analysed SEEG data from 22 epilepsy patients. 
The data were pre-processed and then WPLI was applied to calculate 
network connectivity from phase and time-frequency perspectives. 
Dynamic thresholds were set such that each functional brain network 
graph contained multiple brain nodes with high connectivity values. 
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Epileptic network connectivity strength (ENCS) was utilized to 
identify and visualise significant nodes for functional connectivity. In 
addition, SEEG data from 22 epilepsy patients were time delay 
embedded and transformed into point cloud representations in 3D 
space. Subsequently, persistent homology computation was performed 
using Vietoris–Rips simplex complex shapes to obtain their 3D 
persistent homology features. In this process, the persistent homology 
entropy was employed as a feature to characterize the dynamic 
properties of SEEG data, so as to facilitate a deeper exploration of the 
complex dynamic properties of SEEG signals. Finally, the network 
structural features and topological structural features were utilized for 
the localisation of SOZ and the analysis of propagation pathways. The 
flowchart of the algorithm is illustrated in Figure 1, depicting specific 
steps including raw data pre-processing, calculation and extraction of 
network structural and topological features, localization of the SOZ 
and analysis of epileptic propagation pathways.

2.1 Dataset

The experimental dataset used in this paper was sourced from 
the Hospital of the University of Pennsylvania, which can 
be accessed at the following link: 10.18112/openneuro.ds004100.
v1.1.3. It comprised intracranial electro-encephalogram (iEEG) 
signal data from 55 patients, consisting of 28 males and 27 females, 
all diagnosed with refractory epilepsy and who had undergone 
surgical procedures. Among these patients, 36 were treated with 
electrode implantation using SEEG and 19 patients received 
electrode implantation using cortical electro-encephalography 
(EcoG), with the number of electrodes implanted varied depending 
on the patient’s condition. The dataset also include information 
about the patient’s handedness, the type of treatment administered, 
the surgical target point, the lesion status on MRI, and surgical 

outcomes with or without seizures. For patients undergoing SEEG 
electrode implantation, the dataset includes 10 min interictal data, 
and data for seizure periods of varying duration.

During the selection of experimental data, this paper chose (1) 
electrode implantation mode as SEEG, and (2) post-surgical outcome 
as S, i.e., successful surgery and no seizure. (3) No interictal 
epileptiform discharges (IEDs). In this way, the data of 22 patients 
meeting the experimental criteria were screened out, as shown in 
Table 1.

2.2 Data preprocessing

During the pre-processing stage, the MATLAB R2020a software 
and the EEGLAB toolbox were employed. Initially, the bad channels 
marked in the dataset were removed and the sampling frequency 
was reduced to 200 Hz to diminish redundancy while preserving 
periodic information. Subsequently, due to the 60 Hz industrial 
frequency interference affecting SEEG signals caused by external 
power supply and circuitry during acquisition, a 60 Hz trap filter 
was utilized to eliminate power supply noise, thus enhancing the 
quality of the SEEG signals, and making the subsequent analyses 
and researches more reliable. Furthermore, we utilized a bandpass 
filter with a cutoff frequency of 0.5 Hz to 80 Hz, aiming to 
concentrate our analysis on the specific signal band relevant to our 
interest. In order to eliminate the effect of original referencing on 
the recorded data, common average re-referencing was performed 
in the preprocessed data.

As the proportion of SOZ electrodes is small compared to all 
electrodes implanted in each patient in the experimental dataset, 
resulting in sample imbalance, which is not conducive to the later 
localizing of the SOZ, adjustments need to be made to balance and 
segment the samples. Taking sub-HUP142 as an example, the SEEG 

FIGURE 1

The flowchart of the algorithm.
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data of this patient consists of 116 channels, among which 8 
channels are bad channels, and after removing the bad channels, 
there remain 108 channels, with 16 channels belonging to the SOZ, 
and 92 channels belonging to the non-SOZ, resulting in highly 
unbalanced samples. In this paper, we adopt a window length of 30 s 
and a window shift of 25 s for the non-SOZ channels to perform the 
slicing, while the window length of 30 s and 25 s for the SOZ 
channels to perform the slicing. Subsequently, one SEEG slice from 
a non-focal area channel and five SEEG slices from non-focal area 
channels are combined in chronological order to form a new full-
channel SEEG dataset, effectively increasing the number of samples 
for the focal area channels fivefold. After adjusting the balance of 
the samples, the total number of channels (after removing the bad 
channels) becomes 172, with the number of focal area channels 
reaching 80. As shown in Supplementary Figure S1.

Finally, the processed SEEG signals were divided into five different 
frequency bands: delta band (1 Hz–3 Hz), theta band (3 Hz–7 Hz), 
alpha band (7 Hz–13 Hz), beta band (13 Hz–30 Hz), and gamma band 
(30 Hz–60 Hz). Further analysis was conducted on the epileptic EEG 
signal data across these different frequency bands.

2.3 Brain function network

Functional connection refers to the interactions between 
different brain regions or neurons, which are manifested in some 

degree of concerted activity or synchronisation. Such connections 
reflect patterns of information transfer in the brain and are 
essential for understanding brain function and studying the 
workings of the nervous system. In neuroscience research, a range 
of metrics is often used to quantify the properties of these 
functional connections. Among them, mutual information (Pluim 
et al., 2003), Pearson’s correlation coefficient (Antony et al., 2013), 
phase-locked value (PLV) (Lachaux et al., 1999), and phase-locked 
index (PLI) (Stam et  al., 2007) are metrics commonly used to 
measure the phase synchronisation of brain signals. To reveal the 
phase relationship between brain regions more accurately, we will 
construct a brain functional network using WPLI. After 
calculating the functional connectivity index values between every 
two electrodes in each frequency band of each time window, a 
two-dimensional matrix can be obtained for each frequency band 
of each time window. In this matrix, the electrode points serve as 
nodes, and the functional connectivity index values are used as 
edges connecting the nodes, thereby constituting a dynamic brain 
functional network. Subsequently, a brain network sparsity of 
40–50% is adopted as the binarisation threshold. When the 
connection value between two nodes in the brain functional 
network exceeds the determined threshold, the connection 
between the two nodes is considered to exist as an edge, with the 
edge value set to 1, otherwise it is set to 0. In this way, the 
functional network is binarised, and the constructed brain 
functional network is transformed into a binary matrix network 

TABLE 1 Patient information.

