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Introduction: In transitioning from Industry 4.0 to the forthcoming Industry

5.0, this research explores the fusion of the humanistic view and technological

developments to redefine Continuing Engineering Education (CEE). Industry 5.0

introduces concepts like biomanufacturing and human-centricity, embodying

the integration of sustainability and resiliency principles in CEE, thereby shaping

the upskilling and reskilling initiatives for the future workforce. The interaction of

sophisticated concepts such as Human-Machine Interface and Brain-Computer

Interface (BCI) forms a conceptual bridge toward the approaching Fifth Industrial

Revolution, allowing one to understand human beings and the impact of their

biological development across diverse and changing workplace settings.

Methods: Our research is based on recent studies into Knowledge, Skills,

and Abilities taxonomies, linking these elements with dynamic labor market

profiles. This work intends to integrate a biometric perspective to conceptualize

and describe how cognitive abilities could be represented by linking a

Neuropsychological test and a biometric assessment. We administered the

brief Neuropsychological Battery in Spanish (Neuropsi Breve). At the same

time, 15 engineering students used the Emotiv insight device that allowed the

EEG recollection to measure performance metrics such as attention, stress,

engagement, and excitement.

Results: The findings of this research illustrate a methodology that allowed

the first approach to the cognitive abilities of engineering students to be from

neurobiological and behavioral perspectives. Additionally, two profiles were

extracted from the results. The first illustrates the Neuropsi test areas, its most

common mistakes, and its performance ratings regarding the students’ sample.

The second profile shows the interaction between the EEG and Neuropsi

test, showing engineering students’ cognitive and emotional states based on

biometric levels.

Discussions: The study demonstrates the potential of integrating

neurobiological assessment into engineering education, highlighting a

significant advancement in addressing the skills requirements of Industry

5.0. The results suggest that obtaining a comprehensive understanding of

students’ cognitive abilities is possible, and educational interventions can

be adapted by combining neuropsychological approaches with EEG data

collection. In the future, it is essential to refine these evaluation methods further

and explore their applicability in di�erent engineering disciplines. Additionally, it

is necessary to investigate the long-term impact of these methods on workforce

preparation and performance.
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1 Introduction

The transition from Industry 4.0 to Industry 5.0 has significant
implications for Higher Education Institutions (HEIs) as they play a
critical role in preparing the workforce for the changing industrial
landscape (Gürdür Broo et al., 2022). Incorporating cutting-edge
technologies into academic programs is a key focus to ensure
that graduates can efficiently collaborate with intelligent machines
(Maddikunta et al., 2022). However, it is equally important for
HEIs to emphasize lifelong learning and professional development
to support individuals in navigating the demands of the digital
economy and equipping them with the necessary skills for the
future workforce. Within the context of Industry 4.0 and 5.0,
it must also be considered that employees who are invited to
train, adopt, and apply innovative combinations of methodologies
with emerging technologies may have concerns regarding the
effectiveness and applicability of these new approaches, therefore
seeking to understand these perceptions is essential to adapt
training programs effectively and ensure smooth integration of
new technologies into the workplace. The insights from these
employees can help design more inclusive and responsive training
initiatives that address their concerns and improve their willingness
to engage with new technologies, thereby facilitating the transition
to Industry 5.0 (Mystakidis et al., 2021; Kazakou and Koutromanos,
2024).

The human-centric nature of Industry 5.0 highlights the
need to identify and assess the Skills and Abilities (S&A)
of engineering graduates (SkillsFuture Singapore, 2021; Future-
Skills, 2023). Effective human-machine collaboration requires
individuals to be matched with tasks and roles that capitalize on
their strengths, expertise, and creativity. Assessing the S&A of
engineering graduates ensures that they possess the competencies
required to make informed decisions and navigate the development
and deployment of technology. Given the rapid technological
advancements in Industry 5.0, engineers must continuously update
their skill sets to remain relevant in the changing industrial
landscape (Caratozzolo et al., 2024; Saniuk and Grabowska, 2024).
Unfortunately, Industry 5.0 also contributes to the engineering
workforce’s skills gap and mismatch problem, where the skills gap
refers to a misalignment between the skills employers demand and
those possessed by the workforce, posing significant challenges
for companies striving to remain competitive (Nayernia et al.,
2022). Furthermore, Industry 5.0 requires engineers to have
diverse skills beyond traditional frameworks, such as oral and
written communication, attention to detail, memory encoding, and
memory retrieval. This can lead to mismatches between graduates’
skills and the requirements of their job roles (Aggarwal et al., 2022).

