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Although brain-computer interface (BCI) is considered a revolutionary 
advancement in human-computer interaction and has achieved significant 
progress, a considerable gap remains between the current technological 
capabilities and their practical applications. To promote the translation of 
BCI into practical applications, the gold standard for online evaluation for 
classification algorithms of BCI has been proposed in some studies. However, 
few studies have proposed a more comprehensive evaluation method for the 
entire online BCI system, and it has not yet received sufficient attention from the 
BCI research and development community. Therefore, the qualitative leap from 
analyzing and modeling for offline BCI data to the construction of online BCI 
systems and optimizing their performance is elaborated, and then user-centred 
is emphasized, and then the comprehensive evaluation methods for translating 
BCI into practical applications are detailed and reviewed in the article, including 
the evaluation of the usability (including effectiveness and efficiency of systems), 
the evaluation of the user satisfaction (including BCI-related aspects, etc.), and 
the evaluation of the usage (including the match between the system and user, 
etc.) of online BCI systems. Finally, the challenges faced in the evaluation of 
the usability and user satisfaction of online BCI systems, the efficacy of online 
BCI systems, and the integration of BCI and artificial intelligence (AI) and/
or virtual reality (VR) and other technologies to enhance the intelligence and 
user experience of the system are discussed. It is expected that the evaluation 
methods for online BCI systems elaborated in this review will promote the 
translation of BCI into practical applications.
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1 Introduction

Brain-computer interface (BCI) is a new technology that subverts 
traditional human-computer interaction. It aims to directly establish a 
two-way closed-loop interaction channel between the brain and 
external devices, bypassing the peripheral nervous and muscular 
systems, to enhance the quality of life and work efficiency of patients, 
disabled people, and healthy individuals (Graimann et al., 2010; Allison 
et al., 2012; McFarland and Krusienski, 2012; Ramsey and Millán, 
2020). BCI serves as a vital technology within neural engineering and 
rehabilitation engineering, harboring potential for medical 
applications. Despite having achieved significant milestones (Gao et al., 
2021; Altaheri et  al., 2023; Naser and Bhattacharya, 2023), the 
technology’s maturity is still nascent. It remains in the early stages of 
development, with a substantial gap to bridge before reaching practical 
applications (Ramsey, 2020).

To bridge the gap between BCI research and practical applications, 
researchers have proposed a gold standard for the online evaluation 
of BCI classification algorithms’ ability to generalize to new data 
(McFarland and Wolpaw, 2005; Krusienski et al., 2008; Mcfarland and 
Dean, 2012). However, comprehensive evaluation methods for the 
entire online BCI system remain scarce. In the online BCI system, 
while classification accuracy and bit rate are crucial metrics (Wolpaw 
et al., 2002), the paramount goal is to establish a system that is not 
only comprehensive but also user-friendly. This involves enhancing 
the system’s usability (Holz et al., 2013; Quek et al., 2013; van de Laar 
et al., 2013; Zickler et al., 2013; Riccio et al., 2015; Kübler et al., 2020), 
user experience (van de Laar et  al., 2013), and user satisfaction 
(Zickler et al., 2011; Rupp et al., 2012; Holz et al., 2013, 2015; Quek 
et al., 2013; van de Laar et al., 2013; Pasqualotto et al., 2015; Vasilyev 
et al., 2017; Zander et al., 2017; Kübler et al., 2020).

It is the qualitative leap from analyzing and modeling for offline 
BCI data to constructing online BCI prototype systems, and then from 
prototype systems to real-world BCI products, as illustrated in Figure 1. 
Carefully considering BCI human factors engineering (Lu et al., 2021; 
Lyu et al., 2022) and adopting a user-centered approach to design and 
evaluate BCI systems (Zickler et al., 2009; Holz et al., 2013; Kübler et al., 
2013, 2014, 2020; Liberati et al., 2015; Martin et al., 2018) are crucial for 
enhancing the usability and user satisfaction of BCI systems. However, 
the evaluation methods for translating BCI into practical applications 
have not received adequate attention within the BCI research and 
development community. Therefore, existing research is reviewed in the 
article, and more comprehensive evaluation methods for the entire 
online BCI system are detailed, aiming to promote the translation of 

BCI into practical applications. The purpose of this article is not to solve 
a specific problem of BCI. However, we believe that in addition to 
addressing key scientific and technological issues related to BCI, it is 
recommended to adopt the proposed comprehensive evaluation 
methods to evaluate the online BCI system. This approach should 
clarify what kind of BCI system the research community needs 
to develop.

The logical structure of this article is as follows: section two 
covers the qualitative leap from analyzing and modeling for offline 
BCI data to the construction of online BCI systems and optimization 
for their performance; section three covers the comprehensive 
evaluation methods for translating online BCI systems into practical 
applications, including the evaluation of the usability, user 
satisfaction, and usage of online BCI systems, as illustrated in 
Figure 2.

In addition to the above sections, section four is the 
discussions, and section five is the conclusions. In the discussion 
section of this paper, we  elaborate on aspects that require 
attention. When translating BCI into practical applications, it is 
crucial to evaluate BCIs with different acquisition modalities (e.g., 
invasive, semi-invasive, and non-invasive) and paradigms [e.g., 
Motor Imagery (MI), Steady-State Visual Evoked Potentials 
(SSVEP), and P300] based on specific requirements and 
application scenarios. However, establishing evaluation methods 
for online BCI systems not only provides a consistent way to 
measure and compare the performance of different BCI systems 
but also offers clear goals and directions for R&D teams. Such 
evaluation methods can enhance the transparency and 
comparability of BCI technologies, thereby accelerating their 
optimization and improvement.

2 The qualitative leap from analyzing 
and modeling for offline BCI data to 
the construction of online BCI 
systems and optimization for their 
performance

To promote offline evaluation and comparisons of available BCI 
algorithms, the BCI research community has organized four 
international BCI data competitions from 2001 to 2008 (Sajda et al., 
2003; Blankertz et  al., 2004, 2006; Mcfarland and Dean, 2012). 
Although these data competitions offered useful suggestions for BCI 
algorithm improvement, they were focused on the analysis and 
modeling of offline BCI data, and their effectiveness still requires 
validation through online closed-loop testing (Mcfarland and Dean, 
2012). The first live online BCI system competition took place at 
Tsinghua University in China in 2010, following the establishment of 
the BCI Research Award in 2009. Since then, similar competitions 
(such as the BCI-based brain-controlled robot competition at the 
annual World Robot Competition) have continued in China to 
promote the translation of BCI systems into practical applications.