Patient ID Age (y) Sex Hand Implant Target Therapy Outcome

sub-HUP117 39 M L SEEG Temporal Resection S

sub-HUP130 46 F L SEEG MFL Ablation S

sub-HUP133 52 F L SEEG MTL Ablation S

sub-HUP138 38 M L SEEG MTL Ablation S

sub-HUP142 30 M L SEEG MTL Ablation S

sub-HUP144 31 M R SEEG Temporal Resection S

sub-HUP150 17 M R SEEG Insular Ablation S

sub-HUP151 33 M R SEEG MFL Ablation S

sub-HUP157 25 M L SEEG MTL Ablation S

sub-HUP160 45 F R SEEG Temporal Resection S

sub-HUP162 35 F L SEEG MTL Ablation S

sub-HUP164 34 F L SEEG MTL Ablation S

sub-HUP166 26 M L SEEG Temporal Resection S

sub-HUP171 50 M L SEEG Frontal Ablation S

sub-HUP172 28 F L SEEG Frontal Ablation S

sub-HUP173 24 F R SEEG Temporal Resection S

sub-HUP180 28 F L SEEG Frontal Ablation S

sub-HUP181 31 F L SEEG Temporal Ablation S

sub-HUP185 38 M L SEEG MTL Ablation S

sub-HUP187 25 M R SEEG MTL Ablation S

sub-HUP188 24 F L SEEG Frontal Resection S

sub-HUP190 25 M L SEEG MTL Resection S

Sex, F stands for female, M stands for male; Hand, R for right-handed, L for left-handed; Outcome, S stands for successful surgery without seizures, F stands for surgical failure and seizures 
still recurring after surgery.
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for the subsequent calculations individual feature attributes of the 
brain functional network for feature extraction.

Weighted phase lag index (WPLI), a refinement of the phase lag 
index, incorporates weighting of the lag magnitude to mitigate the 
influence of small phase differences (Vinck et al., 2011). Compared 
with the traditional phase synchronisation index, WPLI improves the 
robustness, enabling more accurate reflection of the strength and 
stability of phase synchronization. Consequently, WPLI facilitates the 
comprehensive exploration of functional connectivity patterns among 
the brain regions surrounding the epileptic focal area, thereby 
enhancing our understanding of interactions between the SOZ and 
other brain regions. Benefitting from the high temporal and spatial 
resolution information provided by WPLI, it becomes feasible to 
discern the phase synchronisation patterns across different frequency 
bands between brain regions. This capability enables precise 
identification of abnormal connectivity patterns around epileptic focal 
regions and furnishes more specific localization information.

The calculation of the WPLI between electrode X and electrode Y 
in a specific frequency band within a certain epoch involves several 
steps after preprocessing. Firstly, the preprocessed EEG signal data 
from electrode X and electrode Y in each epoch and the specific 
frequency band are subjected to the Hilbert Transform. Next, the 
cross-spectrum of the resolved signals of electrode X and electrode Y 
in that frequency band should be  calculated. Finally, the WPLI 
between electrode X and electrode Y in that frequency band 
is obtained.

Where WPLI is calculated as shown in Eq. 1:
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where, I .( )  represents taking the imaginary part; C t fi ,( ) is the 
cross-spectrum between the data X t fi ,( ) and Y t fi ,( )  of the ith 
experiment; X t fi ,( ) and are the results of the Hilbert transforms of 
the data X Ti ( ) and Y Ti ( ) of the ith experiment, respectively; and 
Y t fi
∗ ( ),  denotes the complex conjugate of Y t fi ,( ).

The value of WPLI ranges from 0 to 1, where 0 represents no 
correlation, indicating no phase difference between the two signals, 
and 1 represents the maximum correlation, indicating that the two 
signals are completely phase-locked. The higher the value of WPLI, 
the higher degree of the phase synchronisation between the two 
signal data.

2.4 Epilepic network connectivity strength

In functional brain network graphs, epilepic network connectivity 
strength (ENCS) serves as a vital metric for quantifying the extent of 
phase-synchronized connectivity among nodes. ENCS represents the 
count of phase-synchronous connections between a node and other 
nodes, signifying the significance and influence of the node within the 
network. The calculation of ENCS can be  achieved by tallying 
the number of edges between a node and other nodes, i.e., tallying the 
number of neighbouring nodes of the node in the graph, as shown 
in Eq. 2.

 
k ai

j G
ij=

∈
∑

 
(2)

where G denotes the constructed functional brain network, and 
aij denotes the value of column j of row i of the binary matrix network 
of the functional brain network. A higher ENCS means that there is 
more phase synchronisation between the node and other nodes, 
reflecting the node’s important position in the network. ENCS can 
provide information about the connection strength of nodes and the 
overall network topology, which provides valuable guidance for 
epileptic focal area localisation and brain network analysis.

2.5 Persistent homotopy

Persistent homotopy is a mathematical tool used for analysing the 
topology of a dataset, which extracts crucial information by 
considering changes in the topology of the dataset across various 
scales. Persistent complex, the foundation of persistent homotopy, is 
a method for transforming a dataset into a series of simplexes. Each 
simplex represents the topology of the dataset at a particular scale. By 
creating persistent complexes and employing persistent homotopy, 
we can extract persistence features from the dataset. These features 
include connected components, holes, voids, and more, allowing us to 
analyze their persistence across different scales. This process reveals 
the underlying topological characteristics of the dataset.

2.5.1 Delayed embedding to construct point 
clouds

Persistent homology methods typically assume point cloud as 
input data. However, SEEG data are in the form of time series and are 
not directly applicable to persistent homotopy analysis. Therefore, in 
order to analyse EEG signal data within a persistent homotopy 
framework, it must first be converted into point cloud format. This 
conversion is usually achieved by using various embedding methods. 
In this study, we employ a dynamic spatial reconstruction technique, 
which utilizes the delayed embedding theorem proposed by Takens 
(2006) to map the 2D time series embedding of a single channel into 
the corresponding high-dimensional phase space, thereby obtaining 
a data representation in point cloud form. The core principle of this 
technique is to leverage the time series data’s delay information to 
construct a high-dimensional phase space representation, revealing 
the data’s dynamical structure and nonlinear properties.