To address these challenges and enhance the cognitive
capabilities of engineering students, Cognitive Neuroscience (CN)
plays a crucial role. CN is an interdisciplinary subject that explores
the connections between brain functions and mental processes
(Banich and Compton, 2018). It has made significant contributions
to understanding cognitive processes such as memory, attention,
language, and emotions, as well as the learning process itself
(Parong and Mayer, 2021; Xu et al., 2021; Zhang et al., 2021).
The advancement of CN has enabled the implementation of
biometric methodologies, such as EEG data collection, to gain
insights into the neural mechanisms associated with specific

S&A. By combining EEG data collection with neuropsychological
assessments, researchers can understand and enhance students’
cognitive capabilities, including oral and written communication,
critical reading, attention to detail, and memory functions
(Davidesco et al., 2021). Applying a neuroeducation approach
to engineering students can offer meaningful insights into
complying with the human-centricity of Industry 5.0. By focusing
on understanding and enhancing cognitive and socio-emotional
skills essential for effective human-machine collaboration and
innovation, educators can tailor instructional strategies and
interventions to optimize the learning experience (Bhargava and
Ramadas, 2022).

Insights into students’ cognitive strengths, learning preferences,
and emotional regulation abilities can be gained through EEG data
collection and neuropsychological assessments. For this reason,
this study intends to evaluate the proficiency levels of engineering
students in the relevant skills and abilities for Industry 5.0. This
evaluation is based on the correlation between the cognitive profiles
obtained from a neuropsychological test and the neurobiological
markers collected with the EEG device.

2 Overview

This section examines the transition from Industry 4.0 to
Industry 5.0, highlighting the important implications for industries
and higher education institutions. Explores the human-centric
approach inherent to Industry 5.0, emphasizing the importance
of identifying and assessing the skills and abilities necessary for
effective human-machine collaboration. Additionally, this section
presents the role of Cognitive Neuroscience and Neuroeducation
in improving the cognitive capabilities of engineering students,
providing a foundation for future workforce preparation in an
increasingly digitalized and interconnected world.

2.1 Industry 5.0 and human centered
design

The transition from Industry 4.0 to Industry 5.0 carries
significant implications for industries because of changes in
operations, driving innovation, efficiency, and flexibility (Xu et al.,
2021; Mourtzis et al., 2022). Industry 5.0 also implies challenges
and opportunities for society and individuals regarding workforce
transformation and ethical considerations (Saniuk et al., 2022).
Society must adapt to the changing nature of work, investing in
education, infrastructure, and policies that support the transition
to Industry 5.0 while experiencing changes in employment
patterns, skills requirements, and social dynamics. Individuals must
continuously update their skills, embrace lifelong learning, and
adapt to evolving job roles and responsibilities in the increasingly
digitalized and interconnected world of Industry 5.0 (Zizic et al.,
2022; Leon, 2023).

The transition from Industry 4.0 to Industry 5.0 also poses
significant implications for Higher Education Institutions (HEIs),
which play a critical role in preparing the workforce for
the changing industrial landscape (Gürdür Broo et al., 2022;
Caratozzolo et al., 2024). Most of the research related to the HEI
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challenge is related to incorporating cutting-edge technologies,
such as Artificial Intelligence, Augmented and Virtual Reality, and
Generative Language Models, into academic programs to ensure
that graduates can efficiently collaborate with intelligent machines
(Maddikunta et al., 2022; Azofeifa et al., 2024). However, HEIs
must emphasize lifelong learning and professional development,
offering programs and upskilling and reskilling initiatives to
support individuals not only in navigating the evolving demands
of the digital economy but also in having the requisite skills and
competencies for the future workforce (Chin, 2021; Poláková et al.,
2023).

One of the main elements of Industry 5.0 is its centrality in
human beings (Breque et al., 2021). In various studies, the authors
reviewed the relationship between Industry 5.0 and innovation,
finding that in the studies carried out so far the concept of human
centrality is present in some way, establishing that the advancement
of technology must be accompanied by human empowerment,
mapping different technologies that can increase resilience, as well
as productivity in an industrial context (Akundi et al., 2022; Rowan,
2023; Troisi et al., 2023). Although human centrality is considered
a potential enabler in the industry, it is also considered something
that can be replaced (Cannavacciuolo et al., 2023).

On the other hand, in the second category, the human aspect
is considered necessary for Industry 5.0. It describes it as an
“enabling factor of innovation, rather than as a variable that can
simply coexist with technology application” (Troisi et al., 2023).
Under this category for technology to thrive, its implementation
should be based on a human-centric approach. In addition, in
the third category, the social impact of Industry 5.0 is being
considered in a systems-based approach, where the objective of the
innovation processes tends to look for a positive impact on the
welfare of human beings (Záklasník and Putnová, 2019), as well
as to increase the resilience and sustainability of the system itself
(Calp and Bütüner, 2022). Finally, the fourth category delves into
the mechanisms related to knowledge management and its relation
to an innovation ecosystem as a catalyst for innovation (Carayannis
et al., 2022).