Although offline evaluation can be  used to identify a small 
number of promising alternatives, its biggest limitation is that it 
cannot evaluate the different impacts of different algorithms 
providing real-time feedback in online closed-loop operations 
(McFarland and Wolpaw, 2005; Krusienski et al., 2008). There is often 
a large discrepancy between the performance of models built from 
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offline BCI data analyses and the closed-loop performance of online 
BCI systems, which needs to be  submitted to online closed-loop 
testing. The results of the online closed-loop testing will lead to new 
offline analyses, which in turn will lead to new online studies, and 
this alternating iteration can effectively enhance the system’s 
performance (McFarland and Wolpaw, 2005; Krusienski et al., 2008). 
Online evaluation is the gold standard (McFarland and Wolpaw, 
2005; Krusienski et  al., 2008; Mcfarland and Dean, 2012). In the 
development process of BCI systems, analyzing and modeling for 
offline BCI data (initial BCI calibration or adjustment, including 
preliminary analysis and parameter optimization) are crucial steps 
for constructing online BCI systems. However, merely focusing on 
offline data analysis does not fulfill BCI’s ultimate objectives. 
Achieving a leap from offline modeling to the construction and 

performance optimization of online BCI systems is essential for 
translating BCI into practical applications and meeting the needs of 
the end-users of BCI.

2.1 Analyzing and modeling for offline BCI 
data

The aim of analyzing and modeling for offline BCI data is to reveal 
the brain signal features (neural encoding of user intentions) that 
correspond to the BCI paradigm, which includes external stimulation 
or mental tasks, and to establish and evaluate classification models, 
providing a foundation for constructing and optimizing online 
BCI systems.

FIGURE 2

The schematic diagram of the comprehensive evaluation methods for translating BCI into practical applications.

FIGURE 1

Leaps in the development of BCI systems.
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Analyzing and modeling for offline BCI data primarily includes 
(1) BCI paradigm design, involving a carefully selected set of external 
stimulations or mental tasks tailored to specific brain signal 
acquisition techniques (Tai et  al., 2024); (2) Raw brain signal 
acquisition, which includes setting up appropriate sampling rates and 
electrodes. Brain signals are acquired from recruited subjects during 
the execution of the designed BCI paradigm and saved for subsequent 
analyzing and modeling; (3) Brain signal preprocessing, such as 
filtering and artifact rejection to improve the signal-to-noise ratio 
(SNR); (4) Extracting and selecting time-frequency-spatial features 
with good discriminability for external stimulations or mental tasks, 
and discovering new features under innovative BCI paradigms; (5) 
Construction and optimization of intent decoding models based on 
machine learning or deep learning. It is crucial to choose the 
appropriate model structure according to the intended application 
scenarios and the nature of the selected brain signal features. Models 
such as linear discriminant analysis, support vector machines, deep 
neural networks, and linear regression are options. The acquired 
brain signal data is divided into training, validation, and/or test sets 
for model training through supervised learning and performance 
evaluation via cross-validation (e.g., accuracy and individual 
variability). Most BCI decoding models rely on supervised learning 
for model parameterization, which depends on the quality and 
quantity of the samples. It is noteworthy that optimizing each step is 
essential to achieve an effective model in analyzing and modeling 
offline BCI data.

Although analyzing and modeling for offline BCI data can be used 
to leverage the time and computational resources of offline analysis 
for complex data processing, evaluation, and comparison of 
algorithms to provide direction for the construction of online BCI 
systems and optimization for its performance. Research by Shenoy 
showed that numerous factors can contribute to changes in the 
statistical characteristics of the data between offline BCI calibration 
and online BCI control (e.g., non-stationarities in brain signal data, 
such as the mean and variance of the brain signal changing over time), 
and this change emphasizes the importance of testing and optimization 
for online closed-loop (Shenoy et al., 2006). These factors include 
technical factors such as variations in electrode placement or 
impedance; general user factors such as fatigue, frustration or 
motivation, user learning, large amounts of visual information that 
need to be processed in online operations and spontaneous variations 
(Shenoy et  al., 2006).In addition, offline BCI data are typically 
collected without the use of neurofeedback, and the model built for 
offline BCI data analysis may be overfitting (over-learning), and lead 
to poor generalization and unstable performance (Billinger et  al., 
2013). However, the ability of a successful model to generalize to new 
data is a key requirement for BCI, because its online practical 
applications operation must use new data, these small sample data are 
unlabeled and can be used to re-parametrize models built from offline 
BCI data analysis online using semi-supervised or unsupervised 
learning (Mcfarland and Dean, 2012).

2.2 Construction of online BCI systems and 
optimization for their performance

The construction of online BCI systems focuses on engineering 
implementations, including the real-time transmission of brain signal 

data, processing considerations (accounting for the computational 
demands of BCI algorithms), and the forms of neurofeedback used. 
Furthermore, it is crucial to recognize that the real-time closed-loop 
neurofeedback modulating the bidirectional co-adaptation between 
the user’s brain signals and BCI algorithms (Vidaurre et al., 2006; 
Krusienski et  al., 2012; Perdikis et  al., 2018; Wolpaw et  al., 2020) 
presents the most significant challenge in constructing and optimizing 
the performance of online BCI systems. This aspect is also the primary 
distinction from the analysis and modeling for offline BCI data 
(without neurofeedback), as illustrated in Figure 3.

In Figure  3, the classification or control results of the BCI 
algorithm act on users in the form of neural feedback, which can 
regulate or affect the psychological activities of BCI users (e.g., 
strategies for executing psychological tasks), causing their brain state 
and signal characteristics to be changed, and to maintain or correct 
control instructions. This interaction can significantly diminish, or 
even nullify, the effectiveness of classification models developed 
through offline BCI data analysis. Consequently, BCI algorithms must 
dynamically adjust their parameters to accommodate changes in brain 
signal characteristics (Shenoy et al., 2006; Vidaurre et al., 2006; Wu 
and Hatsopoulos, 2008). Successful online BCI operation hinges on 
the effective interaction between two adaptive controllers (Taylor 
et al., 2002; Wolpaw et al., 2002; Krusienski et al., 2012; Mcfarland and 
Dean, 2012; Perdikis et  al., 2018; Wolpaw et  al., 2020): the user’s 
central nervous system (CNS) and the BCI algorithm responsible for 
brain signal processing and decoding. It is crucial to recognize that 
user and their brain constitute key components of the entire online 
BCI system. The arrow in Figure 3, traversing the user’s brain and the 
BCI algorithm, symbolizes their (bilateral) adaptive efforts to enhance 
and maintain the correlation between the user’s intentions and the 
overall output of the BCI system (Krusienski et al., 2012; Mcfarland 
and Dean, 2012; Billinger et al., 2013; Perdikis et al., 2018). The above 
are also BCI neuro-efficacy concerns of the user’s CNS interacting 
with the BCI system.

