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Background: Emerging brain-computer interface (BCI) technology holds

promising potential to enhance the quality of life for individuals with disabilities.

Nevertheless, the constrained accuracy of electroencephalography (EEG) signal

classification poses numerous hurdles in real-world applications.

Methods: In response to this predicament, we introduce a novel EEG signal

classification model termed EEGGAN-Net, leveraging a data augmentation

framework. By incorporating Conditional Generative Adversarial Network

(CGAN) data augmentation, a cropped training strategy and a Squeeze-and-

Excitation (SE) attention mechanism, EEGGAN-Net adeptly assimilates crucial

features from the data, consequently enhancing classification efficacy across

diverse BCI tasks.

Results: The EEGGAN-Net model exhibits notable performance metrics on the

BCI Competition IV-2a and IV-2b datasets. Specifically, it achieves a classification

accuracy of 81.3% with a kappa value of 0.751 on the IV-2a dataset, and a

classification accuracy of 90.3% with a kappa value of 0.79 on the IV-2b dataset.

Remarkably, these results surpass those of four other CNN-based decoding

models.

Conclusions: In conclusion, the amalgamation of data augmentation and

attention mechanisms proves instrumental in acquiring generalized features

from EEG signals, ultimately elevating the overall proficiency of EEG

signal classification.

KEYWORDS

brain-computer interface, electroencephalography, Conditional Generative Adversarial
Network, cropped training, Squeeze-and-Excitation attention

1 Introduction

Stroke stands as a predominant contributor to enduring disabilities in the
contemporary world (Feigin et al., 2019; Khan et al., 2020). The reinstatement of motor
function is imperative for stroke survivors to execute their daily tasks. Nonetheless, stroke
inflicts damage on the central nervous system, impacting all aspects of motor control.
Consequently, certain patients find themselves unable to independently perform motor
recovery activities, with some even incapable of executing upper limb movements due to
the severity of the condition. In response to this challenge, a substantial number of stroke
patients rely on physiotherapists who manually guide their arm movements to facilitate
physical recovery (Claflin et al., 2015). However, this intervention approach not only proves
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inefficient but also entails considerable labor costs. Against this
backdrop, some scholars advocate for the integration of the motor
imagery paradigm to aid in the recovery of stroke patients.

The motor imagery paradigm, involving mental simulation
and replication of movement, holds promise in enhancing muscle
memory, fortifying neural pathways, and ultimately refining motor
performance (Leamy et al., 2014; Benzy et al., 2020). Recent
years have experienced a surge in interest in the motor imagery
paradigm, primarily due to its distinctive feature of involving
mental simulation without actual physical actions (Zhang et al.,
2016; Roy, 2022). Within the medical realm, researchers have
harnessed this paradigm to decode patients’ electroencephalogram
(EEG) signals for diverse applications, including wheelchair control
(Huang et al., 2019), prosthetic limb manipulation (Kwakkel et al.,
2008), and exoskeleton operation (Gupta et al., 2020) to cursor
control (Abiri et al., 2020), spelling, and converting thoughts to
text (Makin et al., 2020). Expanding beyond the medical sphere,
motor imagery tasks have found utility in non-medical domains,
spanning vehicle control (Jafarifarmand and Badamchizadeh, 2019;
Hekmatmanesh et al., 2022), drone manipulation (Chao et al.,
2020), smart home applications (Zhong et al., 2020; Zhuang et al.,
2020), security systems (Landau et al., 2020), gaming (Lalor et al.,
2005; Liao et al., 2012), and virtual reality endeavors (Lohse et al.,
2014). Despite the versatility of motor imagery tasks across these
domains, their adoption encounters limitations owing to limited
classification accuracy.

The use of EEG for motor imagery tasks encounters
challenges due to its low signal-to-noise ratio. Consequently, the
extraction of key features from EEG signals becomes a crucial
aspect of motor imagery classification. Researchers have explored
various research avenues, spanning from traditional machine
learning feature extraction methods to more contemporary deep
learning approaches.

Common methods for feature extraction from traditional
EEG signals include common spatial pattern (CSP) (Yang et al.,
2016), filter bank common spatial pattern (FBCSP) (Zhang et al.,
2021), principal component analysis (PCA) (Kundu and Ari,
2018), and independent component analysis (ICA) (Karimi et al.,
2017). Al-Qazzaz et al. (2021) proposed a multimodal feature
extraction method, the AICA-WT-TEF algorithm, which extracts
time-domain, entropy-domain, and frequency-domain features,
then fuses them to enhance the model’s classification accuracy.
Similarly, Al-Qazzaz et al. (2023) introduced a feature enhancement
method involving the calculation of fractal dimension (FD) and
Hurst exponent (HUr) as complexity features, and Tsallis entropy
(TsEn) and dispersion entropy (DispEn) as irregularity parameter
features, thereby improving the model’s classification accuracy.

In recent years, the convolutional neural network (CNN) has
been thrust into the limelight, largely propelled by the advent of
deep learning (Lashgari et al., 2021; Fu et al., 2023; Liu K. et al.,
2023). A notable contribution in EEG signal classification within
this field is EEGNet (Lawhern et al., 2018), a concise CNN that
enhances spatial features among individual EEG channels through
intricate convolution and separable convolution structures. This
design has yielded exceptional outcomes in various EEG signal
classification tasks. To address the acknowledged limitations
of EEGNet’s weak global information extraction capability,
EEGATCNet, a structure derived from EEGNet, featuring multiple
attention heads, was introduced by Liu M. et al. (2023) to

compensate for this deficiency. Recognizing the temporal nature of
EEG signals, Peng et al. (2022) proposed TIE-EEGNet, an EEGNet
structure augmented with temporal features. By integrating a
structure for temporal feature extraction into EEGNet, a synergistic
amalgamation of spatial and temporal features is achieved, thereby
enhancing the overall model accuracy.