Suppose there is a one-dimensional time series data x(t), where t 
denotes the time. Takens delayed embedding theorem asserts that, for 
a dynamical system, its evolution should be  continuous in phase 
space, i.e., the states at the neighbouring time points are also close in 
phase space. Therefore, by reconstructing the time series data with a 
certain time delay (lag), a high-dimensional phase space representation 
can be obtained, which can better describe the dynamics of the system. 
Specifically, as shown in Eq. 3, given a time series data x(t):

 
X x i x i x i x i m= ( ) +( ) +( ) + −( )( ) , , , ,τ τ τ2 1

 (3)

where m is the embedding dimension, τ is the time delay. By 
selecting an appropriate values for m and τ, the reconstructed phase 
space can accurately capture the dynamics of the original time series 
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data. The most commonly used methods for determining these 
parameters are the average mutual information (AMI) method for 
selecting the optimal delay time, and the false nearest neighbour 
(FNN) algorithm for selecting the optimal dimension (Wallot and 
Mønster, 2018).

2.5.2 Tectonic simplex complex form
In topological spaces, the continuous construction of simplex 

complexes for point clouds is essential to describe and study high-
dimensional topologies. A simplex complex is a topology consisting 
of simplexes, which are geometric objects in Euclidean space 
consisting of a set of vertices and all their possible combinations. 
Specifically, a k-dimensional simplex is a convex hull of k + 1 
non-collinear points, which is a geometric shape encompassing all 
possible subsets such as vertices, edges, triangles etc. In a simplex 
complex, the structure of a topological space is constructed by 
assembling simplexes and their boundaries. It contains a series of 
simplexes and all their possible combinations of faces, bodies, etc. 
These combinations form the topological structure of the complex, 
elucidating the connectivity relations and morphology in space. In this 
paper, we utilize the construction of Vietoris–Rips complex (Bauer, 
2021) to establish a simplex complex for point cloud datasets, which 
converts the original point cloud data into a topological structure in 
order to obtain the topological features of the point cloud data in the 
topological space for topological data analysis.

In the construction of the Rips complex, a scale parameter r is 
provided. The structure of the Rips complex encompasses all subsets 
of the point set X with a diameter no greater than r. This implies that 
for any point set X with a diameter at most r, the Rips complex can 
be established as a topology. The containment relationship among 
these simplexes aligns with the containment relationship among the 
corresponding subsets, as shown in Eq. 4. This construction captures 
the local geometry of the dataset X and facilitates the analysis of its 
topological features and structure of the data.

 K r X r( ) = ⊆ ( ) ≤{ }σ σdim  (4)

where dim(σ) = σ − 1 denotes the dimension of the simplex σ, and 
the d-skeleton of a simplex complex comprises all simplexes in the 
simplex complex K with dimension not exceeding d. As r increases, 
the topology of the complex undergoes changes, gradually 
transitioning from simple to complex. This gradual augmentation of 
simplexes can be  visualised as a progressively expanding filter 
(Edelsbrunner and Harer, 2022), unveiling the multiscale topology of 
the dataset. This can be expressed as:

 0 1 1−∅ ⊆ ⊆ ⊆ ⊆ ⊆ = n nK K K K K

2.5.3 Persistent homology analysis
After constructing a simplex complex, it is imperative to unveil 

the topology of the space by computing the homotopy groups of the 
simplex complex. In this study, we  focus solely on the zero-
dimensional, one-dimensional and two-dimensional homotopy 
groups. By analysing the persistence of the homotopy groups, we can 
identify persistent topological structures in the space such as holes, 

rings, etc., thereby enhancing our comprehension of the topological 
characteristics of the space. Subsequently, the persistence of the 
homotopy groups is analyzed by tracking the filtration at the moment 
of creation (i.e., birth), the filtration at the moment of termination 
(i.e., death), and the dimensionality of each homology class. This 
parameters can be visualised represented using persistence graphs. A 
persistence graph is a two-dimensional graph where the x-axis 
represents the moment of birth and the y-axis represents the moment 
of death. For each homotopy class that is born at i and dies at j during 
its lifespan, a point is plotted at coordinates (i, j) on the 
two-dimensional plane. This collection of points is often denoted as 
D = {(b1, d1), …, (bk, dk)}. where points further away from the diagonal 
line symbolize homotopy classes that persist longer, indicating more 
enduring structures. Within the persistence graph D, the persistence 
interval for each point x = (b, d) can be defined as |b − d|.

2.5.4 Topological feature representation
Persistence diagram is a valuable tool for visualising the results of 

persistent homology, comprising a series of points, each representing 
a persistence interval that illustrates persistent features within a 
dataset and their duration (Chepushtanova et al., 2015). However, the 
aggregate structure of these points makes it challenging to apply 
traditional statistical concepts, such as mean or median, directly. This 
difficulty arises because these points are not continuous data, but 
represent the persistence of various topological features within the 
dataset. Despite the intuitive utility of persistence diagrams in grasping 
the characteristics of topological structures, their visual nature poses 
challenges for quantitative analysis using conventional statistical 
methods (Otter et al., 2017; Barnes et al., 2021; Pun et al., 2022).

Currently, five quantitative methods are commonly utilized in 
persistent homology analysis including homology class lifespans 
(Bendich et  al., 2016), persistence landscapes (Bubenik, 2020), 
persistence silhouettes (Chazal et  al., 2014), persistence images 
(Adams et al., 2017) and persistence entropy (Rucco et al., 2016). 
Among these methods, persistence entropy stands out for providing 
a perspective on the entire persistent homology graph in a quantitative 
manner, allowing for the measurement of the complexity of the 
persistent homology results. It integrates the distribution and diversity 
of persistence intervals, enabling a more comprehensive 
characterization of the topology in the dataset. In the calculation of 
persistence entropy, the definition of information entropy is usually 
adopted, i.e., the distribution of persistence intervals is treated as a 
probability distribution, and subsequently the entropy value is 
calculated using the entropy formula. As shown in Eq. 5.
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where PE (D) represents the value of persistence entropy; p(i) 
denotes the persistence interval of a single point;  D p i

i D
( ) = ( )

∈
∑  is the 

sum of the persistence intervals of all points in the graph. A higher 
persistence entropy indicates that the distribution of persistence 
intervals is more irregular and diverse, reflecting the complexity of the 
topology in the dataset. A higher entropy value suggests the presence 
of more persistence features and topological changes in the dataset at 
different scales, whereas a lower entropy value indicates a relatively 
simpler topological structure.
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2.6 Evaluation indicators

Indicators commonly used to evaluate the localisation of SOZ 
typically include the following:

Accuracy (AC) is a metric that quantifies the ratio of correctly 
located samples by the localisation method to the total number of 
samples. It serves as a fundamental evaluation criterion, indicating 
how accurately a localisation method locates the entire dataset. The 
higher the accuracy, the superior the performance of the localisation 
method. This is expressed in Eq. 6.