In Figure 3, users execute the BCI paradigm by accepting external 
stimuli, shifting attention, and performing mental tasks (e.g., sensory 
perception, cognition, and thought intentions), which generate brain 
signals related to the user’s intentions. Users develop skills for online 
BCI operation through operational training, thereby adapting to the 
BCI algorithm (Birbaumer et al., 2003). This process underscores the 
learnability and usability of BCI. Signals feedback to the BCI 
algorithm, including real-time brain signal characteristics, decoding 
outcomes or commands, control results, and scenes and objects 
controlled by BCI captured through machine vision, are utilized to 
refine the BCI algorithm for adaptability. This includes adaptive 
processes in brain signal processing, feature extraction, selection, and 
pattern classification algorithms, which are typically updated regularly 
by the system’s back-end through online machine learning.

When optimizing the online BCI system, each component (e.g., 
real-time brain signal collection and transmission, BCI paradigm 
optimization design, improving signal-to-noise ratio, and feature 
selection) needs optimization to improve the performance of the 
entire system. Translating online BCI prototype systems from the 
laboratory into practical applications should target typical scenarios 
while following the human-centred design principles and the activities 
involved in the system development lifecycle defined by the 
International Standards Organization (ISO) in 2010, as described in 
Tables 1, 2 (International Standards Organization, 2010; Holz et al., 
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2013; Kübler et al., 2013). A user-centered approach to designing and 
evaluating BCI systems (International Standards Organization, 2010; 
Holz et al., 2013; Kübler et al., 2013), which incorporates users into 
BCI systems development, is crucial for optimizing performance.

As mentioned before, the user’s brain is a key component of the 
entire BCI system, which requires that when evaluating and 
optimizing the online BCI system (prototype system), objective 
evaluation indicators and user-subjective evaluation scales need to 
be combined (Lu et al., 2021; Lyu et al., 2022) to comprehensively 
evaluate its usability and user satisfaction.

3 Comprehensive evaluation methods 
for translating online BCI systems into 
practical applications

3.1 Evaluation of the usability of online BCI 
systems

Currently, there is a substantial gap between online BCI prototype 
systems and their practical application products, with relatively low 
usability levels hindering their translation to actual applications, thus 
necessitating significant improvements. The user-centered approach 
to BCI design (Zickler et al., 2009; Kübler et al., 2013, 2014; Liberati 
et al., 2015; Martin et al., 2018; Lu et al., 2021) defines BCI usability as 
the extent to which a specific end-user can use a particular BCI 
product to achieve a specific goal within a defined environment (Holz 

et al., 2013; Kübler et al., 2014; Abiri et al., 2020; Branco et al., 2021; 
Colucci et al., 2021; Lyu et al., 2022). BCI usability includes both 
effectiveness and efficiency.

3.1.1 Evaluation of the effectiveness of online BCI 
systems

Accuracy (ACC) is used to evaluate the effectiveness of online BCI 
systems that produce discrete outputs. It is the most commonly used 
and key evaluation metric for evaluating online BCI systems, which is 
used to measure the accuracy of user intention recognition. Its 
calculation is illustrated in equation (1) and can be evaluated after 
each session.

 ACC H N= /  (1)

Where H denotes the number of correct trials and N denotes the 
total number of trials.

The performance of the online BCI that produces a continuous 
output can be evaluated with a continuous metric, usually using the 
r-square (r2), r2 represents the proportion of the variance of the 
difference between the real output and the correct output (prediction 
error) of the model in the total variance of the output (Mcfarland and 
Dean, 2012), as illustrated in equation (2).

 
r SSR

SST
SST SSE
SST

SSE
SST

2
1= =

−
= −

 
(2)

Where SSR represents the square sum of the difference between the 
predicted data and the mean value of the original data, SST represents 
the square sum of the difference between the original data and the mean 
value, and SSE represents the square sum of the difference between the 
corresponding points of the predicted data and the original data.

3.1.2 Evaluation of the efficiency of online BCI 
systems

Evaluation of the efficiency of online BCI systems includes 
information transfer rate (ITR), utility metric, and mental workload 
(Kübler et al., 2014). ITR is an important metric for evaluating the 
efficiency of the system, and it is used to evaluate the efficiency of 
the system in many studies, but the evaluation of the mental 
workload is also important. If users use the system with a large 
mental workload, it will seriously affect the acceptability and 
satisfaction of the system.

FIGURE 3

The schematic diagram for an entire online BCI system to be optimized and evaluated (Chen et al., 2024).

TABLE 1 Principles of Human-Centred-Design (HCD) defined by ISO 
(International Standards Organization, 2010; Holz et al., 2013; Kübler 
et al., 2013).

Number Design principles

1 Include a clear understanding of user’s tasks and 

environmental requirements

2 Encourage an early and active involvement of users

3 Be driven and refined by user-centred evaluation

4 Iterate developmental stages for identification of optimal 

design solutions

5 Incorporate the whole user experience

6 Encourage multi-disciplinary design
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3.1.2.1 Information transfer rate
ITR is a common metric for online BCI systems evaluation, 

which refers to the amount of information transmitted by the system 
in unit time (such as 1 min) in Bits/min (Wolpaw et al., 2002). Its 
calculation is illustrated in equation (3), which can be evaluated after 
each session.

 
ITR

N P P P P
N

T
=

+ + −( ) −
−

















60 1

1

1
2 2 2log log log

 
(3)

Where N denotes the number of targets, P denotes the accuracy, 
and T denotes the time required to output a command.

In calculating ITR, the key is to determine the three parameters 
N, P, and T. In the case of an online synchronized BCI system, for 
example, N is known, P needs to be tested online, and the number of 
tests affects the estimation of P. T may be fixed, and the target shifting 
time affects the estimation of T. With constant T, P usually decreases 
as N increases (Yuan et al., 2013).

3.1.2.2 Utility metric
One method of utility metric is that the effectiveness or accuracy 

of the online BCI system is less than 50%, the BCI is less efficient and 
has no practical utility, at this time the ITR value is meaningless, 
making the ITR value 0. In the case where the accuracy is greater than 
or equal to 50%, the ITR value has practical significance and can 
be evaluated after each session (Zickler et al., 2013).

Another method for utility metrics is to consider that different 
instructions may result in different benefits and define the utility as 
the expected average benefit (for the user) over time (Dal Seno et al., 
2009), as illustrated in equation (4):
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(4)

Where b (t) is the gain function, which takes positive or negative 
values depending on whether the choice at moment t conforms to (or 
contradicts) the user intention, and T is the time required to output 
an instruction.