In the realm of deep learning models, the amount of available
data plays a pivotal role in determining performance. However,
EEG tasks are hindered by a scarcity of data due to the high
cost of acquisition, acquisition difficulties, and privacy concerns
associated with data sharing. To mitigate this challenge, Fahimi
et al. (2021) leveraged conditional Deep Convolutional Generative
Adversarial Networks (DCGANs) to generate raw EEG signal
data, resulting in improved classification model accuracy. Likewise,
Zhang et al. (2020) employed DCGANs to generate EEG time-
frequency maps via short-time Fourier transform, and Xu et al.
(2022) used DCGANs for generating EEG topographic maps
via Modified S-Transform, both contributing to enhanced model
accuracy. Notably, Raoof and Gupta (2023) not only devised a
conditional GAN structure for 1-dimensional EEG generation but
also incorporated KL divergence and KS test metrics to validate the
reliability of the generated data from the final model.

While GANs facilitate data generation and expand dataset
sizes, they introduce noise features during training data generation.
To address this challenge and enhance the accuracy of EEG
signal classification tasks, we propose a novel approach that
combines GAN data enhancement, a cropped training strategy,
and the Squeeze-and-Excitation (SE) attention mechanism. This
combination forms the basis of our data enhancement-based
EEG signal classification model, named EEGGAN-Net. Hence, the
primary contributions of our study are as follows:

A. We introduce a robust data enhancement strategy that
utilizes Conditional Generative Adversarial Network (CGAN)
enhanced data, implements a cropped training strategy, and
integrates the SE attention mechanism to discern crucial
features, thereby enhancing EEG signal classification.

B. The proposed model is systematically benchmarked
against contemporary EEG signal classification models,
demonstrating superior performance.

C. The efficacy of each component within EEGGAN-Net is
rigorously confirmed through ablation experiments.

The subsequent sections unfold as follows: Section “2
EEGGAN-Net” provides an in-depth elucidation of the
complete EEGGAN-Net framework. Section “3 Experiments”
comprehensively details the experiments, results, and discussions.
Finally, Section “4 Conclusion and future work” furnishes
conclusive remarks and outlines potential avenues for
future research.

2 EEGGAN-Net

2.1 Model structure

EEGGAN-Net consists of three main parts: generator,
discriminator and classifier, and the overall structure is
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FIGURE 1

The structure of EEGGAN-Net.

shown in Figure 1. Initially, the generator processes noise
input to produce a set of synthetic data. These synthetic
data, alongside authentic samples, are then fed into the
discriminator for training, enabling it to distinguish between
real and synthetic samples. This iterative process between
the generator and discriminator continues until a stable
generator model is achieved, ensuring consistent generation
of synthetic samples. Concurrently, the classifier, essentially the
trained discriminator, is utilized to classify the augmented EEG
signal training set.

The loss function of EEGGAN-Net comprises two primary
components: the generator loss and the discriminator loss. Within
the generator loss, there are two constituents: LM and LF , while the
discriminator loss is denoted as LD. These two components of the
loss function are backpropagated separately. The dashed line with
arrows indicates the association with their respective losses, where
LM represents the basic generator loss; LF is the feature matching
loss, and LD denotes the discriminator loss.

2.1.1 Generator
In the architecture of EEGGAN-Net, the primary function of

the generator is to process random noise and labels, mapping
them onto a data space resembling authentic data associated with
corresponding labels. The generator’s structure is schematically
shown in Figure 2.

Within the generator, the input vector is composed of a fusion
of random noise and labels. These input vectors traverse through a
sequential arrangement of two fully connected layers, one Reshape

layer, two ConvTranspose1d layers, and ultimately an output layer,
resulting in the generation of EEG signals. Specifically, the fully-
connected layer is instrumental in generating pivotal feature points,
the ConvTranspose1d layer is employed for the creation of multi-
channel EEG signals, the Reshape layer facilitates the connection
between the fully-connected and ConvTranspose1d layers. And the
output layer is similar to the ConvTranspose1d layer, but differs
slightly in the following ways: the activation function is different,
and the output layer does not have an intermediate normalization
layer. The specifics of the generator’s architecture are summarized
in Table 1.

2.1.2 Discriminator
The primary function of the discriminator is to distinguish

whether the input data originates from an authentic data
distribution or if it is synthetic data produced by the generator.
To enhance the discriminator’s precision and incentivize the
generator to generate more lifelike data, this study introduces the
EEGCNet network structure. EEGCNet initiates its architecture
by considering the interrelations among various channels of EEG
signals, corresponding to the different leads of the EEG cap. It
incorporates the SE attention module onto the foundation of
EEGNet. The schematic structure of the discriminator is shown in
Figure 3.

EEGCNet comprises distinct modules: Input, Conv2d,
DepthwiseConv2D, SE, SeparableConv2D, and Classifier. The
Input module consists of two components: the input data,
denoted as x, and the label that has undergone encoding. The
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FIGURE 2

The structure of generator.

Conv2d module serves as a temporal filter, extracting frequency
information of various magnitudes by configuring the convolution
kernel size. The DepthwiseConv2D module functions as a spatial
filter, extracting spatial features between individual channels of
the EEG signals. The SE attention module explicitly models the
interdependence among channels, adaptively recalibrating the
channels by explicitly representing the interdependencies between
them. The SeparableConv2D module serves as a feature combiner,
optimizing the amalgamation of features from each kernel in the
time dimension. Finally, the Classifier module is responsible for
classifying these features. The details of the discriminator are
summarized in Table 2.