Within this context and aims to create a general understanding
of human-centricity, Gasson (2003) and Dym et al. (2005) have
defined of Human Centered Design as “an approach to design and
innovation in which an understanding of potential users drives
decision-making” and Van der Bijl-Brouwer and Dorst (2017)
description of Human Centered Design as “a group of methods
and principles aimed at supporting the design of useful, usable,
pleasurable, andmeaningful products or services for people.” Given
the relevance of Industry 5.0 for companies, it can be useful
to understand frameworks such as Human-Centered Design to
take the most advantage of daily technological advancements. For
effective use of Human Centered Design, it is critical to get an
integral understanding of humans (Sanders et al., 2023) in terms
of their aspirations (Van der Bijl-Brouwer and Dorst, 2017), desires
(Matheson et al., 2015), emotions (Matheson et al., 2015; Van der
Bijl-Brouwer and Dorst, 2017), values (Åman et al., 2017), dreams
(Sanders et al., 2023), concerns, cultural and political influences
(Buchanan, 2001; Zoltowski et al., 2012). Also, it has been seen
that the way students experience Human Centered Design can vary
depending on the understanding of the context within which it is

being used, the way how the students get immersed in the setting
of the user, critical experiences, and reflecting on the process itself
(Sanders et al., 2023).

The human-centricity of Industry 5.0 necessitates identifying
and assessing engineering graduates’ Skills and Abilities (S&A) due
to its emphasis on placing humans at the forefront of technological
innovation and industrial progress (SkillsFuture Singapore, 2021;
Future-Skills, 2023). In this paradigm, where human-machine
collaboration is central, understanding the capabilities and
proficiencies of engineering graduates is crucial for several reasons:
firstly, effective human-machine collaboration requires matching
individuals with tasks and roles that capitalize on their strengths
and expertise, maximizing creativity and innovation (Pizoń and
Gola, 2023); secondly, assessing the S&A of engineering graduates
ensures that individuals possess the competencies necessary to
be more resilient to disruption and make informed decisions
throughout the development and deployment of technology
(Saniuk and Grabowska, 2024).

Unfortunately, Industry 5.0 also contributes to the engineering
workforce’s skills gap and mismatch problem: its rapid
technological advancements require engineers to update their
skill sets to remain relevant continually (Puckett et al., 2020; Brun-
Schammé and Rey, 2021). On the one hand, many engineering
professionals may struggle to keep up with the rapid pace of
change, leading to a gap between the skills demanded by employers
and the skills possessed by the workforce (Braun, 2023). On
the other hand, Industry 5.0 requires engineers to have diverse
skills beyond traditional Knowledge, Skills, and Abilities (KSA)
frameworks (Huang et al., 2022; Caratozzolo et al., 2023). For
example, some soft skills, such as oral and written communication
and critical reading, as well as some Abilities, such as orientation,
attention to detail, memory-encoding, and memory-retrieving,
are increasingly valued in Industry 5.0 roles. Consequently, recent
graduate engineers with narrow specializations may struggle to
adapt to the human-centric nature of Industry 5.0 roles, leading to
mismatches between their S&A and the requirements of their job
roles (Aggarwal et al., 2022; Benitez-Marquez et al., 2022).

The skills gap in the industry refers to a misalignment between
the workforce’s skills and those that employers demand. This
gap poses significant challenges for companies striving to remain
competitive in rapidly evolvingmarkets (Schwab, 2017;WEF, 2018;
Nayernia et al., 2022). Furthermore, to address the challenges
posed by the skills gap, researchers and practitioners have turned
to KSA-based taxonomies to categorize and understand essential
competencies for various occupations (Caratozzolo et al., 2023).
These traditional KSA taxonomies have been critical in shaping
educational curricula and informing hiring practices in human
resources departments. However, these static taxonomies have
struggled to keep pace with the dynamic evolution of the job
landscape (Chang et al., 2019; Seemiller and Whitney, 2020).

Some leading occupational organizations have led efforts to
develop comprehensive frameworks to understand and address the
skills gap, such as the World Economic Forum (WEF, 2021, 2023),
NESTA Taxonomy (NESTA, 2023), SkillsFuture of the Government
of Singapore (SkillsFuture Singapore, 2021; Fang et al., 2022), the
Standard Occupational Classification (SOC) (U. S. Bureau of Labor
Statistics, 2018), among others. These frameworks offer insights
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into employability strategies, reskilling initiatives, and opportunity
mapping within the future economy. Through extensive surveys
and data analysis, these organizations have identified vital skills
and occupations for the future workforce (SkillsFuture Singapore,
2021; WEF, 2021, 2023). Along with this, there are some
taxonomy frameworks based on dynamic KSA that are currently
being developed, such as the example of the ShapingSkills
framework, which, through systematic literature reviews, industrial
surveys, and emerging trends in the labor market, together
with technical Natural language processing and other current
artificial intelligence techniques seek to have the dynamism
that the current industry requires regarding the issue of KSA
taxonomies that are fresh and functional during the exponential
growth of technologies and new requirements within industry
5.0 (ShapingSkills, 2023).