3.1.2.3 Mental workload
In an online BCI system, the user serves both as the source (via 

the central nervous system) that generates control signals (brain 
signals) and the operator of the system. Operating the BCI system 
imposes a certain level of cognitive and psychological load on the 
user’s brain, referred to as mental workload. This workload is 
influenced by various factors, including the nature of the BCI 
application, task complexity, and the user’s experience level. A user-
satisfying BCI system should impose a lower mental workload, 
thereby enhancing the user’s experience and satisfaction (Lu et al., 
2021). The NASA Task Load Index (NASA-TLX) scale is commonly 
utilized to assess the mental workload of the user manipulating the 
BCI, as illustrated in Table 3, and can be evaluated after each session/
task (Riccio et al., 2015).

3.2 Evaluation of the user satisfaction of 
online BCI systems

In addition to evaluating the usability of online BCI systems, it is 
also need to evaluate the satisfaction of online BCI systems from the 
perspective of end users. Although some studies have evaluated the 

TABLE 2 Activities involved in system development lifecycle defined by 
ISO (International Standards Organization, 2010; Holz et al., 2013; Kübler 
et al., 2013).

Number Activities

1 Understand and specify the context of 

use

2 Specify the user requirements

3 Produce design solutions to meet user 

requirements

4 Evaluate the designs against 

requirements

TABLE 3 Mental workload evaluation scale for user manipulating BCI 
(Hart and Staveland, 1988; Lu et al., 2021; Lyu et al., 2022).

Dimension Description Scoring 
standard 
(0  ~  100)

Mental (physiological) 

needs

Manipulate the BCI to 

complete the mental 

activity required to 

complete the task, whether 

the task is difficult

The greater the need 

the higher the score

Physical (physiological) 

needs

The physical strength 

required to control the 

BCI to complete the task, 

whether the muscle is 

tension, and movement 

are relaxed

The greater the need 

the higher the score

Time requirement Does the speed 

requirement for 

manipulating BCI to 

complete tasks make 

human feel nervous or 

panicked?

The greater the need 

the higher the score

Effort level The level of effort required 

to control the BCI to 

complete the task

The greater the need 

the higher the score

Performance level Whether the performance 

level of controlling BCI to 

complete the task is 

satisfactory

The greater the need 

the higher the score

Frustration level The levels of depression 

and frustration about the 

effectiveness of BCI 

manipulation

The greater the need 

the higher the score

The NASA-TLX scale was used (Hart and Staveland, 1988).
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usability of online BCI systems (Morone et al., 2015; Alazrai et al., 
2019; Lyu et  al., 2022), only a few studies have evaluated system 
satisfaction (Kübler et al., 2014; Lyu et al., 2022). Excellent system 
satisfaction is the ultimate goal of the user-centred design of BCIs, and 
poor system satisfaction can severely affect the promotion of BCI 
system applications, so it is important to evaluate and improve the 
satisfaction of online BCI systems. Evaluation of the user satisfaction 
of online BCI systems mainly includes evaluation for general aspects 
of assistive technology (AT), BCI-related aspects, overall satisfaction, 
and interview for satisfaction (Kübler et al., 2014, 2020).

3.2.1 Evaluation of general aspects of AT of online 
BCI systems

Essentially, a BCI system represents a new type of AT, enabling 
users to use their brain signals to interact directly with peripherals, 
thereby improving their quality of life or productivity. Therefore, it is 
necessary to evaluate the general aspects of AT satisfaction with online 
BCI systems. User satisfaction of AT is used to assess the level of user 
satisfaction with a particular AT product or service, which is typically 
evaluated using Quebec User Evaluation of Satisfaction with Assistive 
Technology 2.0 (QUEST 2.0) at the end of prototype testing (Rupp 
et al., 2012; Holz et al., 2013).

3.2.2 Evaluation of BCI-related aspects
Evaluation of satisfaction of BCI-related aspects mainly reflects 

user satisfaction across four metrics reliability, learnability, speed, and 
aesthetic design. At the end of the prototype testing, users evaluated 
the four metrics on five scales from “not at all satisfied,” “not too 
satisfied,” “more or less satisfied,” “quite satisfied,” to “very satisfied” 
(Zickler et al., 2011).

3.2.2.1 Reliability
The reliability of the BCI system is the ability to continuously 

complete a specified function within the specified time and 
environment, namely, the probability of the system operating without 
faults, which can be measured in terms of mean failure rate or mean 
time between failures (MTBF). The mean failure rate, denoted by λ 
(Rausand and Hoyland, 2003; O'Connor and Kleyner, 2012; Ebeling, 
2019; Lu et al., 2021), refers to the probability of failure per unit time 
for BCI products that have not yet failed, calculated as illustrated in 
equation (5).

 
λ =

×( )
M
t N∆

 
(5)

Where M denotes the number of products that failed during the 
working time, N denotes the total number of products, and Δ t 
denotes the working time. The mean time between failures reflects the 
time quality of the BCI product, which is an ability to reflect the 
product’s ability to maintain its functionality for a specified period, 
and is calculated as illustrated in equation (6), where λ denotes the 
mean failure rate (Rausand and Hoyland, 2003; O'Connor and 
Kleyner, 2012; Ebeling, 2019; Lu et al., 2021).

 
MTBF =

1

λ  
(6)

The reliability of a BCI system is affected by a variety of major 
factors, including the quality of brain signal acquisition, brain signal 
processing algorithms, the stability of the BCI system, the accuracy of 
system calibration, real-time performance, persistence, environmental 
factors, and user factors, etc. For example, in electroencephalogram 
(EEG)-based BCI, the main challenge or difficulty faced by online BCI 
systems in practical application scenarios is that the EEG signals are very 
weak (microvolt level) and highly susceptible to interference from 
external environmental factors. BCI research is usually carried out in a 
structured and controlled laboratory environment, however, the BCI 
system is used outside the laboratory in a variety of application scenarios, 
where the EEG signals are highly susceptible to interference from 
external environmental factors, and advanced technology is required to 
reduce the interference and ensure the stability and reliability of the 
system (Gao, 2012). Therefore, the stability and reliability of online BCI 
systems need to be tested and evaluated in various application scenarios. 
Therefore, the stability and reliability of online BCI systems must 
be rigorously tested and evaluated across various application scenarios.

3.2.2.2 Learnability
The learnability of BCI systems refers to how long it takes users 

to learn to use them (Nielsen, 1994; Colucci et al., 2021). Users 
usually need to spend a certain amount of time and training to 
learn to use the BCI system, if the majority of users can quickly 
learn to use the system, it indicates good learnability; otherwise, the 
system is considered less learnable. The learnability of a BCI system 
is influenced by a variety of factors, including the design of the 
system’s graphical user interface (GUI) and neurofeedback training.