2.1.3 Classifier
The primary function of the classifier is to ascertain the

motor imagery category, relying on the input EEG signal. In
the architecture of EEGGAN-Net, a pivotal modification is made
by substituting the last layer of the discriminator’s structure
with a motor imagery classification layer, thereby facilitating the
integration of the classifier. Subsequently, both raw training data
and generated data undergo ingestion into the classifier for the

TABLE 1 Detailed architecture of the generator.

Layers Hidden
dimension

Output
dimension

Activation

Input (101)

Linear 256 (256)

BatchNorm (256) LeakyReLU

Linear 936 (936)

BatchNorm (936) LeakyReLU

Reshape (1, 936)

ConvTranspose1d 64 (64) (64, 999)

BatchNorm (64, 999) LeakyReLU

ConvTranspose1d 64 (32) (32, 1062)

BatchNorm (32, 1062) LeakyReLU

Output 64 (C) (C, 1125) Tanh

purpose of model training and the subsequent derivation of the
classifier model.

2.2 Cropped training

To enhance the classification performance of our model, we
employ a training strategy known as cropped training for the
classifier. Originally introduced by Schirrmeister et al. (2017) in
the context of EEG decoding, cropped training extends the model
training dataset through a sliding window, thereby leveraging the
entire spectrum of features present in EEG signals. This approach
is particularly suitable for convolutional neural networks (CNNs)
as their receptive fields tend to be localized. The process of cropped
training primarily takes place within the discriminator, wherein
data is selectively trimmed to enhance the model’s proficiency in
identifying overarching features. And the operation of the cropped
training is shown in Figure 4.

The size of the cropped window dictates the dimensions of
the sliding window, while the step size determines the number
of sliding windows. For instance, considering the initial dataset
with 22 channels and 1,125 time-point data, setting the sliding
window size to 500 time sample points and the step size to 125
time sample points results in the expansion of the data from
(1, 22, 1125) to six (1, 22, 500) data samples. Importantly, these
newly generated data samples share identical labels. Thus, the
implementation of cropped training significantly augments the
available dataset, effectively magnifying the size of the training set
by a factor of 6, despite the high similarity among these additional
data samples.

2.3 Loss function

The model’s loss function comprises three primary
components: the generator loss function, discriminator loss
function, and classifier loss function.

2.3.1 Generator loss function
The generator loss function encompasses two segments: the

fundamental generator loss function and the feature matching loss
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FIGURE 3

The structure of discriminator.

TABLE 2 Detailed architecture of the discriminator.

Layers Filter Size Output dimension Activation Options

Input (1, C, T+1)

Conv2D F1 (1, 64) (F1 , C, T+1) Mode = same

BatchNorm (F1 , C, T+1)

DepthwiseConv2D D*F1 (C, 1) (D*F1 , 1, T+1) Mode = valid, depth = D

BatchNorm (D*F1 , 1, T+1) ELU

AvgPool2d (1, 4) (D*F1 , 1, (T+1)//4)

Dropout (D*F1 , 1, (T+1)//4) p = 0.25

SE (D*F1 , 1, (T+1)//4)

SeparableConv2D F2 (1, 16) (F2 , 1, (T+1)//4) Mode = same

BatchNorm (F2 , 1, (T+1)//4) ELU

AvgPool2d (1, 8) (F2 , 1, (T+1)//32)

Dropout (F2 , 1, (T+1)//32) p = 0.25

Flatten (F2*((T+1)//32))

Classifier 1 (1)

*Indicates the multiplication of two values.

function. Its calculation formula is shown in Equation 1.

LG = LM + λ ∗ LF (1)

Where, LG denotes the generator loss; LM represents the basic
generator loss; LF is the feature matching loss, and λ signifies the
weight of the feature matching loss term (default is 0.5).

Basic generator loss function: This measures the mean squared
error between the data generated by the generator and the
target output. It guarantees the generator produces realistic
data, deceiving the discriminator in the process. The calculation
formulas for the basic generator loss function are presented in

Equations 2–4.

LM =
1
n

n∑
i=1

(D(G(zi, lgi), lgi)− vi)2 (2)

zi = F(µ, σ, nd) (3)

lgi = rand(nc) (4)

Where, n is the number of samples; zi and lgi denote randomly
generated data and corresponding labels for the i-th sample; µ and
σ are the mean and variance of the original data; F represents the
function generating random arrays based on random numbers and
variance; nd is the dimensions of the generated arrays; rand(nc)
denote rand generates a random integer in the range of nc, where nc
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FIGURE 4

The operation of the cropped training.

is the number of categories in the original data;G is the generator;D
is the discriminator; and vi is the target output corresponding to the
i-th sample, representing the true label (denoted as 1 in this paper).

Feature matching loss function: This assesses the feature
similarity between the generated image and the real image. By
minimizing the feature matching loss, the generator is incentivized
to generate images similar to the real data in terms of intermediate
layer features, thereby enhancing the quality and diversity of
the generated images. The Feature Matching Loss Function is
calculated as shown in Equation 5.

LF =
1
n

n∑
i=1

m∑
j=1

(Rij − Gij)
2 (5)

Where, m is the number of features; Rij denotes the j-th feature
of the i-th real data, and Gij denotes the j-th feature of the
i-th generated data.

2.3.2 Discriminator loss function
The discriminator loss function calculates the classification

error on real data and generated data, facilitating the discriminator
in distinguishing between generated and real data. The
discriminant loss function is calculated as shown in Equation 6.