 
AC

TP TN

TP TN FP FN
=

+
+ + +

×100%
 

(6)

where TP, true positive, represents the number of samples that 
were actually positive cases that were correctly positioned as positive 
cases; FN, false negative, represents the number of samples that were 
actually positive cases that were incorrectly positioned as negative 
cases; TN, true negative, represents the number of samples that were 
actually negative cases that were correctly positioned as negative cases; 
and FP, false positive, represents the number of incorrectly positioned 
positive cases in samples that were actually negative cases.

Precision (P), an indicator of the accuracy of positive category 
prediction, measures the proportion of correctly identified positive 
samples out of all samples classified as positive. It helps evaluate the 
model’s ability to avoid misclassifying negative category samples as 
positive. As depicted in Eq. 7.
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Recall (R) evaluates the proportion of correctly identified positive 
samples out of all actual positive samples. It assesses the ability of the 
model to identify positive category samples and avoid misclassifying 
them as negative. The formula is presented in Eq. 8.
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The F1 score, a harmonic mean of precision and recall, offers a 
balanced assessment of the performance of the model by considering 
both its accuracy and its capability to capture positive category 
samples. Eq. 9 presents the formula for calculating the F1 score.
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3 Experiment and results

In this section, we outline the experimental and validation process 
employed in this study, comprising 4 main steps: construction and 
analysis of brain functional networks, characterisation of sustained 
homotopy topology, localisation of epileptic SOZ, analysis of epileptic 
propagation pathways. Each step is described in detail to provide a 
comprehensive understanding of the methodology used in this 
research. The process involves constructing a functional brain network 

based on the HUP-iEEG data, extracting dynamic features from the 
network, and conducting an analysis to assess the effectiveness and 
reliability of the extracted features. These steps are essential for 
investigating the operation of the brain during epileptic seizures and 
gaining deeper insights into the underlying mechanisms.

3.1 Construction and analysis of brain 
functional networks

During the brain functional network construction phase, WPLI 
was employed to construct the brain functional network for each 
sample data of each patient. This process yielded a two-dimensional 
matrix of n × n for each sample, where n denotes the number of 
channels after equalisation for that specific subject sample. Notably, 
this matrix exhibits completely symmetric along the main diagonal. 
Utilizing a brain network sparsity of a threshold, the functional 
network was binarised to eliminate weak connections, thereby 
mitigating the influence of these interferences on network analysis. 
This approach accentuates key connections with higher connectivity 
strengths, thereby enhancing the interpretability and visualization of 
the network.

There is no uniform consensus on how to select thresholds in 
brain network analysis. There are usually two main methods used 
to estimate thresholds: absolute thresholds and proportional 
thresholds. An absolute threshold is a specific connection strength 
value that indicates that only connections with strengths above that 
value will be retained in the network; the rest of the connections 
will be  considered invalid and removed from the graph. The 
method of using absolute threshold is simple and straightforward, 
but it is susceptible to data size and specificity conditions. 
Therefore, when applied in different datasets, the absolute 
threshold may need to be adjusted to fit the characteristics of the 
data. Proportional thresholding, on the other hand, filters the 
connections in the network based on the percentage of connection 
strength. That is, the connections are sorted in descending order 
of connection strength and those with strength above a certain 
percentage are selected as valid connections. Compared with 
absolute thresholding, proportional thresholding is more flexible 
and stable because it can adapt itself to the size and characteristics 
of different datasets and maintain the relative sparsity and 
connectivity of the network.

We use proportional thresholding in our experiments to compute 
and analyze the characteristics of brain networks by sliding the 
thresholds with different sparsities (from 10 to 100% in steps of 0.1). 
We  calculated the clustering coefficients and characteristic path 
lengths of the network at different thresholds after computing the 
functional connectivity matrix. Where the clustering coefficient 
reflects the degree of aggregation of nodes in the network, i.e., whether 
the neighbors of nodes tend to form close connections with each 
other. The characteristic path length, on the other hand, measures the 
average shortest path length between nodes in the network. By 
analyzing these metrics, we are able to determine an optimal threshold 
50% that allows the network to maximize the sparsity of the network 
while preserving the small-world property, it can found in Figure 2. 
Choosing an appropriate threshold is critical to accurately reflect the 
functional structure of the brain network. Using a proportional 
threshold approach, we can ensure the stability and reliability of brain 
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network properties at different sparsities, leading to a more 
comprehensive understanding of the connectivity of the brain’s 
functional networks.

For instance, in the case of patient sub-HUP142, Figure  3 
illustrates the functional connections of the first epoch at various 
stages in the gamma band.

After constructing the brain functional networks, the mean ENCS 
of the brain functional networks in SOZ and non-SOZ areas of each 
sample within the gamma frequency band were computed. 
Subsequently, paired t-tests were conducted, with the results presented 
in Table 2. Our findings revealed significant differences at the 0.01 
level in the ENCS of the brain functional networks between the SOZ 

FIGURE 2

Effect of different proportional thresholds on graph metrics. (A) Clustering coefficient. (B) Characteristic path length.

FIGURE 3

Function diagram of different staging. (A) Interictal. (B) Ictal. Blue: electrodes and connections in the non-SOZ region. Red: electrodes and connections 
in the SOZ region.
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and non-SOZ areas during both the ictal and interictal periods 
(p = 0.002 for the ictal period and p = 0.004 for the interictal period). 
In a specific comparison of the differences, it was observed that the 
mean value of ENCS of SOZ area nodes during the ictal period (51.40) 
was significantly higher than that of the nodes in the non-SOZ area, 
with ENCS mean value of 39.42. Similarly, during the interictal period, 
the mean ENCS value of SOZ nodes (56.66) was significantly higher 
compared to non-SOZ nodes, with an ENCS mean value of 40.06, as 
depicted in Figure 4. These findings suggest the presence of abnormal 
functional enhancement between neurons or neuronal populations 
within the SOZ area. Such pathological state may lead to structural 
and connectivity remodelling in the brain network, thereby resulting 
in an increase in the ENCS within the focal area. This remodelling 
process could be associated with pathological phenomena such as 
neuronal proliferation, neuronal migration, and so on.