3.2.2.3 Speed
The speed of a BCI system usually refers to the system’s response 

time, that is, the time it takes for the system to capture the user’s brain 
signals until the system performs a specific operation or task (Colucci 
et al., 2021). It includes the time required for data acquisition, signal 
processing and classification, communication and control, and 
neurofeedback conditioning. It is an important performance metric, 
especially when applications require real-time control. In contrast, 
ITR measures the amount of information transmitted per unit of time 
(Wolpaw et al., 2002).

3.2.2.4 Aesthetic design
The aesthetic design of a BCI system refers to the aesthetic factors 

of user interface design and product appearance design (especially the 
appearance of the sensors that capture brain signals) when developing a 
BCI system product (Tractinsky et al., 2000; Norman, 2005; Colucci 
et al., 2021). Considering different users’ aesthetic preferences, the BCI 
system offers personalization options. The aesthetic design of the BCI 
system affects user acceptance, comfort, experience, and user satisfaction.

Besides these 4 aspects, the sensors used in online BCI systems 
greatly determine the user’s experience and acceptability. User 
satisfaction with BCI sensors is very important and can be evaluated 
in five dimensions: safety, comfort, aesthetic, ease of use, and overall 
satisfaction, with scores ranging from the lowest 1 to the highest 5, as 
illustrated in Table 4 (Lu et al., 2021; Lyu et al., 2022).

3.2.2.5 Evaluation of user experience of BCI
User experience of BCI is an important aspect of BCI user 

satisfaction. It is the user’s personal feeling and experience of using the 
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BCI system. Applications like rehabilitation training systems combining 
BCI with VR, and BCI-controlled games, offer a user experience 
characterized by immersion (involvement and/or losing track of time), 
pleasure, engagement, and presence (in the case of a game, user 
experience being “in” the virtual world) (Van Baren, 2004; Jennett et al., 
2008; Brockmyer et al., 2009). The evaluation of the BCI user experience 
helps to increase user acceptance of BCI, improve system performance, 
and increase pleasure. Observational analysis (observing and recording 
user behavior to provide objective-qualitative data), neurophysiological 
measurements (recording EEG signals, galvanic skin response (GSR), 
and electrocardiogram (ECG) when the user manipulates the BCI to 
provide objective quantitative data), interview (to provide subjective 
qualitative information), and questionnaires (to provide subjective 
quantitative information) can be used to evaluate for user experience 
of BCI (Mandryk et al., 2006; Gürkök et al., 2011).

The above satisfaction evaluation of general and BCI-related 
aspects of online BCI systems AT satisfaction can be found in the user 
satisfaction with assistive technology evaluation from Quest 2.0 and 
its expansion table (Colucci et al., 2021), as illustrated in Table 5. Items 

1–12 in the table evaluate the comfort, size, ease of use, effectiveness, 
ease of installation and adjustment, safety, quality of service, weight, 
reliability, real-time (rapidity), ease of learning, and aesthetic of the 
BCI system, and the evaluations are classified into five grades of very 
satisfied, satisfied, average, dissatisfied, and very dissatisfied. Items 
13–16 in the table can be used as metrics for evaluating the final BCI 
product used by the user, and the evaluations are carried out after the 
BCI system is implemented (Zickler et al., 2011; Kübler et al., 2014; 
Colucci et al., 2021; Lu et al., 2021; Lyu et al., 2022).

3.2.3 Evaluation of overall satisfaction of online 
BCI systems

The satisfaction evaluation in Table 5 for the BCI system includes 
many items and is time-consuming, which makes it inconvenient to 
evaluate the satisfaction level of different users when they try the BCI 
prototype to complete different tasks (the same BCI product to 
complete tasks with different functions) during the rapid prototyping 
iteration process (Lu et al., 2021). A simple and fast visual analog scale 
(VAS) (Allison et al., 2012; Kübler et al., 2014) is often used to evaluate 

TABLE 4 An example of user satisfaction of the BCI sensor used in a certain experiment (Lu et al., 2021; Lyu et al., 2022).

The type of BCI sensor Evaluation grade

Safety Comfort Aesthetic Ease of 
use

Overall 
satisfaction

Sensor for 

non-invasive 

BCI

EEG sensor on 

scalp surface

Conductive gel 

electrode

5 3 3 3 3

Physiological saline 

electrode

5 4 3 4 4

Dry electrode 5 3 4 5 4

NIRS sensor Emitting and 

detecting probes

5 3 4 4 4

MEG sensor Non-contact sensor 

for measuring 

magnetic field 

strength

x x x x x

Other non-

invasive BCI 

sensor

x x x x x

Sensor for 

invasive BCI

ECoG sensor Platinum electrode 

array

x x x x x

Intracortical 

sensor (Spikes, 

LFP)

Multi-electrode 

array

x x x x x

Multi-site electrode x x x x x

Cone-shaped 

electrode

x x x x x

Cone-shaped 

electrode

x x x x x

Other invasive BCI 

sensor

x x x x x

NIRS (Near-Infrared Spectroscopy), MEG (Magnetoencephalography), ECoG (Electrocorticography), LFP (Local Field Potential).
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users’ usage of the system in overall satisfaction with online BCI 
systems. As illustrated in Table 6, the satisfaction levels of different 
users when controlling the BCI to complete various tasks are rated 
from ‘dissatisfied (1)’ to ‘absolutely satisfied (10)’, with evaluations 
conducted after each session (Holz et al., 2015a,b).

3.2.4 Interview for the satisfaction of online BCI 
systems

Interview for the satisfaction of BCI online systems refers to 
interviews with users of the system to find out how satisfied they are 
with using the BCI system (Ramsey and Millán, 2020). Interviews can 
be conducted end of prototype testing or after the sale of BCI products 
using semi-structured or free-form questionnaires (Kübler et al., 2014; 
Vasilyev et al., 2017; Ma et al., 2023).

3.3 Evaluation of the usage of online BCI 
systems

3.3.1 Evaluation of the match between BCI 
systems and users

Evaluation of the match between BCI system (production) and 
user can be  used the questionnaire Assistive Technology Device 
Predisposition Assessment (ATD-PA) Device Form -Initial Consumer 
and Professional (Holz et al., 2015a). It is a set of questionnaires based 
on the Matching Person and Technology Model (MPT) (Kübler et al., 
2014; Ma et al., 2023), and it comprises 12 items (see Table 7), as 
illustrated in Table 7 (Zickler et al., 2013; Corradi et al., 2017). It 
addresses the primary users (end-users and consumers) and secondary 
users (professionals, including professional users/AT experts/

TABLE 5 BCI system satisfaction evaluation item (Colucci et al., 2021; Lu et al., 2021; Lyu et al., 2022).

Evaluation item Evaluation item description

(1) How satisfied are you with the comfort level of your current BCI equipment? What is the comfort level of the BCI sensor and the comfort level of mental tasks 

(SSVEP, P300, MI)?