LD =
∑n

i=1(D(xi, li)− vi)2
+

∑n
i=1(D(G(zi, lgi), lgi)− fi)2

2n
(6)

Where, LD denotes the discriminator loss; xi and li are the i-th
real data and corresponding category, respectively; fi represents
the target output corresponding to the i-th sample, a tensor
representing the generated labels (denoted as 0 in this paper).

2.3.3 Classifier loss function
Aligned with the training strategy, the classifier loss function

is CroppedLoss, which computes the loss function between
predicted categories and actual categories. Predicted categories are
determined by the average classification probability of the cropped

data samples. CroppedLoss is calculated as shown in Equation 7.

LC = FL(avg_preds, label) (7)

avg_preds =
∑n

i=1 preds
n

(8)

Where, avg_preds denotes the labels corresponding to the average
prediction probability, calculated by Equation 8. n indicates that an
original EEG signal is cropped to obtain n cropped EEG signals.
In Equation 8, preds denotes the result obtained for each cropped
sample input to the classifier.

3 Experiments

The EEG signals underwent preprocessing through bandpass
filtering and normalization, followed by feature extraction and
classification. Specifically, a 200-order Blackman window bandpass
filter was applied to the raw EEG data, with the bandpass filtering
interval set at (Benzy et al., 2020; Altaheri et al., 2023) Hz as
outlined in this paper.

The experimental procedures were conducted within the
PyTorch framework, utilizing a workstation equipped with
an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00 GHz and an
Nvidia Tesla V100 GPU.

3.1 Dataset

The BCI Competition IV 2a dataset constitutes a motor
imagery dataset with four distinct categories: left hand, right
hand, foot, and tongue movements. This dataset was derived from
nine subjects across two sessions conducted on different dates,
designated as training and test sets. Each session task comprised
288 trials, with 72 trials allocated to each movement category. In
every trial, subjects were presented with an arrow pointing in one
of four directions (left, right, down, or up), corresponding to the
intended movement (left hand, right hand, foot, or tongue). The
cue, displayed as the arrow, persisted for 4 s, during which subjects
were instructed to mentally visualize the associated movement. The
overall duration of each trial averaged around 8 s.

The BCI Competition IV 2b dataset represents a motor imagery
dataset with two distinct categories, corresponding to left- and
right-handed movements. This dataset comprises data collected
across a total of five sessions, involving nine subjects. Notably, the
initial three sessions encompass training data, while the subsequent
two sessions consist of test data. It is crucial to highlight that the
dataset exclusively features EEG data from three specific channels:
C3, Cz, and C4. For more comprehensive details regarding this
dataset, kindly refer to the following URL: https://www.bbci.de/
competition/iv/desc_2b.pdf.

Data extraction for subsequent processing focused on a specific
temporal window, precisely from 0.5 s after the cue onset to its
conclusion, resulting in a duration of 4.5 s. It is noteworthy that
the preceding two datasets have been partitioned into a training
set and a test set internally, hence they will not be reiterated later
on. And the BCI Competition IV 2a dataset employs 22 channels,
while the BCI Competition IV 2b dataset utilizes 3 channels.
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This discrepancy delineates the format of the input data for the
EEGGAN-Net as (22,1125) or (3,1125).

3.2 Similarity evaluation

The assessment of similarity was employed to quantify the
impact of GAN enhancement on model performance. This
evaluation utilized the KS test and KL scatter to gauge the likeness
between real EEG signals and their enhanced counterparts.

The KS test serves as a metric for comparing the cumulative
distribution function (CDF) of real and enhanced data. In our
analysis, the output is derived by subtracting 1 from the D statistic
of the KS test, signifying the maximum distance between authentic
and generated EEG signals. It is noteworthy that we employed the
Inverse Kolmogorov–Smirnov Test. Consequently, lower output
values indicate a higher similarity between real EEG data and their
enhanced counterparts.

KL divergence, on the other hand, is employed to quantify
the disparity between the distribution of real data and that of the
enhanced data. Hence, a diminished KL divergence value suggests
a greater similarity between the two distributions. Table 3 presents

TABLE 3 The outcomes of the similarity assessment for the
EEGGAN-Net generated data.

Dataset KS test KL divergence

BCI Competition IV 2a 0.8516 0.7415

BCI Competition IV 2b 0.9327 0.8114

the outcomes of the similarity assessment for the EEGGAN-Net
generated data.

3.3 Model comparison

Under identical testing conditions, we conducted twenty
repetitions of evaluations to assess the performance of EEGGAN-
Net, LMDA-Net (Miao et al., 2023), ATCNet (Altaheri et al., 2023),
TCN (Ingolfsson et al., 2020), and EEGNet. Figures 5, 6 show the
accuracy (ACC) and Kappa metrics for the above models using the
BCI IV 2a dataset and the BCI IV 2b dataset, respectively. In these
figures, “best” indicates the performance with the most favorable
results across repeated tests, while “mean” represents the average
performance over multiple repetitions.

Figure 5 illustrates that EEGGAN-Net exhibits the highest
classification accuracy across both datasets, achieving 81.3 and
90.3%. Additionally, the prediction volatility is remarkably low,
maintaining an average accuracy of 78.7 and 86.4%. This
underscores the superior classification performance of EEGGAN-
Net compared to other models.

Conversely, in the same context, EEGNet demonstrates
significantly lower effectiveness when compared to EEGGAN-
Net, with average accuracies of 71.3 and 80.5%. Furthermore,
its maximum accuracies reach only 72.6 and 85.1% in the
respective datasets.

Similarly, Figure 6 demonstrates that EEGGAN-Net has the
highest Kappa values of 0.751 and 0.79, while predicting the least
volatility, with average Kappa of 0.719 and 0.747, respectively.