3.2 Topological feature analysis

During the experiments, we  employed the AMI method to 
determine the optimal delay time, along with the FNN algorithm to 
select the embedding dimension. Subsequently, we conducted delay 
time embedding for each channel, transforming the preprocessed 
EEG data into point cloud data.

First, we employed the AMI method to identify the optimal delay 
time. AMI is a widely used method for determining the optimal delay 
time in time-series data, aiming to maximise the preservation of the 
dynamic features of the original data during delayed embedding 

(Fraser and Swinney, 1986). By calculating the mutual information 
across various delay times and identifying the delay time 
corresponding to the peak mutual information, we could pinpoint the 
most appropriate delay time parameter 28, as depicted in Figure 5A.

Subsequently, we employed the FNN algorithm to determine the 
appropriate embedding dimensions. The FNN algorithm is commonly 
used for determining the appropriate dimensions in delay time 
embeddings, ensuring that the embedded data accurately represents 
the topology of the original data (Theiler et al., 1992). By comparing 
the distances between the original data points and their nearest and 
second nearest neighbours in the high-dimensional space, the 
algorithm identifies the dimension that minimizes the proportion of 
false nearest neighbours, thus determining the final embedding 
dimension 4, as illustrated in Figure 5B.

After determining specific delay times and embedding 
dimensions, we  proceeded with delayed embedding of 
sub-HUP142 in the first 5 s window of each channel in the interictal 
SEEG signals based on the selected parameters. This process 
obtaining the corresponding point cloud data with a clearer 
topological structure. Then we visualised these embedded data in 
3D space using principal component analysis (PCA), as shown in 
Figure 6. Within the same time window, the interictal point cloud 
data from epileptic focal zone channels exhibited more diverse array 
of attractor models in phase space. The morphology of these models 
demonstrated certain regularities, likely attributed to the interplay 
of local neuronal activity instability caused by pathological neural 
activity, the reorganisation of neuronal networks, and nonlinear 
dynamical properties. This observed regularity reflects the 
nonlinear dynamical properties within the brain during the 
epileptic state. Even during the interictal period, the brain activity 
exhibits a certain rhythmicity, which holds significance for 
understanding the pathogenesis and pathophysiological processes 
of epilepsy.

Following this, Vietoris–Rips complex shape construction was 
performed on the point cloud data of each channel to compute the 
persistent homology maps. In Figure 7, the persistent homology scatter 
plots computed after Vietoris–Rips complex shape construction of 
some channels are presented. These plots contain cohomology 
information in different dimensions, namely H0, H1 and H2, respectively. 
Each point in H0 represents the survival interval of a connectivity 
component, i.e., the range of zero-dimensional holes, and may depict 
more connectivity components in non-SOZ areas. This could 
be attributed to the formation of more connections by neuronal activity 
in normal areas compared to SOZ areas, where broken connections or 
neuronal death may lead to fewer connectivity components. Each point 
in H1 represents the survival interval of a ring, i.e., the range of 
one-dimensional holes, while each point in H2 represents the survival 
interval of a hole, i.e., the range of two-dimensional holes. In non-SOZ 
areas, more complex and denser ring and hole structures may exist, 
possibly due to the formation of more loops and spatial structures by 
neuronal activity in normal areas. In contrast, SOZ areas may exhibit 

TABLE 2 T-test Results for Different Regions of ENCS.

Periods ENCS of SOZ ENCS of non-SOZ p

Ictal 51.40 ± 17.60 39.42 ± 11.75 0.002**

Interictal 56.66 ± 19.11 40.06 ± 10.47 0.004**

*p < 0.05 and **p < 0.01.

FIGURE 4

Comparison of ENCS between SOZ and non-SOZ area during 
different periods. The left side shows interictal data and the right side 
shows ictal data. Where green box plots: SOZ region ENCS data set; 
purple box plots: non-SOZ region ENCS data set; green round dots: 
corresponding to SOZ region ENCS data points; purple square dots: 
corresponding to non-SOZ region ENCS data points.
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FIGURE 5

Optimal delay time and embedding dimension selection. (A) Determination of the delay time parameter. (B) Determination of the embedding dimensions.

FIGURE 6

Point cloud data representation of some channels of sub-HUP142. The colors indicate the temporal information, i.e., the time sequence from the 
beginning to the end of the signals in this segment. LDA, left lateral temporal lobe; LDE, left occipital lobe (from the naming of the data set electrodes); 
LDA1 and LDA2, 2 SOZ area electrodes in the lateral part of the left temporal lobe; LDE1 and LDE2, 2 non-SOZ area electrodes in the left occipital lobe.
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relatively lower densities of H1 and H2 due to abnormal neuronal 
activity leading to disruption or thinning of loops and holes.

After constructing the persistent homology maps, the persistence 
entropy of the SOZ area and non-SOZ in the first 30 s of the interictal 
period of each sample was calculated, followed by paired t-tests for 
comparison. The results indicated that during the interictal period, 
significant differences in persistence entropy between the SOZ and 
non-SOZ areas at the 0.01 level (p < 0.01). Upon closer examination, it 
was found that the mean persistence entropy of the SOZ area nodes 
during the interictal period (7.77) was significantly lower than that of 
the non-SOZ area nodes (8.36), as depicted in Figure 8. This suggests 
that although the patient may be in a relatively stable state during the 

interictal period, some abnormal activities still exist at the neural 
network level. In this case, the lower persistence entropy in the lesion 
area may indicate a stronger ability of the neural network in this region 
to synchronise and regulate during the interictal period. This could 
be attributed to the relatively stable neuronal activity in the lesion area 
during the interictal period, which is less prone to sudden abnormal 
firing activity. This stable neural network state may contribute to a 
reduction in the randomness and chaos of information transmission, 
leading to a decrease in the persistence entropy. In contrast, the higher 
persistence entropy in the non-SOZ region may reflect the greater 
complexity and instability of the neural network in that region. During 
the interictal period, neuronal activity in the non-SOZ area may 

FIGURE 7

Persistent homology scatter plots of sub-HUP142 partial channels. H0: connected components (zero-dimensional homology group); H1: rings (one-
dimensional homology group); H2: cavities (two-dimensional homology group). Each point represents one homology class. LDA, left lateral temporal 
lobe; LDE, left occipital lobe (from the naming of the data set electrodes); LDA1 and LDA2, 2 SOZ area electrodes in the lateral part of the left temporal 
lobe; LDE1 and LDE2, 2 non-SOZ area electrodes in the left occipital lobe.
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exhibit more heterogeneity and dynamics, making it susceptible to 
sudden changes in response to external factors. This instability of the 
neural network may result in increased stochasticity in information 
transmission, leading to relatively high persistence entropy.