(2) How satisfied are you with the size (length, width, and height) of the current 

BCI equipment?

Are the sizes of BCI sensors and amplifiers ultra-miniaturized or portable?

(3) How satisfied are you with the ease of use of the current BCI equipment? Is BCI graphical user interface simple and easy to use, and are mental tasks easy to 

complete?

(4) How satisfied are you with whether the current use of BCI equipment can 

be assistive or its effectiveness?

How satisfied are you with the tasks accomplished by SSVEP-BCI P300-BCI MI-BCI?

(5) How satisfied are you with whether the current BCI equipment is easy to install 

and adjust?

Is the software and hardware of the BCI system easy to install and adjust? Specifically, 

it may include whether the sensor is easy to wear and adjust, the amplifier parameter 

setting, whether the BCI software is easy to install and set, and whether the BCI and 

the external device are easy to communicate with the interface.

(6) How satisfied are you with the safety of BCI equipment? How safe is the invasive BCI sensor? How safe is the BCI control system? E.g., the 

obstacle avoidance ability of a brain-controlled wheelchair.

(7) How satisfied are you with the access channel and efficiency of BCI equipment? Obtain BCI after-sales service channels and service efficiency, including whether BCI 

can be used by independent families, and minimize the dependence on BCI technical 

support.

(8) How satisfied are you with the weight of BCI equipment currently in use? Are BCI sensors and amplifiers super light?

(9) How satisfied are you with the reliability of the current BCI equipment? What is the ability of the BCI system to perform specified functions without failure in 

a certain period of time and under certain conditions, such as reliability, failure rate 

and mean time between failures?

(10) How satisfied are you with the response time of the current BCI equipment? How fast is the BCI system? What is the specific ITR?

(11) How satisfied are you with the learnability for BCI? Is the operation of the BCI system easy to learn? This includes whether the BCI 

graphical user interface (GUI) and mental tasks are learnability.

(12) How satisfied are you with the appearance of BCI equipment? Are the graphical user interface (GUI) and sensors of the BCI system beautiful? For 

the BCI sensor: Is it concealed and does it match the visual aesthetic?

(13) How satisfied are you with the professional services of BCI equipment 

provided by medical staff?

For the clinical application of BCI, it is necessary to evaluate the professional service 

quality of medical staff.

(14) How satisfied are you with the robustness and durability of BCI equipment 

currently in use?

How robust are the BCI sensors and amplifiers?

(15) How satisfied are you with the maintenance service of BCI equipment 

currently in use?

What is the frequency of BCI system failure or maintenance and the quality of 

maintenance service? Including easy contact and maintenance efficiency.

(16) How satisfied are you with the follow-up BCI equipment consultation and 

tracking services provided by medical staff?

For the use of BCI in follow-up daily life, we need to evaluate the quality of follow-up 

service of medical staff.

Refer to the user satisfaction evaluation form for assistive technology Quest 2.0 and its expansion table (Colucci et al., 2021).
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researchers) to rate their predisposition for using the BCI system 
under consideration.

In Table, it has to be rated on a 5-point Likert scale from 1 to 5. 
Users have the option to indicate a “0” if the item is not applicable. The 
total score was calculated by averaging all item scores. The highest 
score is 5.0. A score between 4.0 and 5.0 indicates a good match of 
users and the BCI system, scores below 4.0 indicate that the match 
could be improved, and a score of 3 or less indicates a risk of system 
non-use (Zickler et al., 2013; Kübler et al., 2014; Holz et al., 2015a; 
Corradi et al., 2017).

3.3.2 Evaluation of the overall usability of BCI 
systems

The overall usability of BCI systems can be evaluated using the 
System Usability Scale (SUS) after prototype testing (Pasqualotto et al., 
2015; Zander et al., 2017). The SUS contains 10 items, with a global 
subjective assessment of overall usability. Each item’s score ranges 
from 0 to 100 points, as illustrated in Table 8, where higher scores 
indicate better overall usability of the BCI system, and a score of 70 
has been suggested as the acceptable minimum (Brooke, 1996; Bangor 
et al., 2008; Pasqualotto et al., 2015).

3.3.3 Evaluation of the use in daily life of online 
BCI systems

The ultimate proof for use in daily life of BCI systems is its actual 
use (Kübler et al., 2014), which can be investigated by interviewing 
specific BCI users on four issues in use, as illustrated in Table 9, the 

four issues investigated are the ones that need to be considered for 
the translation of BCI technology into practical applications 
(Vaughan et al., 2012; Ramsey and Millán, 2020; Vaughan, 2020; Ma 
et al., 2023).

4 Discussion

Different researchers may have different methods for evaluating 
online BCI systems. Besides evaluating classification accuracy and bit 
rate, it is also necessary to perform a comprehensive evaluation of 
online BCI systems, including evaluating user satisfaction, usage, 
and efficacy.

TABLE 6 Visual Analog Scale (VAS) (Allison et al., 2012; Kübler et al., 2014).

Task User 1 User 2 User…

Task 1 Task 2 … Task 1 Task 2 … Task 1 Task 2 …

Satisfaction 1 ~ 10

TABLE 7 Evaluation form of the match between BCI systems and users 
(Gürkök et al., 2011; Zickler et al., 2013; Corradi et al., 2017).

Item ATD-PA device form

1 Will the BCI system help me to achieve my goals?

2 Will the BCI system benefit me and improve my quality of life?

3 Can I be confident that I know how to use the BCI system and its 

various features?

4 Will I feel more secure (safe, confident) when using the BCI system?

5 Will the BCI system fit my accustomed routine?

6 Do I have the capabilities and stamina to use the BCI system without 

discomfort, stress, and fatigue?

7 Is there support, assistance and accommodations for successful use of 

the BCI system?

8 Will the BCI system physically fit in all desired environments (car, 

living room, etc.)?

9 Will I feel comfortable using the BCI system around family?

10 Will I feel comfortable using the BCI system around friends?

11 Will I feel comfortable using the BCI system at work?

12 Will I feel comfortable using the BCI system around the community?

TABLE 8 Evaluation form of the overall usability of the BCI systems 
(Brooke, 1996; Bangor et al., 2008).

Item System Usability Scale (SUS)

1 I think that I would like to use the BCI system frequently.

2 I found the BCI system unnecessarily complex.

3 I thought the BCI system was easy to use.

4 I thought that I would need the support of a technical person to 

be able to use the BCI system.

5 I found that the various functions in the BCI system were well 

integrated.

6 I thought that there was too much inconsistency in the BCI system.

7 I thought most people could learn to use the BCI system very quickly

8 I thought the BCI system very inconvenient to use.

9 I felt confident using the BCI system.

10 I needed to learn a lot of things before using the BCI system.

TABLE 9 Evaluation of the use in daily life of online BCI systems (Bangor 
et al., 2008; Vaughan et al., 2012; Ramsey and Millán, 2020; Vaughan, 
2020).