2.2 Cognitive neuroscience and
neuroeducation

Cognitive Neuroscience (CN) is an interdisciplinary subject
that seeks practical and theoretical methodologies that establish
connections between brain functions and mental processes (Banich
and Compton, 2018). Moreover, CN research has brought relevant
biological and psychological discoveries about cognitive processes
such as memory (Jimenez et al., 2020; Vaz et al., 2020; Bergmann
and Ortiz-Tudela, 2023), attention (Li et al., 2020; Jacob et al., 2021;
Niu et al., 2021), language (García et al., 2020; Finlayson et al., 2021;
Jiao et al., 2022) and emotions (Alexander et al., 2021; Eslinger et al.,
2021; Quadt et al., 2022). Cognitive processes are also involved
in the learning process, and recent research is creating learning
models to understand the different scenarios where this process
occurs (Parong and Mayer, 2021; Zhang et al., 2021; Skulmowski
and Xu, 2022).

The advancement of CN has allowed the implementation of
biometric methodologies to increase knowledge in other fields
such as psychology and education. An example of this is the
increasing adoption by researchers of portable EEG measuring
devices designed exclusively for research use (Williams et al.,
2020). These non-invasive headsets enable data collection in
natural environments, such as classrooms, tomeasure variables that
underlie learning like attention (Chen et al., 2017; Sezer et al., 2017;
Souza and Naves, 2021). They also use friendly Brain-Computer
Interfaces (BCI) made from Machine Learning (ML) and Artificial
Intelligence (AI) algorithms.

Recently, it is more common to correlate biometrics such
as EEG with different psychological and neuropsychological
tests due to the advantages. Tests have evaluated mostly
Neuropsychological characteristics such as memory, language,
attention, and visuospatial abilities to define executive functions
with behavioral results. Nowadays, complementing the observation
and definition of these cognitive abilities with biometrical responses
makes it possible to create more accurate diagnoses and abilities
profiles (Borgianni and Maccioni, 2020). For instance, visuospatial
abilities have been correlated with Alpha and Theta brain waves;
Jaramillo-Jimenez and his colleagues using the Judgment of Line

Orientation test (JLOT) in two groups one with Parkinson’s
Disease and another group of healthy controls found that when
alpha and theta are low in right and left occipital and right
parietal areas the performance in visuospatial ability is worse
(Jaramillo-Jimenez et al., 2021). On the other hand, models
for the prediction of a decline in cognitive domains have also
been used in different cognitive tests related to intelligence,
visual and verbal memory, and attention supported by multiple
neurotechnologies such as MRI Volumetry and Wavelets (Höller
et al., 2020). These are examples of how biometrics have been
used to complement Neuropsychological assessment. In addition,
this combined methodology has been transferred to other fields
such as education. This implies that research on cognitive process,
previously confined to the field of neuroscience, has incorporated
pedagogical methodologies to optimize learning in HE. For
instance, a study in 2022 developed a neuroscience-based initiative
for teaching skills in HE for the purpose of establishing critical links
between neuroeducation and pedagogical theories (Fragkaki et al.,
2022). These connections mention Neuroeducation principles such
as attention, critical thinking, chucking of content, and emotions
along with pedagogical theories such as cognitive load theory,
critical pedagogy, zone of proximal development, and meaningful
learning, respectively (Fragkaki et al., 2022). Moreover, educational
neuroscience directly impacts the professional purpose, patience,
and self-confidence of teachers who apply it in classrooms (Ching
et al., 2020).

Utilizing neurobiological studies to identify and assess
engineering students’ S&A offers a range of benefits in
understanding and enhancing their cognitive capabilities
(Davidesco et al., 2021). Researchers can gain valuable insights
into the underlying neural mechanisms associated with specific
S&A, such as oral and written communication and critical
reading, orientation, attention to detail, memory encoding,
and memory retrieval, by employing EEG data collection
and neuropsychological assessments (Gkintoni and Dimakos,
2022). These studies provide objective measures of cognitive
function, allowing for a more comprehensive evaluation of
students’ strengths and areas for improvement. Furthermore,
neurobiological approaches offer a unique perspective on
individual differences in learning styles, information processing,
and cognitive strategies, enabling tailored interventions and
personalized learning experiences (Bilder and Reise, 2019; Ni
et al., 2020; Apicella et al., 2022). By leveraging neurobiological
research, educators can develop targeted training programs that
optimize student learning outcomes and facilitate successful
integration into the workforce for the challenges of Industry 5.0
and beyond.

A neuroeducation approach applied to engineering students
can offer meaningful insights into complying with the human-
centricity of Industry 5.0 by focusing on understanding and
enhancing the cognitive and socio-emotional skills essential for
effective human-machine collaboration and innovation (Bhargava
and Ramadas, 2022). Educators can gain insights into students’
cognitive strengths, learning preferences, and emotional regulation
abilities using EEG data collection and neuropsychological
assessments (Bilder and Reise, 2019; Ni et al., 2020; Apicella et al.,
2022). Furthermore, a neuroeducation approach can help identify
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and develop the soft skills increasingly valued in Industry 5.0
(Saniuk and Grabowska, 2024).

2.3 EEG applications in educational
research

Recently, interest in measuring students’ brain activity in
different learning environments has increased. Portable EEG
devices have been particularly useful for this purpose. Various
types of these devices have been compared to determine
which offers the best signal quality and ease of use (Tsiara
et al., 2019), as these instruments are valuable in the field
of educational neuroscience. These devices have contributed to
understanding the neurocognitive variables that influence learning,
as their characteristics support effective data collection in natural
environments where teaching and learning processes occur (Gashaj
et al., 2024).