3.3 Localisation of epileptic SOZ

In this study, SVM is employed for localisation of SOZ, with the 
where the RBF kernel function selected and a penalty parameter set to 
0.5. Considering the significant individual variability among patients, 
we adopt an individualised training approach for each patient during 
the SOZ localisation experiments. Throughout the training phase, the 
data samples were partitioned into five subsample sets, ensuring an 
equal proportion of label composition for each category. Four of these 
sets were utilised for training purposes, while the remaining set was 
reserved for testing the model for 5-fold cross-validation. According to 
Supplementary Table S1, we chose to use the gamma band. The resultant 
localisation outcomes using ENCS for different patient localisation are 
detailed in Table 3. Subsequently, we introduce persistence entropy and 
integrate it with ENCS through feature fusion to enhance the 
localisation results for different patients, as illustrated in Table 4.

Taking the three patients sub-HUP142, sub-HUP151 and 
sub-HUP181 as an example, as shown in Figure 9, the localised areas 
of epileptic SOZ for these patients are demonstrated. In the figure, the 
red solid circles represent the electrodes that were correctly localised 
in epileptic SOZ, the green solid circles indicate the electrodes that 
were correctly localised in non-SOZ, and the orange solid circles 
signify the electrodes that were incorrectly localised. Despite 
occasional mislocalisation, the overall results demonstrate superior 
localisation accuracy.

TABLE 3 Performance evaluation of localization model using ENCS (%).

Patient ID Epoch Positives Negatives AC P R F1 AUC

sub-HUP117 89 50 39 88.89 98.18 80.92 87.19 91.04

sub-HUP130 224 108 116 97.78 99.05 96.51 97.73 98.93

sub-HUP133 133 63 70 94.76 100.00 89.64 94.36 98.58

sub-HUP138 198 100 98 97.97 100.00 95.96 97.87 99.16

sub-HUP142 172 80 92 88.35 85.80 91.33 87.84 94.71

sub-HUP144 171 75 96 91.24 100.00 80.20 88.78 95.78

sub-HUP150 161 81 80 94.41 100.00 88.93 93.93 94.40

sub-HUP151 332 168 164 97.58 100.00 95.01 97.38 98.28

sub-HUP157 292 144 148 95.54 100.00 90.88 95.20 99.12

sub-HUP160 202 125 77 88.12 97.03 82.86 89.32 93.27

sub-HUP162 312 156 156 95.19 98.59 91.84 95.03 98.03

sub-HUP164 212 45 167 94.35 94.11 77.95 84.77 91.15

sub-HUP166 244 100 144 91.00 97.40 80.71 87.80 93.84

sub-HUP171 252 108 144 98.42 100.00 96.07 97.98 99.41

sub-HUP172 246 125 121 97.58 99.00 95.60 97.20 98.50

sub-HUP173 194 95 99 87.60 89.63 84.01 86.72 95.65

sub-HUP180 209 105 104 95.23 97.35 93.45 95.21 99.48

sub-HUP181 262 132 130 97.33 99.33 95.21 97.17 99.65

sub-HUP185 212 108 104 96.70 100.00 93.17 96.36 98.53

sub-HUP187 143 70 73 90.22 100.00 80.84 89.19 96.38

sub-HUP188 273 140 133 88.27 96.27 79.85 87.17 91.74

sub-HUP190 245 120 125 91.43 100.00 82.90 90.39 99.27

Avg — — — 93.54 97.81 88.36 92.48 96.59

FIGURE 8

Comparison of PE in SOZ and non-SOZ area. Red box plots: SOZ 
region PE data sets; green box plots: non-SOZ region PE data sets; 
red round dots: correspond to SOZ region PE data points; green 
proto dots: correspond to non-SOZ region PE data points.
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The research on localizing the SOZ using the HUP iEEG dataset 
is relatively limited, as indicated by Table 5, which presents the 
outcomes of experiments conducted on the same dataset. Among 
them, Sumsky and Santaniello (2018) explored EEG signals from 14 
different patients (during 4 from the HUP iEEG dataset) sourced 
from the dataset of the National Institute of Neurological Disorders 
and Stroke iEEG portal (https://www.ieeg.org/, which contains the 
HUP iEEG dataset). They employed multichannel HFO rate in 
intracranial EEG as a feature to classify and identify SOZ using an 

SVM classifier, which achieved an accuracy of 0.92 ± 0.03 and an 
area under the ROC curve of 0.91 ± 0.03. Conrad et  al. (2023) 
focused on using sleep-and seizure-associated spike changes to 
localise SOZ. They utilized a logistic regression classifier combined 
with spike rate to identify seizure zones, resulting in experimental 
outcomes with 92.1% accuracy and 44.3% precision. In summary, 
our proposed SOZ localisation method demonstrates slightly 
improved outcomes compared to similar studies. Specifically, it 
exhibits a 2.40 percentage point enhancement in  localisation 

TABLE 4 Performance evaluation of localization model using ENCS and PE (%).