Item Content of evaluation Level of evaluation

1 Can the people who need a BCI use 

one?

Cannot\basically can\can

2 Is the personalized BCI suitable for 

long-term independent use?

Not suitable\suitable

3 Does the personalized BCI get used, 

and how does it get used?

Not used, less used, often 

used

How to use it?

4 Does the personalized BCI improve 

the user’s lives? (Vaughan et al., 2012)

Not improvement\less- 

improvement \

improvement
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4.1 Challenges faced in the evaluation of 
the usability and user satisfaction of online 
BCI systems

The online BCI system requires user involvement in its semi-
automated loop, where users not only act as the source of signals for 
system communication and control (via their central nervous system) 
but also directly interact with it as operators. This direct interaction 
presents challenges for assessing the system’s usability and satisfaction. 
Users must produce brain signal features recognizable by the BCI 
algorithm, yet ensuring the generation of such features is challenging. 
It necessitates that BCI developers innovate paradigms (Tai et al., 
2024) and neurofeedback adjustment strategies tailored for users, 
encompassing the feedback of suitable neural signals and their 
presentation. Furthermore, users often need to acquire skills to 
effectively use and derive benefits from BCI, which involves assessing 
the BCI’s efficacy.

Therefore, it is necessary to evaluate specific end-users utilizing 
the specific BCI system to achieve specific goals within specific 
environments (Kübler et al., 2014). The focus of the evaluation metrics 
mentioned in this article varies, for instance, some BCI applications 
(such as control applications (Leeb et al., 2013; Edelman et al., 2019)) 
typically require high accuracy and real-time/timeliness. On the other 
hand, other BCI applications [such as active rehabilitation training 
(Cui et al., 2021; Shen et al., 2022)] may need to capture the trainee’s 
attention and provide rewards. If the purpose of the BCI system is to 
foster brain plasticity, evaluating changes in the connectivity and 
function of relevant brain regions becomes essential.

4.2 Evaluation of the efficacy of BCI

In addition to the evaluation of the usability and user satisfaction 
of online BCI systems, the evaluation of the efficacy of BCI is also 
essential. BCI efficacy pertains to the functional or therapeutic 
benefits it provides to users (including patients), or the outcomes or 
anticipated effects it produces. BCI efficacy encompasses monitoring 
(the brain’s state), replacement (outputs lost due to injury or disease), 
improvement/restoration (enhancing disease symptoms or restoring 
functions), enhancement (function improvement and expansion), 
and supplementation (adding brain control methods). However, 
methods for evaluating the efficacy of BCI in treating or rehabilitating 
CNS-related diseases/disorders remain unstandardized. 
Collaboration among BCI clinical translation researchers or 
producers, clinicians, and patients is imperative to objectively assess 
the medical applications’ efficacy and avoid subjective evaluations or 
unwarranted hype (Innovation Collaboration Platform for Artificial 
Intelligence Medical Devices, 2023). Clinically, the efficacy of BCI is 
evaluated using a randomized double-blind controlled method, 
considering both the degree of symptom improvement and clinically 
relevant examinations or scales, including objective measures by 
medical instruments (like muscle strength and electromyography) 
and subjective scales. For instance, Biasiucci A has demonstrated that 
BCI-functional electrical stimulation (BCI-FES) therapy promotes 
significant functional recovery and purposeful plasticity through 
conditional activation of natural efferent and afferent pathways 
(Biasiucci et  al., 2018). Identifying the most suitable application 
scenarios for online BCI systems in various fields requires ongoing 

research and validation to optimize their applicability 
and effectiveness.

4.3 What methods can be used to improve 
the usability and user satisfaction of online 
BCI systems?

In addition to the evaluation of the usability and user satisfaction 
of online BCI systems, what other methods can be used to improve 
these two metrics? Currently, the usability and user satisfaction of 
online BCI systems are not high. One of the reasons may be that the 
BCI system is less intelligent. In essence, the BCI system is driven by 
a set of external stimuli or mental tasks carefully selected/designed by 
the developer in advance. When using BCI, users can manipulate BCI 
according to the BCI paradigm but cannot do whatever they want; 
otherwise, it will be difficult for the BCI system to recognize their 
intentions. At present, the user experience of the BCI system is poor, 
the brain-computer interaction content is not rich, and the human-
computer interaction is monotonous or boring.

4.3.1 Integration of BCI and AI
Due to the limited intelligence of BCI, it can be integrated with AI 

technology to add intelligent elements. For example, advanced and 
effective machine learning (specifically, deep learning) can be used for 
brain signal analysis and adaptive machine learning in BCI systems to 
improve decoding accuracy and ITR (Willett et al., 2021; Metzger 
et al., 2023; Willett et al., 2023). Communicative BCI can interact with 
natural language models to enrich communication content, and BCI 
systems can be combined with computer/machine vision technology 
(constructed intelligent environments) to improve the intelligent 
interactivity between users and the environment. Figure 4 illustrates 
the integration of BCI systems and AI to improve intelligence  

FIGURE 4

The schematic diagram for the integration of BCI systems and AI to 
improve intelligence (Lu et al., 2021; Lyu et al., 2022; Innovation 
Collaboration Platform for Artificial Intelligence Medical Devices, 
2023).
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(Lu et al., 2021; Lyu et al., 2022; Innovation Collaboration Platform for 
Artificial Intelligence Medical Devices, 2023).

4.3.2 Integration of BCI and VR
Given the current BCI system’s poor user experience, integrating 

it with VR could enhance its operability and interactive experience. 
VR technology allows for the visualization and user control of implicit 
mental tasks, significantly enhancing the user experience for BCIs that 
rely on implicit mental tasks. For example, VR can vividly guide BCI 
users to improve motor imagery quality.

BCI can also be integrated with VR-based games to enhance users’ 
attention and give timely rewards, thereby allowing BCI users to 
effectively regulate brain activity and signals, fostering neuroplasticity, 
and improving the immersion and fun of using BCI (Currently, the 
immersion and fun of using BCI are poor, and the experience is not 
high). Additionally, VR creates an immersive environment for training 
and control, enhancing the BCI system’s learnability. Therefore, 
combining BCI with VR-based simulation training effectively boosts 
users’ engagement and interest in performing psychological tasks and 
substantially improves the effectiveness of BCI-based rehabilitation 
training. Figure 5 illustrates the integration of BCI systems and VR to 
improve user experience.

4.3.3 Integration of BCI with AI and VR
To simultaneously improve the intelligence and user experience 

of the BCI system, the BCI can be integrated with AI and VR at the 
same time to create smarter and richer interactive scenarios for users 
to control BCI. Figure 6 illustrates the integration of the BCI system 
with AI and VR.