FIGURE 5

Classification performance of competitive models under ACC metrics.
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FIGURE 6

Classification performance of competing models under Kappa metrics.

TABLE 4 p-values of Wilcoxon signed-rank tests for the average performance comparisons between EEGGAN-Net and other models.

BCI IV 2a BCI IV 2b

ACC Kappa ACC Kappa

LMDA-Net 1.2500E-03++ 4.3750E-03++ 8.7017E-04++ 3.7514E-02++

ATCNet 8.1250E-02+* 3.1042E-04++ 0.6217+ 5.4225E-02+*

TCN 6.2500E-04++ 4.4212E-05++ 4.4233E-02++ 2.5427E-03++

EEGNet 1.4413E-03++ 1.1342E-05++ 7.1561E-04++ 1.6459E-02++

+ and * is used as a symbol to indicate a range of significance levels, as described in the text.

These results collectively highlight EEGGAN-Net’s superior
accuracy and stability compared to other models. The notably lower
volatility positions EEGGAN-Net as a highly effective candidate for
deployment in online brain-computer interface (BCI) applications.

3.4 Wilcoxon signed-rank tests

To verify whether there are significant differences between
EEGGAN-Net and each of the other methods, we perform the
Wilcoxon signed-rank tests on the performance values of tested
models. The results of significance tests are listed in Table 4. “+∗”
and “++” signify that EEGGAN-Net is statistically better than the
compared algorithm under consideration at a significant level of
0.1 and 0.05, respectively. “+” denotes that EEGGAN-Net is only
quantitatively better. One can see that EEGGAN-Net can achieve
statistically superior performance in most of the cases, which
demonstrates EEGGAN-Net is highly effective as compared to the
other algorithms.

3.5 Ablation experiments

We performed an ablation analysis to further investigate the
effectiveness of the CGAN data enhancement, cropped training and
SE attention in EEGGAN-Net. We sequentially studied the deleted
CGAN data enhancement, cropped training and SE attention and
compared them with EEGGAN-Net. The experimental results are
shown in Figures 7, 8. In the figure, w/o means without.

3.5.1 CGAN data enhancement
CGAN data enhancement is a key step in EEGGAN-Net. The

original training dataset is expanded through data enhancement,
which in turn improves the classification accuracy of the model. To
prevent model overfitting, the generated data is set to be half of the
original data. Also, to prevent class imbalance from affecting the
model, the number of each class generated is set to be the same.

Figures 7, 8 demonstrate the comparative results of the
CGAN data augmentation ablation experiment. When CGAN
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FIGURE 7

The results of ablation experiments under the BCI IV 2a dataset.

data augmentation was removed, the performance of EEGGAN-
Net decreased, which illustrates that CGAN data augmentation
can effectively increase the number of available training samples.
Meanwhile, the stability of EEGGAN-Net also decreased after
removing the CGAN data enhancement. It further illustrates the
importance of data samples for deep learning models, and data
augmentation is a better way to improve the model classification
accuracy and stability.

3.5.2 Cropped training
Although CGAN data enhancement can expand the original

data samples, the expansion is often accompanied by some noise
features, while the cropped training strategy makes the model focus

more on the key features in each EEG segment by sliding averaging
over the time window.

The comparative results of the ablation experiments with
cropped training are shown in Figures 7, 8. As mentioned above,
when trimming training is removed, the performance of EEGGAN-
Net is worse than removing CGAN data augmentation, and the
reason behind this is that CGAN data augmentation expands the
dataset while introducing noise features. It also illustrates that
cropped training allows the model to focus on the global features of
the data, which improves the classification accuracy of the model.

3.5.3 SE attention
The comparative results of the ablation experiments of the

SE attention module are shown in Figures 7, 8. Although
the SE attention module can extract the interrelationships
between individual channels and thus assign different weights, the
experimental results show that the removal of the SE attention
module slightly decreases the effectiveness of EEGGAN-Net. This
further indicates that: assigning different weights to each channel
has a certain effect on classification, but there exists a certain
correlation between the individual EEG channels, and it is this
correlation that causes the effect of assigning weights to be less
effective than expected.

3.6 Discussion

Combining the conclusions in Sections “3.3 Model
comparison,” “3.4 Wilcoxon signed-rank tests,” and “3.5
Ablation experiments,” EEGGAN-Net enhances the accuracy
and stability of EEG signal classification by integrating CGAN
data augmentation, cropped training, and SE considerations,
outperforming existing models.

FIGURE 8

The results of ablation experiments under the BCI IV 2b dataset.
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The pivotal role of data is underscored in deep learning,
where both quantity and quality significantly impact classification
accuracy. This principle extends to EEGGAN-Net, where a
multitude of data enhancement strategies, such as CGAN data
generation and sliding time window expansion, align with deep
learning model strategies. Experimental results affirm the efficacy
of data augmentation, albeit acknowledging its nuanced challenges.
For instance, CGAN data generation introduces noise features,
demanding robust feature extraction capabilities, and expanding
data through sliding time windows risks overfitting, leading to
a cautious approach in EEGGAN-Net, limiting data expansion
to six times the original dataset, a conservative measure in the
context of EEG data.

Similarly, the attention mechanism proves effective. While the
attention mechanism globally extracts features and emphasizes
important data elements, its application in EEG data confronts
challenges stemming from the inherent complexity and correlation
of temporal features, compounded by noise from various sources.
The SE attention mechanism in EEGGAN-Net deviates from
conventional approaches by enhancing model classification
through differential weighting between channels, thereby
mitigating the impact of noise.