Patient ID Epoch Positives Negatives AC P R F1 AUC

sub-HUP117 89 50 39 89.93 96.67 82.58 88.99 90.94

sub-HUP130 224 108 116 97.78 99.13 96.23 97.61 98.48

sub-HUP133 133 63 70 95.53 100.00 91.64 95.42 98.47

sub-HUP138 198 100 98 97.97 100.00 95.96 97.87 99.16

sub-HUP142 172 80 92 94.81 91.32 98.95 94.93 99.14

sub-HUP144 171 75 96 91.24 100.00 80.20 88.78 97.17

sub-HUP150 161 81 80 94.41 100.00 88.93 93.93 96.50

sub-HUP151 332 168 164 97.58 100.00 95.01 97.38 98.10

sub-HUP157 292 144 148 94.86 100.00 89.35 94.33 98.79

sub-HUP160 202 125 77 87.63 98.89 85.14 88.70 93.17

sub-HUP162 312 156 156 95.51 99.26 91.84 95.35 97.85

sub-HUP164 212 45 167 95.34 96.67 81.11 85.80 91.51

sub-HUP166 244 100 144 91.84 100.00 80.60 88.53 94.63

sub-HUP171 252 108 144 98.42 100.00 96.07 97.98 99.47

sub-HUP172 246 125 121 97.58 99.00 95.60 97.20 98.98

sub-HUP173 194 95 99 93.31 96.45 90.44 93.07 95.83

sub-HUP180 209 105 104 95.23 97.35 93.45 95.21 99.35

sub-HUP181 262 132 130 97.33 99.33 95.21 97.17 99.62

sub-HUP185 212 108 104 96.70 100.00 93.17 96.36 98.45

sub-HUP187 143 70 73 93.77 94.83 89.89 92.10 97.39

sub-HUP188 273 140 133 88.64 97.76 80.12 87.60 93.78

sub-HUP190 245 120 125 91.43 100.00 82.90 90.39 96.54

Avg — — — 94.40 98.48 89.74 93.40 96.97

FIGURE 9

Imaging of positioning results. (A) sub-HUP142. (B) sub-HUP151. (C) sub-HUP181. Red solid circles: the electrodes that were correctly localised in 
epileptic SOZ; green solid circles: the electrodes that were correctly localised in non-SOZ; orange solid circles: the electrodes that were incorrectly 
localised.
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accuracy compared to Stefan et al. and an improvement of 2.30 
percentage points in accuracy along with a substantial 54.18 
percentage points in precision compared to Conrad et al.

4 Discussion

In this research paper, brain networks assume an increasingly 
important role in the identification of epileptogenic SOZ and the 
prediction of post-surgical seizure outcome. Furthermore, SEEG, as a 
method for studying epilepsy, needs further comprehensive investigation. 
Presently, the identification of epileptogenic SOZ based on EEG signals 
has received garnered considerable attention, with high-frequency 
oscillatory and phase amplitude methods being predominant. However, 
these identification means focus on local signal features, ignoring the 
wholeness and complexity of brain networks. They often fail to take into 
account the interactions between nodes in network connections, as well 
as the nonlinear and nonstationary properties of neural signals. In recent 
years, there has been an increase in studies analyzing the relationship 
between interregional connectivity and the SOZ or epileptogenic zone, 
and these studies have contributed to our more comprehensive 
understanding of the neural mechanisms of epilepsy. Future studies 
should also pay more attention to the interactions between nodes in 
network connectivity, as well as the nonlinear and nonstationary 
properties of neural signals, so as to better reveal the pathophysiological 
processes of epilepsy.

In this study, we introduced the WPLI to construct brain functional 
networks for SOZ localisation. WPLI is widely utilized in EEG signals 
and has demonstrated promising results in epilepsy-related studies. For 
instance, Billeci et al. (2019) have utilized WPLI for feature extraction in 
a study of prediction of epileptic seizures, achieving an impressive 
average sensitivity of 93.3%, specificity of 80.6%, and prediction time of 
approximately 20 min. These outcomes underscore WPLI’s efficacy in 
assessing the interregional interactions or connectivity between brain 
regions. Hence, we believe that WPLI also holds considerable potential 
for localizing SOZ, and can also be effectively applied to SEEG signals, 
which can more accurately identify the abnormal connectivity patterns 
surrounding SOZ, thus furnishing more specific localisation information. 
In the analysis of the constructed brain functional networks, it was found 
that significant differences in the ENCS of the brain functional networks 
between SOZ and non-SOZ areas were revealed, laying a solid theoretical 
foundation for SOZ localization.

Currently, traditional EEG signal analysis methods have made 
significant strides in identifying brain regions involved in epileptic 

seizures. However, these methods are constrained by their low 
spatiotemporal resolution, rendering them insufficient for accurately 
localizing neural activity within the skull and limiting their clinical 
utility. In contrast, SEEG signals, acquired by intracranially implanted 
electrodes, offer higher spatial and temporal resolution, providing 
more precise spatial information. The superior spatial and temporal 
resolution of SEEG signals enables more accurate identification of 
abnormal connectivity patterns surrounding epileptic foci. Neuronal 
networks surrounding SOZ usually exhibit abnormal synchronisation 
and dysregulation, playing a pivotal role in seizure generation. 
Through analysis of SEEG signals, we can more precisely capture the 
characteristics of these abnormal connectivity pattern, thereby 
furnishing a more dependable foundation for SOZ localization. 
Recent studies (Xiao et  al., 2021; Wang et  al., 2023) have also 
demonstrated that SEEG shows potential in reflecting the distinction 
between epileptic and non-epileptic in brain networks and in 
identifying epileptic regions.

During the analysis of the constructed brain functional networks, 
significant differences were observed between the ENCS of the SOZ and 
non-SOZ areas during both interictal and ictal periods. Specifically, there 
was evident abnormal functional enhancement among neurons or 
neuronal populations within the focal areas. This pathological condition 
may contribute to the remodelling of brain network structures and 
connections, consequently leading to heightened ENCS within the focal 
areas. These findings provide a substantial theoretical basis for localizing 
the SOZ. In this study, we also delved into the dynamic properties of 
neural network activity during the interictal period of epilepsy, 
quantifying them through the theory of persistent homology. Our 
findings unveiled non-SOZ areas exhibited more intricate and denser 
connectivity components, rings, and hole structures compared to SOZ 
areas. Conversely, focal areas displayed disrupted or sparse connections 
due to abnormal neuronal activity, resulting in relatively lower densities 
of H0, H1 and H2 in the persistence homotopy maps. Additionally, 
we observed a notable contrast in persistence entropy between SOZ and 
non-SOZ areas during the interictal period. The diminished persistence 
entropy in the SOZ area whereas the elevated persistence entropy in 
non-SOZ areas suggests a more intricate and adaptable neural network, 
capable of swift adaptation to varying environments and task demands. 
These insights offer valuable references for comprehending the 
pathogenesis and pathophysiological processes of epilepsy. Future 
research endeavors could further investigate the interplay between 
dynamic neural network changes and epileptic seizures, providing 
enhanced theoretical foundations and clinical guidance for epilepsy 
diagnosis and treatment.