4.4 What barriers are faced in translating 
different collection methods and different 
paradigms of BCI into practical 
applications?

Translating invasive, semi-invasive, and non-invasive BCI into 
practical applications encounters several common barriers: (1) 
Technical complexity. BCI systems involve complex signal acquisition, 
processing, and decoding processes, necessitating highly accurate and 
real-time technical support; (2) Adaptability to users. The individual 
differences in users’ brain activity patterns require BCI systems to 
be highly adaptable and personalized; (3) Cost issues. The expenses 
related to system development and user equipment pose significant 
barriers to application promotion.; (4) Ethics and privacy. BCI 
technology entails direct access to human brain activity, raising 
significant ethical and data privacy issues.

Each of the three types of BCI targets different application 
scenarios, implementations, and technical challenges (McFarland 
and Krusienski, 2012; He et al., 2020). Therefore, the barriers faced 
by different types of BCI technologies exhibit significant differences. 
Unique barriers to invasive BCI: (1) Surgical risk. Invasive BCI 
requires surgical implantation of electrodes into the brain, which 
carries risks such as infection and bleeding; (2) Long-term stability. 
Tissue reactions to implanted electrodes may affect signal stability 
over time; (3) Biocompatibility. The biocompatibility of long-term 
implants presents a significant challenge, necessitating the use of 
materials that are stable and safe within living organisms. Unique 
barriers to semi-invasive BCI: (1) Signal quality and safety balance. 
Although semi-invasive BCI reduces the risk of invasive procedures, 
the signal quality is generally inferior to that of fully invasive 
BCI. Additionally, the long-term safety of the implantation site 
remains a concern; (2) Technology integration. Semi-invasive BCI 
must balance signal acquisition and user comfort. Unique barriers 
to non-invasive BCI: (1) Signal acquisition limitations. Non-invasive 
BCI signals weakened and more susceptible to external interference, 
must pass through the scalp and skull; (2) Device portability and 

FIGURE 5

The schematic diagram for the integration of BCI systems and VR to 
improve user experience.

FIGURE 6

The schematic diagram for the integration of BCI systems with AI 
and VR at the same time.
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comfort. Although surgery is not required, user acceptance of 
non-invasive BCI devices for extended use hinges on their comfort 
and portability; (3) Real-time and accuracy. Achieving high real-
time and accurate decoding presents greater challenges for 
non-invasive BCI.

These barriers are also person-specific, but in a nutshell, they all 
boil down to a risk–benefit tradeoff. The aim of translating BCI into 
practical applications is to ensure that the benefits outweigh the risks, 
or that the advantages outweigh the disadvantages. It is important to 
acknowledge that all technologies carry risks and disadvantages. 
However, if the benefits outweigh the drawbacks, BCI technology can 
be considered without the need to excessively pursue perfection and 
overemphasize its potential. It is crucial to maintain objectivity and 
avoid biased language. For example, a terminally ill person in a 
locked-in state may be willing to undergo brain surgery even if BCI 
offers little or temporary benefit. On the contrary, somebody who is 
paralyzed from the neck down may not be  willing to have brain 
surgery unless BCIs can restore function that is on par with what they 
can accomplish with residual motor control (sip-and-puff, eye tracker, 
speech recognition, and so on). By and large, the current BCIs fall 
short of the reliability and precision of residual control, but advances 
in machine learning or deep learning and large-scale recording may 
soon close this gap. For non-invasive BCIs, the risk is minimal but 
unwieldy equipment and relatively low performance may be a deal 
breaker for many applications.

Secondly, various paradigms such as MI, SSVEP, and P300 
encounter common obstacles when translating BCI technology into 
practical applications, as well as unique challenges of their own 
(McFarland and Krusienski, 2012; Nicolas-Alonso and Gomez-Gil, 
2012). Common obstacles: (1) User training requirements. BCI 
systems typically require users to undergo training before they can 
be used effectively, which restricts their immediate availability and 
widespread adoption. (2) System accuracy and stability. Improving the 
accuracy and stability of BCI systems remains a common challenge, 
particularly in dynamic and changing real-world environments. (3) 
Device portability and comfort. For extended wear and daily use, BCI 
devices often are bulky and uncomfortable. (4) Signal processing and 
decoding. Real-time and efficient signal processing and decoding 
algorithms are crucial for enhancing the performance of BCI systems. 
However, challenges still exist. (5) Individual differences. BCI systems 
require a high degree of personalization due to significant differences 
in brain signals among users.

Different paradigms of BCI face their unique barriers. For 
example, unique barriers to MI-BCI: (1) User training difficulty. 
MI-BCI requires significant training and concentration, posing 
challenges for some users to generate distinct MI signals; (2) Brain 
signal detectability. MI generates weak brain signals and is susceptible 
to interference from non-task-relevant brain activities. Unique 
barriers to SSVEP-BCI: (1) Visual fatigue. Prolonged viewing of 
flashing stimuli can lead to visual fatigue for the user, affecting the 
user experience and system performance, even with imperceptible 
flicker SSVEP-BCI (Ming et al., 2023); (2) External device dependency. 
SSVEP-BCIs rely on visual stimuli of specific frequencies and require 
external devices such as LEDs or displays to generate these stimuli, 
even when an augmented reality headset is used to provide the stimuli 
(Chen et al., 2020). Unique barriers to P300-BCI: (1) Variability of 
event-related potentials. The system’s accuracy may be affected by the 
variability of the P300 wave and the low signal-to-noise ratio; (2) Size 

limitation of the selection set. To ensure a high accuracy rate, the 
selection set (e.g., the alphabet of the speller) of the P300 BCI is often 
restricted. However, it limits the ITR.

To overcome these obstacles, it is necessary to conduct 
collaborative interdisciplinary research, involving joint efforts across 
various fields, including neuroscience, materials science, electrical 
engineering, computer science, and ethics.

5 Conclusion

To promote the translation of BCI into practical applications, the 
existing researches are reviewed, and the evaluation methods of the 
usability and user satisfaction of the entire online BCI system are 
detailed in the article, including the leap from analyzing and modeling 
for offline BCI data to the construction of online BCI systems and 
optimizing its performance, and comprehensive evaluation methods 
for translating BCI into practical applications (including the 
evaluation for usability, user satisfaction and usage of online BCI 
systems.). Finally, it is emphasized that the efficacy of BCI needs to 
be evaluated for specific end-users (user-centred) using the specific 
BCI system in specific application scenarios to achieve specific goals 
and that combining BCI with AI, VR, and other advanced technologies 
is essential to enhance the intelligence and user experience of the 
system. It is expected that this article will be  useful for the 
development of BCI.
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