Despite the commendable results of the EEGGAN-Net
model, it shares common vulnerabilities with GANs, particularly
susceptibility to parameter fluctuations during training, leading
to challenges in generating realistic data. Notably, EEGGAN-Net
distinguishes itself by leveraging the stability and high accuracy
inherent in the EEGNet-based discriminator structure, obviating
the need for frequent adjustments, which stands as an improvement
over traditional GANs in EEG signal classification.

4 Conclusion and future work

In this study, we present the EEGGAN-Net architecture as
an innovative approach to improve the accuracy of classifying
EEG signals during motor imagery tasks. Our devised training
strategy utilizes CGAN data augmentation, complemented
by cropped training to extract overarching features from the
data. Additionally, we incorporate the SE attention module to
discern relationships among individual EEG channels. Through
a synergistic integration of data augmentation and attention
mechanisms, our model is equipped to identify generalized features
within EEG signals, thereby enhancing overall classification
efficacy. Comparative evaluations against five prominent
classification models demonstrate that EEGGAN-Net achieves the
highest classification accuracy and stability. Furthermore, through
ablation experiments, we elaborate on and validate the impact of
each architectural component on the experimental outcomes.

In future research, we will focus on further optimizing the
CGAN training strategy to improve model efficiency. Concurrently,
we plan to explore the application of the model in facilitating
patient recovery in real-world brain-computer interface scenarios.

Data availability statement

The original contributions presented in this study are included
in this article/supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent from the
patients/participants or patients’/participants’ legal guardian/next
of kin was not required to participate in this study in accordance
with the national legislation and the institutional requirements.

Author contributions

JS: Formal analysis, Methodology, Software, Writing – original
draft, Writing – review & editing. QZ: Supervision, Writing –
review & editing. CW: Resources, Writing – review & editing. JL:
Resources, Writing – review & editing.

Funding

The authors declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

In our manuscript, artificial intelligence is only used to beautify
the language. The LLM model we use is chatgpt 3.5. Of course, we
thoroughly checked the content after it was touched up by AI.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1430086
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1430086 July 1, 2024 Time: 13:42 # 11

Song et al. 10.3389/fnhum.2024.1430086

References

Abiri, R., Borhani, S., Kilmarx, J., Esterwood, C., Jiang, Y., and Zhao, X. (2020).
A usability study of low-cost wireless brain-computer interface for cursor control
using online linear model. IEEE Trans. Hum. Machine Syst. 50, 287–297. doi: 10.1109/
THMS.2020.2983848

Al-Qazzaz, N. K., Aldoori, A. A., Ali, S. B. M., Ahmad, S. A., Mohammed, A. K., and
Mohyee, M. I. (2023). EEG signal complexity measurements to enhance BCI-based
stroke patients’ rehabilitation. Sensors 23:3889. doi: 10.3390/s23083889

Al-Qazzaz, N. K., Alyasseri, Z. A. A., Abdulkareem, K. H., Ali, N. S., Al-Mhiqani,
M., and Guger, C. (2021). EEG feature fusion for motor imagery: A new robust
framework towards stroke patients rehabilitation. Comput. Biol. Med. 137:104799.
doi: 10.1016/j.compbiomed.2021.104799

Altaheri, H., Muhammad, G., and Alsulaiman, M. (2023). Physics-informed
attention temporal convolutional network for EEG-based motor imagery
classification. IEEE Trans. Ind. Inf. 19, 2249–2258. doi: 10.1109/TII.2022.3197419

Benzy, V. K., Vinod, A. P., Subasree, R., Alladi, S., and Raghavendra, K. (2020).
Motor imagery hand movement direction decoding using brain computer interface
to aid stroke recovery and rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 28,
3051–3062. doi: 10.1109/TNSRE.2020.3039331

Chao, C., Zhou, P., Belkacem, A., Lu, L., Xu, R., Wang, X., et al. (2020). Quadcopter
robot control based on hybrid brain–computer interface system. Sens. Mater. 32:991.
doi: 10.18494/SAM.2020.2517

Claflin, E., Krishnan, C., and Khot, S. (2015). Emerging treatments for motor
rehabilitation after stroke. Neurohospitalist 5, 77–88. doi: 10.1177/1941874414561023

Fahimi, F., Dosen, S., Ang, K. K., Mrachacz-Kersting, N., and Guan, C.
(2021). Generative adversarial networks-based data augmentation for brain–computer
interface. IEEE Trans. Neural Netw. Learn. Syst. 32, 4039–4051. doi: 10.1109/TNNLS.
2020.3016666

Feigin, V. L., Nichols, E., and Alam, T. (2019). Global, regional, and national burden
of neurological disorders, 1990–2016: A systematic analysis for the global burden of
disease study 2016. Lancet Neurol. 18, 459–480. doi: 10.1016/S1474-4422(18)30499-X

Fu, R., Wang, Z., and Wang, S. (2023). EEGNet-MSD: A sparse convolutional
neural network for efficient EEG-based intent decoding. IEEE Sens. J. 23, 19684–19691.
doi: 10.1109/JSEN.2023.3295407

Gupta, A., Agrawal, R., Kirar, J., Kaur, B., and Ding, W. (2020). A hierarchical meta-
model for multi-class mental task based brain-computer interfaces. Neurocomputing
389, 207–217. doi: 10.1016/j.neucom.2018.07.094

Hekmatmanesh, A., Azni, H., Wu, H., Afsharchi, M., and Li, M. (2022). Imaginary
control of a mobile vehicle using deep learning algorithm: A brain computer interface
study. IEEE Access 10, 20043–20052. doi: 10.1109/ACCESS.2021.3128611

Huang, Q., Zhang, Z., Yu, T., He, S., and Li, Y. (2019). An EEG-/EOG-based hybrid
brain-computer interface: Application on controlling an integrated wheelchair robotic
arm system. Front. Neurosci. 13:1243. doi: 10.3389/fnins.2019.01243

Ingolfsson, T., Hersche, M., Wang, X., Kobayashi, N., Cavigelli, L., and
Benini, L. (2020). “EEG-TCNet: An accurate temporal convolutional network for
embedded motor-imagery brain–machine interfaces,” in Proceedings of the 2020 IEEE
international conference on systems, man, and cybernetics (SMC), (New York, NY),
2958–2965.