One such environment recently explored with EEG
instruments is Virtual Reality (VR), an innovative space where
students can engage in different activities. In 2021, a study
compared two groups of students taking a reading test inside and
outside of virtual reality. It found that the VR-reading condition
showed higher theta band frequency activation at the parietal
electrode sites (P3, P4, POZ), with a significant difference noted at
the POZ electrode. In contrast, the alpha frequency band exhibited
consistently lower activation across all electrode locations in the
VR-reading condition compared to the Real-reading condition
(Baceviciute et al., 2021). Another study demonstrated the
possibility of distinguishing various levels of mental workload by
analyzing electrical activity recorded from the scalp during an
interactive VR task (Tremmel et al., 2019).

Additionally, a recent study guide for a group of educational
researchers explored neural dynamics in the context of more
complex, naturalistic stimuli: algebraic (symbolic) and geometric
(non-symbolic) proofs. Students found geometric proofs more
challenging to understand than algebraic ones, which contradicts
the assumption about the intuitive appeal of visual, non-symbolic
reasoning (Gashaj et al., 2024). However, students rated algebraic
proofs as more familiar. The exploration of neural oscillations
during the processing of geometric and algebraic proofs revealed
distinctive patterns. Parietal electrodes showed greater activation
than frontal ones during both the extended presentation of
proofs and the first 200 ms, supporting the involvement of
the frontoparietal network in mathematical processing (Gashaj
et al., 2024). This illustrates the crucial role EEG tools play in
understanding students’ reasoning on specific topics.

Finally, another emerging topic in the field of education
involves investigations into how different technologies impact
learning processes. These studies are being conducted not only
in Higher Education but also in industrial learning scenarios,
focusing on interactions with technologies such as metaverse (Tlili
et al., 2022), robots (Tan et al., 2019), and augmented reality
(Villanueva et al., 2022). This growing interest has led to an
increased focus on measuring cognitive and emotional processes
using EEG instruments while students interact with machines
(Casamadrid et al., 2024).

3 Materials and methods

This section describes the process of collecting, developing, and
analyzing data related to this work. It includes subsections that
detail participant selection criteria, demographic characteristics,
neuropsychological evaluation to evaluate cognitive functions,
classifying participants’ performance according to age and
educational level. In addition, EEG data collection performed with
the use of Emotive Insight 2.0 headset during neuropsychological
assessment tasks, recording biometric performance metrics. Along
with this, the Procedure subsection describes the methodology
of the data collection sessions. Overall, this section provides a
comprehensive overview of the study methodology, crucial for
understanding human skills in the context of Industry 5.0.

3.1 Participants

The EEG and Neuropsi test data were obtained from a group
of 15 student volunteers. All students in this sample were from
the engineering school of Tecnologico de Monterrey (average age
of 20.7 years, SD = 2.5). The students belonged to the following
programs: six fourth semester students from B.S Innovation and
Development Engineering, three students from B.S in Sustainable
Development Engineering in the fourth and sixth semesters,
two students from B.S Mechatronics Engineering in the eighth
and fourth semesters, two fourth semester students from B.S in
Industrial and Systems Engineering, a second-semester student
from B.S. in Civil Engineering and an eighth-semester student from
B.S. in Computer Science and Technology. These participants had
no recorded background of neurological disorders. All subjects
provided consent after being adequately informed.

3.2 Neuropsychological assessment

As we mention in the introduction, the arrival of industry
5.0 implies an interdisciplinary approach in the search for
new methodologies in fields such as industry and education.
Within the framework of this interdisciplinarity, the use of
biometric instruments and tests developed from areas such as
Neuropsychology respond to a methodological novelty framed in
the needs of industry 5.0.

Neuropsi test is one of the most widely used instruments for
neuropsychological screening in Latin American countries (Santos
et al., 2020; Morlett Paredes et al., 2021), particularly in Mexico,
Argentina and Peru, where it is standardized (Ostrosky-Solís et al.,
1999; Querejeta et al., 2012; Marreros-Tananta and Guerrero-
Alcedo, 2022). As the most used test in clinical settings for
measuring various cognitive abilities, it offers statistical reliability
due to its standardization across different age groups. The
characteristics of this test enabled us to select it as a sufficiently
sensitive tool for measuring certain students cognitive abilities,
allowing us to link these abilities with biometric values.

A brief Neuropsychological Battery in Spanish to collect
information on the students’ abilities (Neuropsi breve) was
administered (Ostrosky-Solís et al., 2019). This test evaluates a
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TABLE 1 Test areas.