TABLE 5 Comparison of related studies.

Author Analysis 
method

Dataset Classifier Model performance

AC/% P/% AUC/%

Jiang et al.
Resting-state 

connectivity

A cohort of 27 drug-

resistant focal epilepsy 

patients

RPC 88.00 — 94.00

Sumsky and 

Santaniello
HFO rate HUP-iEEG dataset SVM 92.00 —

91.00

Conrad et al. Spike rate HUP-iEEG dataset LRC 92.10 44.30 82.00

Ours WPLI HUP-iEEG dataset SVM 93.54 93.54 93.54

Ours WPLI + PE HUP-iEEG dataset SVM 94.40 98.48 96.97
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In this study, we proposed a model based on the structural features 
of brain functional networks to localise SOZ, incorporating nonlinear 
kinetic theory. Our model achieved an average accuracy of 94.40% for 
SOZ localisation, with a precision of 98.48%, a recall of 89.74%, an F1 
score of 93.40%, and an AUC of 96.97%. Previously, most of the 
studies on localisation of SOZ have predominantly focused on 
analysing high-frequency oscillations using the HFO rate, but it has 
been demonstrated that the HFO rate alone is not statistically superior 
to the spikes in localising the SOZ and lacks the necessary sensitivity 
to serve as a standalone biomarker for SOZ localisation (Roehri et al., 
2018). Additionally, It has also been demonstrated that for individual 
analyses, a reduced correlation between removal of HFO-generating 
regions at the group level and seizure-free outcome is reduced and 
some patients become seizure-free without removal of most of the 
HFO-generating regions (Jacobs et al., 2018). Balaji and Parhi (2022) 
noted that the efficacy of graph-theoretic methodology and phase-
amplitude coupling also performs well in SOZ localisation. These 
findings not only provide a solid foundation for our study but also 
provide empirical support for the exploration and validation of brain 
functional network features and nonlinear dynamics in electrode 
localisation for SOZ. Furthermore, the results of this study provide a 
more precise examination and validation of the potential of brain 
functional network features and nonlinear dynamics in localizing SOZ.

Currently, epilepsy is considered a disorder associated with brain 
networks (San-Juan and Rodríguez-Méndez, 2023). Surgical resection, 
local ablation, or neuromodulation of these core epileptic propagation 
regions may help to stop seizures in patients with refractory epilepsy 
(Park and Madsen, 2018; Narasimhan et al., 2020). Several approaches 
have been devised for analyzing epileptic networks through frequency 
or time-frequency analysis of EEG signals (Sip et al., 2021; Matarrese 
et al., 2023; Stergiadis et al., 2023), but the propagation and onset of 
epileptic activity remain to be fully explored. The approach proposed in 
this study, based on epileptic network connection strength, offers a 
novel perspective and tool for investigating seizure propagation. By 
delving into the variations of ENCS within brain networks, we can 
observe that the pathways of seizure propagation tend to align with 
specific neural pathways, usually associated with specific regions or 
structures in the brain. This identification and characterization of 
seizure propagation pathways enhance our understanding of how 
epileptic foci localize and disseminate in the brain, thereby offering 
valuable insights for clinical diagnosis and treatment of epilepsy. In 
addition, these findings provide new directions and ideas for further 
research in the field of neuroscience, shedding light on the intricate 
structure and function of brain networks. However, it’s important to 
acknowledge that the study of seizure propagation pathways is still in 
the preliminary stage, with many unexplored areas awaiting further 
investigation. Future studies can delve deeper into the mechanism of 
seizure propagation, elucidate the characteristics and pathways of 
various seizure types, and develop more effective methods and strategies 
for individualised treatment of epilepsy and precision medicine.

5 Conclusion

In summary, our study provides valuable insights into localizing 
the SOZ. Through analysing the ENCS and the topology of neural 
signals, we uncovered the underlying mechanisms of epileptic activity 
and enhanced the accuracy of epileptic SOZ localisation. In the future, 

further research in this area may facilitate the development of more 
effective epilepsy treatment strategies.

However, it’s important to acknowledge that our model still has 
certain limitations. Firstly, our study was validated based on a 
specific dataset only, making it more susceptible to individual 
differences. Further multi-dataset studies are necessary to evaluate 
its applicability across different epilepsy types and patient groups. 
sEEG itself has some limitations in that it does not provide brain-
wide data. Because sEEG records within the patient’s scalp through 
only a few electrodes, it cannot capture the activity of the entire 
brain. This localization limits the ability of sEEG in analyzing brain 
networks, especially for studies involving functional connectivity 
and network structure throughout the brain. Secondly, the 
construction and analysis of the brain functional network require 
the selection of various parameters, which need to be  further 
optimised and standardised. Additionally, while the model has 
shown promising results in localizing epileptic SOZ, there is still 
room for improvement in terms of sensitivity.

We also need to note that although advanced methods such as WPLI 
were used in this study to assess brain network connectivity, we realize 
that electrode spacing may have an impact on the results when discussing 
brain network connectivity. This potential problem reminds us of the 
need to carefully select and consider electrode layouts when performing 
brain network analysis to minimize the impact of potential bias due to 
electrode spacing. Future studies will further explore the effect of 
electrode spacing on connection strength and attempt to take measures 
to verify the robustness of the observed connection patterns. Such work 
will contribute to a more comprehensive understanding of the structural 
and functional properties of brain networks and provide more accurate 
methods of data analysis for neuroscience research.

Despite encountering challenges and limitations, our study 
presents a novel approach for localizing epileptic SOZ. The method 
based on brain functional networks holds promise for enhancing 
individualized diagnosis and treatment of epilepsy. Future research 
endeavors could involve training and validating the model on larger 
datasets encompassing diverse epilepsy types and patient 
characteristics to enhance its applicability and generalizability. 
Furthermore, expanding the range of brain functional network 
features to include other relevant factors could improve the accuracy 
and comprehensiveness of epileptic focal zone localization.
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