Jafarifarmand, A., and Badamchizadeh, M. (2019). EEG artifacts handling in a
real practical brain–computer interface controlled vehicle. IEEE Trans. Neural Syst.
Rehabil. Eng. 27, 1200–1208. doi: 10.1109/TNSRE.2019.2915801

Karimi, F., Kofman, J., Mrachacz-Kersting, N., Farina, D., and Jiang, N. (2017).
Detection of movement related cortical potentials from EEG using constrained ICA
for brain-computer interface applications. Front. Neurosci. 11:356. doi: 10.3389/fnins.
2017.00356

Khan, M., Das, R., Iversen, H., and Puthusserypady, S. (2020). Review on motor
imagery based BCI systems for upper limb post-stroke neurorehabilitation: From
designing to application. Comput. Biol. Med. 123:103843. doi: 10.1016/j.compbiomed.
2020.103843

Kundu, S., and Ari, S. (2018). P300 detection with brain–computer interface
application using PCA and ensemble of weighted SVMs. IETE J. Res. 64, 406–414.
doi: 10.1080/03772063.2017.1355271

Kwakkel, G., Kollen, B., and Krebs, H. (2008). Effects of robot-assisted therapy on
upper limb recovery after stroke: A systematic review. Neurorehabil. Neural Repair 22,
111–121. doi: 10.1177/1545968307305457

Lalor, E., Kelly, S., Finucane, C., Burke, R., Smith, R., Reilly, R. B., et al. (2005).
Steady-state VEP-based brain-computer interface control in an immersive 3D gaming
environment. EURASIP J. Adv. Signal. Process 2005:706906. doi: 10.1155/ASP.2005.
3156

Landau, O., Puzis, R., and Nissim, N. (2020). Mind your mind: EEG-Based brain-
computer interfaces and their security in cyber space. ACM Comput. Surv. 17:38.
doi: 10.1145/3372043

Lashgari, E., Ott, J., Connelly, A., Baldi, P., and Maoz, U. (2021). An end-to-end
CNN with attentional mechanism applied to raw EEG in a BCI classification task.
J. Neural Eng. 18:0460e3. doi: 10.1088/1741-2552/ac1ade

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., and
Lance, B. J. (2018). EEGNet: A compact convolutional neural network for EEG-based
brain–computer interfaces. J. Neural Eng. 15:056013. doi: 10.1088/1741-2552/
aace8c

Leamy, D. J., Kocijan, J., Domijan, K., Duffin, J., Roche, R. A., Commins, S.,
et al. (2014). An exploration of EEG features during recovery following stroke –
implications for BCI-mediated neurorehabilitation therapy. J. NeuroEng. Rehabil. 11:9.
doi: 10.1186/1743-0003-11-9

Liao, L., Chen, C. Y., Wang, I. J., Chen, S. F., Li, S. Y., Chen, B. W., et al. (2012).
Gaming control using a wearable and wireless EEG-based brain-computer interface
device with novel dry foam-based sensors. J. NeuroEng. Rehabil. 9:5. doi: 10.1186/
1743-0003-9-5

Liu, K., Yang, M., Yu, Z., Wang, G., and Wu, W. (2023). FBMSNet: A filter-bank
multi-scale convolutional neural network for EEG-based motor imagery decoding.
IEEE Trans. Biomed. Eng. 70, 436–445. doi: 10.1109/TBME.2022.3193277

Liu, M., Cao, F., Wang, X., and Yang, Y. (2023). “A study of EEG classification based
on attention mechanism and EEGNet Motor Imagination,” in Proceedings of the 2023
3rd international symposium on computer technology and information science (ISCTIS),
(Berlin), 976–981.

Lohse, K. R., Hilderman, C. G. E., Cheung, K. L., Tatla, S., and Loos, H. F. M. (2014).
Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis
exploring virtual environments and commercial games in therapy. PLoS One 9:e93318.
doi: 10.1371/journal.pone.0093318

Makin, J., Moses, D., and Chang, E. (2020). Machine translation of cortical activity
to text with an encoder–decoder framework. Nat. Neurosci. 23, 575–582. doi: 10.1038/
s41593-020-0608-8

Miao, Z., Zhao, M., Zhang, X., and Ming, D. (2023). LMDA-Net: A lightweight
multi-dimensional attention network for general EEG-based brain-computer
interfaces and interpretability. Neuroimage 276:120209. doi: 10.1016/j.neuroimage.
2023.120209

Peng, R., Zhao, C., Jiang, J., Kuang, G., Cui, Y., Xu, Y., et al. (2022). TIE-
EEGNet: Temporal information enhanced EEGNet for seizure subtype classification.
IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2567–2576. doi: 10.1109/TNSRE.2022.32
04540

Raoof, I., and Gupta, M. (2023). A conditional input-based GAN for generating
spatio-temporal motor imagery electroencephalograph data. Neural Comput. Appl. 35,
21841–21861. doi: 10.1007/s00521-023-08927-w

Roy, A. (2022). Adaptive transfer learning-based multiscale feature fused
deep convolutional neural network for EEG MI multiclassification in brain–
computer interface. Eng. Appl. Artif. Intell. 116:105347. doi: 10.1016/j.engappai.2022.
105347