Orientation Attention and
concentration

Memory-
encoding

Memory-
retrieving

Language Reading Writing Executive
functions

Time Digits Words Spontaneous Denomination Reading Dictation Similarities

Place Visual detection Semi-complex
Figure

By categories Repetition x Write out Calculation

Person 20 - 3 x Recognition Comprehension x x Sequencing

x x x Semi-complex
Figure

Semantic
Verbal fluency

x x x

x x x x Phonological
Verbal fluency

x x x

wide spectrum of cognitive functions including orientation (time,
person, and space), attention and activation, memory, language
(oral and written), visual-spatial and visual-perceptual aspects, and
executive functions (see Table 1). The evaluation of these areas
includes techniques that reflect the specific characteristics of each
function and incorporates recent findings from neuroanatomical,
cognitive neuropsychology, and neurolinguistics research.

Neuropsi test has updated standardization data corresponding
to 2018, where it was administered to 2,000 normal subjects
between 16 and 85 years old. According to age, the sample was
divided into four groups: 16–30, 31–50, 51–65, and 66–85. Owing
to this standardization, this test features stratification according to
four educational levels: 0 years of study, low 1–4 years of study,
medium 5–9 years of study, and high 10–24 years of schooling. It is
important to note that these educational levels include elementary
education, as the test is also designed to evaluate cognitive processes
in individuals with no formal schooling. Considering the level of
education and age of the subject, the subject’s performance can
be classified as high standard, normal, mild-moderate alteration,
and severe alteration. In accordance with the aforementioned
characteristics of the Neuropsi test, our sample of students in
this research was classified in the age group of 16–30 years
old, and their educational level was high between 10–24 years.
Also, their performance was found between normal and high
normal categories.

On the other hand, the EEG data was collected with the Emotive
Insight 2.0 headset while the engineering students performed
the Neuropsi tasks. Emotive Insight headset is an EEG system
featuring five channels (as depicted in Figure 1) and utilizes semi-
dry polymer sensors, functioning as a brain-computer interface
(BCI). The EmotivPRO app enables recording performancemetrics
derived from the EEG data.

These metrics provide values for Engagement, Excitement,
Attention, Interest, Relaxation and Stress. Performance Metrics
are considered a biometric measure of cognitive and emotional
aspects. This research considered four main performance metrics
or mental states: Excitement, attention, engagement, and stress, as
explained below.

• Stress: It measures the level of discomfort related to the task
being performed.

• Engagement: It is related to a state of alert and conscious
direction of attention toward the main stimuli to perform
the task.

FIGURE 1

Emotiv Insight 2.0.

• Attention: It denotes a consistent focus on a singular task.
• Excitement: It is a sensation or perception of physical arousal

accompanied by a favorable value.

3.3 Procedure

This study involved compiling the data from the Neuropsi test
and the Performance Metrics to understand how human abilities
could be measured. To accomplish this, we collected a group of
engineering students to create a first evaluation protocol design.
This data was collected by a student-by-student session that lasted
around 1 h and 15 min each. At the beginning of each session,
the student received a concise overview of the methodology and
equipment. Later, the Emotiv Insight 2.0 device was positioned on
the student’s head, looking for the sensors to have good contact.
Afterwards, a concentration strategy was sought to increase the
quality of brain waves, and each student was helped to find the
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TABLE 2 Neuropsi test results.

Student
number

N-
score

Z-
score

Performance
ratings

Errors

S1 116 111 Normal 14

S2 123 120 High normal 7

S3 118 114 Normal 12

S4 119 115 Normal 11

S5 122 119 High normal 8

S6 118 114 Normal 12

S7 121 118 High normal 9

S8 122 119 High normal 8

S9 115 110 Normal 15

S10 128 127 High normal 2

S11 124 122 High normal 6

S12 127 126 High normal 3

S13 116 111 Normal 14

S14 127 126 High normal 3

S15 121 118 High normal 9

strategy that best suited them. Finally, when the connectivity
quality was between 70 and 90%, the test application could begin
with the EEG recording. This last part lasted about 25 min.

4 Results

The outcomes were obtained by testing 15 engineering students
on their cognitive abilities. Also, EEG was collected while students
performed the test to have a biometric counterpart. Regarding
the Neuropsi test, a sample profile was summarized, showing that
60% of the students evaluated had a performance rating of High
Normal, and the remaining 40% obtained a performance rating of
Normal. None of the participants received a performance rating of
mild-moderate or severe impairment. This shows that this test can
classify engineering students into two profiles according to their
performance in cognitive abilities.

On the other hand, there was the number of errors that the
students made in the test (according to the Neuropsi test, the errors
were counted due to omissions or incorrect answers within each
of the areas of the test). Original score (N-score), standard score
(Z-score), and the number of errors that each student obtained is
shown in Table 2.

Errors indicated that the test areas for this sample of students
were sensitive to measure errors. The area where students made the
most errors was theMemory-retrieving area, with 50 errors in total,
followed by the Attention and concentration area, with 25 errors,
and the Memory-encoding and Language areas, with 23 errors each
(see Figure 2).