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with convolutional
neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–
5420. doi: 10.1002/hbm.23730

Xu, F., Dong, G., Li, J., Yang, Q., Wang, L., Zhao, Y., et al. (2022). Deep convolution
generative adversarial network-based electroencephalogram data augmentation for
post-stroke rehabilitation with motor imagery. Int. J. Neural Syst. 32:2250039. doi:
10.1142/S0129065722500393

Yang, B., Li, H., Wang, Q., and Zhang, Y. (2016). Subject-based feature extraction
by using fisher WPD-CSP in brain–computer interfaces. Comput. Methods Programs
Biomed. 129, 21–28. doi: 10.1016/j.cmpb.2016.02.020

Zhang, K., Xu, G., Han, Z., Ma, K., Zheng, X., Chen, L., et al. (2020). Data
augmentation for motor imagery signal classification based on a hybrid neural
network. Sensors 20:4485. doi: 10.3390/s20164485

Zhang, R., Li, Y., Yan, Y., Zhang, H., Wu, S., Yu, T., et al. (2016). Control of
a wheelchair in an indoor environment based on a brain–computer interface and
automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 128–139. doi: 10.
1109/TNSRE.2015.2439298

Zhang, X., She, Q., Chen, Y., Kong, W., and Mei, C. (2021). Sub-band target
alignment common spatial pattern in brain-computer interface. Comput. Methods
Programs Biomed. 207:106150. doi: 10.1016/j.cmpb.2021.106150

Zhong, S., Liu, Y., Yu, Y., and Tang, J. (2020). A dynamic user interface based
BCI environmental control system. Int. J. Hum. Comput. Interact. 36, 55–66. doi:
10.1080/10447318.2019.1604473

Zhuang, W., Shen, Y., Li, L., Gao, C., and Dai, D. (2020). A brain-computer interface
system for smart home control based on single trial motor imagery EEG. Int. J. Sens.
Netw. 34, 214–225. doi: 10.1504/IJSNET.2020.111780

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1430086
https://doi.org/10.1109/THMS.2020.2983848
https://doi.org/10.1109/THMS.2020.2983848
https://doi.org/10.3390/s23083889
https://doi.org/10.1016/j.compbiomed.2021.104799
https://doi.org/10.1109/TII.2022.3197419
https://doi.org/10.1109/TNSRE.2020.3039331
https://doi.org/10.18494/SAM.2020.2517
https://doi.org/10.1177/1941874414561023
https://doi.org/10.1109/TNNLS.2020.3016666
https://doi.org/10.1109/TNNLS.2020.3016666
https://doi.org/10.1016/S1474-4422(18)30499-X
https://doi.org/10.1109/JSEN.2023.3295407
https://doi.org/10.1016/j.neucom.2018.07.094
https://doi.org/10.1109/ACCESS.2021.3128611
https://doi.org/10.3389/fnins.2019.01243
https://doi.org/10.1109/TNSRE.2019.2915801
https://doi.org/10.3389/fnins.2017.00356
https://doi.org/10.3389/fnins.2017.00356
https://doi.org/10.1016/j.compbiomed.2020.103843
https://doi.org/10.1016/j.compbiomed.2020.103843
https://doi.org/10.1080/03772063.2017.1355271
https://doi.org/10.1177/1545968307305457
https://doi.org/10.1155/ASP.2005.3156
https://doi.org/10.1155/ASP.2005.3156
https://doi.org/10.1145/3372043
https://doi.org/10.1088/1741-2552/ac1ade
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1186/1743-0003-11-9
https://doi.org/10.1186/1743-0003-9-5
https://doi.org/10.1186/1743-0003-9-5
https://doi.org/10.1109/TBME.2022.3193277
https://doi.org/10.1371/journal.pone.0093318
https://doi.org/10.1038/s41593-020-0608-8
https://doi.org/10.1038/s41593-020-0608-8
https://doi.org/10.1016/j.neuroimage.2023.120209
https://doi.org/10.1016/j.neuroimage.2023.120209
https://doi.org/10.1109/TNSRE.2022.3204540
https://doi.org/10.1109/TNSRE.2022.3204540
https://doi.org/10.1007/s00521-023-08927-w
https://doi.org/10.1016/j.engappai.2022.105347
https://doi.org/10.1016/j.engappai.2022.105347
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1142/S0129065722500393
https://doi.org/10.1142/S0129065722500393
https://doi.org/10.1016/j.cmpb.2016.02.020
https://doi.org/10.3390/s20164485
https://doi.org/10.1109/TNSRE.2015.2439298
https://doi.org/10.1109/TNSRE.2015.2439298
https://doi.org/10.1016/j.cmpb.2021.106150
https://doi.org/10.1080/10447318.2019.1604473
https://doi.org/10.1080/10447318.2019.1604473
https://doi.org/10.1504/IJSNET.2020.111780
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	EEGGAN-Net: enhancing EEG signal classification through data augmentation
	1 Introduction
	2 EEGGAN-Net
	2.1 Model structure
	2.1.1 Generator
	2.1.2 Discriminator
	2.1.3 Classifier

	2.2 Cropped training
	2.3 Loss function
	2.3.1 Generator loss function
	2.3.2 Discriminator loss function
	2.3.3 Classifier loss function


	3 Experiments
	3.1 Dataset
	3.2 Similarity evaluation
	3.3 Model comparison
	3.4 Wilcoxon signed-rank tests
	3.5 Ablation experiments
	3.5.1 CGAN data enhancement
	3.5.2 Cropped training
	3.5.3 SE attention

	3.6 Discussion

	4 Conclusion and future work
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