In the areas of Writing, Reading, and Orientation, the students
made almost no errors, which means that these areas are made with
a different sensitivity because they are more aimed at measuring
neurocognitive damage. This could suggest that for this group of

engineering students, a plan could be developed to improve their
Memory-encoding and retrieving, Attention and Concentration,
and Language abilities to generate tools in the future workforce that
help them be prepared for continuous changes that bring industry
4.0 and 5.0.

Related to the Performance Metric, EEG data showed the
biometric values for four mental states: Attention, Engagement,
Excitement, and Stress. The results were calculated by weighting
the averages of the biometric values obtained by each student in the
different test areas. According to this, it is possible to observe how
each biometric result differs depending on the test area evaluated.

The mental state with the highest biometric scores in all areas
was Attention (see Figure 3). This shows how most students used
brain waves associated with the cognitive process of attention to
execute the different areas of the test.

Furthermore, the area that reported the highest biometric score
in Attention was Writing, and the area that reported the lowest
score in this mental state was Language, indicating which areas
of the test consume more Attention than others in the group of
engineering students evaluated.

The secondmental state to obtain high scores was Engagement.
Within this mental state, the area that received the highest score
was Orientation, and the area that received the lowest score was
Memory (Encoding). It is assumed that the moment of most
significant student Engagement occurs in Orientation because it is
the initial area of the test. For this reason, it is essential to observe
how, after the orientation area, Engagement modulates according
to the subsequent areas.

With these results, we obtained the lowest biometric values:
Excitement and Stress. Related to Excitement, the area that
obtained the highest biometric value was Executive Functions, and
the area that obtained the lowest score was Orientation. As we
explained before, excitement is the combination of physical arousal
and the perception of favorable value toward something. This
definition could be pointed out as to how areas that contain more
complex and diverse sub-tests tend to produce more excitement
in students.

Regarding Stress, the areas that obtained the highest scores were
Memory (Retrieving) and Reading, and the area that obtained the
lowest score was Orientation. It is also important to mention that
the orientation area was one of the most minor challenging tests,
which is why the evaluated students obtained zero errors in their
performance (see Figure 2). Furthermore, this could also explain
why, in the biometric values, this area received the lowest score
in Stress.

5 Discussion

Industry transitions present a paradigm shift in the industrial
landscape, emphasizing human focus, collaboration, and
innovation. As Industry 5.0 develops, it becomes imperative to
address changing educational needs and workforce requirements,
particularly in engineering education and creating knowledge,
skills, and abilities (KSA)-based taxonomies. The assessment and
categorization of KSA are crucial for developing effective training
and educational programs in the context of Industry 5.0. Existing
taxonomies, such as those developed by organizations like the
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FIGURE 2

Number of errors in each of the Neuropsi test areas.

FIGURE 3

Mental states during Neuropsi test application.

World Economic Forum and the Government of Singapore’s
SkillsFuture initiative, provide comprehensive frameworks for
understanding the essential competencies required for various
occupations (SkillsFuture Singapore, 2021; WEF, 2021). These
frameworks highlight the need for continuous skills development
and lifelong learning to adapt to the rapidly evolving job landscape.
Additionally, dynamic KSA taxonomies, such as the ShapingSkills
framework, leverage systematic literature reviews, industry
surveys, and emerging trends in the labor market to provide
real-time insights into skill requirements, that make it incorporate
advanced techniques like Natural Language Processing (NLP)

and Artificial Intelligence (AI), these dynamic taxonomies offer a
more responsive and up-to-date categorization of skills, addressing
the limitations of static taxonomies (ShapingSkills, 2023). This
approach aligns with the broader goals of Industry 5.0, which
emphasize human-centered innovation and the integration of new
technologies into the workforce (Redecker, 2017; Breque et al.,
2021; OECD, 2023). Integrating neurobiological insights with these
taxonomies could further enhance our understanding of cognitive
abilities and how they relate to job performance, ultimately
leading to more effective training programs and better-prepared
professionals for the future workforce (Fragkaki et al., 2022).
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Having this industry transition latent, a redefinition of the
CEE is necessary to encompass the integration of sustainability,
resilience, and human-centered principles in upskilling and
reskilling initiatives (Grodek-Szostak et al., 2020; Breque et al.,
2021). While Industry 4.0 laid the foundation for digitalization
and AI-driven technologies, Industry 5.0 emphasizes social
objectives, environmental considerations, and employee wellbeing
(Xu et al., 2021). As such, CEE programs should evolve to address
these changing priorities, preparing engineers to navigate the
complexities of Industry 5.0 while promoting lifelong learning and
professional development (Cuckov et al., 2022; Lantada, 2022).

The assessment of S&A is an essential element both in
universities and Industries. Companies employ people closest to the
Skills and Abilities profile required by each job position evaluating
them with different instruments. For this reason, Industry 5.0
places humans at the forefront of technological innovation,
highlighting the importance of understanding and evaluating the
skills and abilities of engineering graduates (Breque et al., 2021;
Troisi et al., 2023).

This methodology, which combines a cognitive abilities test
with a biometric, is the first interdisciplinary approach to recognize
from different perspectives how the abilities of engineering students
could be characterized. As a result of this combination, it was
possible to observe that the Neuropsi test is an instrument that
could evaluate some cognitive abilities of the engineering students
classified as normal and high normal, especially those areas of
the test where the students showed variations in the number of
errors such as Language, Memory-encoding, Memory-retrieving,
and Attention and concentration. Other authors have used the
Neuropsi test with different approaches, for instance, to measure
cognitive abilities such as attention and memory in students with
low reading comprehension (Pérez et al., 2020). Also, this test was
tested searching for a Tele-neuropsychological adaptation due to
the increase in the necessity to perform virtual neuropsychological
evaluations during the COVID-19 period (González-Osornio et al.,
2022).

One of the main objectives of HE is to prepare qualified
professionals who nourish the workforce. However, the rapid
pace of technological advancement contributes to a skills gap and
mismatch within the engineering workforce (Schwab, 2017; WEF,
2018). Therefore, HE institutions should search for resources that
help them understand the development of cognitive abilities in
students. CN is one of those new approaches that has brought
techniques and methodologies to different fields. For instance,
EEG and BCI techniques have been used in the education field
to understand how Mathematical Mindset theory should increase
student motivation (Daly et al., 2019). With these same techniques,
it has also been possible to understand the students attention
process while they are in an online class (Al-Nafjan and Aldayel,
2022).

As depicted above, implementing biometric technologies allows
us to delve deeper into not only the cognitive but also emotional
aspects of students (Rajendran et al., 2022). According to this, our
biometric data obtained from EEG allowed us to recognize the level
of four mental states of the 15 engineering students while they
performed the Neuropsi test. Two of these states were cognitive:
Attention and Engagement. And the other two mental states were
emotional: Stress and Excitement. It is interesting to observe how
cognitive mental states had higher scores than emotional states, but

even though the Neuropsi test measures cognitive abilities, stress
and excitement were present in all students. Furthermore, these two
emotional states fluctuated in the different test areas.

Along with this, it can be indicated that neurobiological
studies offer a promising way to evaluate the cognitive abilities
of engineering students in the context of Industry 5.0 (Aguayo-
González et al., 2021). Researchers can gain valuable insights into
students’ cognitive strengths, learning preferences, and emotional
regulation abilities (Apicella et al., 2022; Pathak and Kashyap,
2022) by leveraging EEG data collection and neuropsychological
assessments. This knowledge allows the development of specific
training programs adapted to individual learning styles and
cognitive strategies, facilitating successful integration into the
workforce (Nandi et al., 2021; Apicella et al., 2022). Additionally,
neuroeducation approaches can help identify and develop soft skills
increasingly valued in Industry 5.0 roles (Jolles and Jolles, 2021).

The design of collaboration spaces can also benefit from this
neurobiological approach. In terms of hybrid collaboration spaces
using immersive technologies, a Human-Centered approach can be
used for the design of an environment where employees can feel
comfortable (Mimnaugh et al., 2023) and participative (Kee et al.,
2023) to improve their performance.

Integrating neurobiological approaches into engineering
education represents a significant step in addressing the skills
requirements of Industry 5.0. Through this work, it can be indicated
that researchers could obtain a comprehensive understanding of
student’s cognitive abilities and adapt educational interventions
by seeking to combine neuropsychological assessments with EEG
data collection. This considers that these evaluation methods must
be further refined, their applicability explored more broadly in
different engineering disciplines, and their long-term impact on
workforce preparation and performance investigated.

All this taking into account that Industry 5.0 continues to
reshape the industrial landscape, and it becomes essential to
adopt innovative approaches to be applied in education and skills
assessment. So, by leveraging neurobiological insights and dynamic
taxonomies, educators and industry stakeholders can ensure that
engineering graduates are equipped with the diverse set of skills
potentially needed to thrive in the era of Industry 5.0.

Finally, it is important to mention that there is ample
information about the ethical concerns and correct uses of
biometrics in areas such as identity (Sutrop and Laas-Mikko, 2012)
and privacy (Tanwar et al., 2019). However, in the specific area
of educational research, these concerns still remain. With the
increased use of biometrics such as EEG, it is crucial to guide efforts
in this direction to enrich neuroeducation studies with ethical and
safe protocols for students and teachers, similar to the standards
established for VR environments (Christopoulos et al., 2021).

6 Conclusions and future work

This work shows a combined methodology that allowed us
to have a first approach to the cognitive abilities of engineering
students from neurobiological and behavioral perspectives.
Highlighting the abilities and skills assessment as a transversal
topic within industry 5.0 and CEE frameworks. Additionally,
two profiles were extracted from the results. The first profile
illustrates the Neuropsi test as an instrument that could evaluate
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some cognitive abilities in engineering students since it shows the
tendency of this sample to have more errors in some cognitive areas
than others. The second profile presents the EEG and Neuropsi test
interaction, showing engineering students’ cognitive and emotional
states based on biometric levels associated with the test areas. This
indicates the relevance of using biometric measurement tools to
have more complete student profiles.

As we said previously, this is the first approach to evaluating
cognitive abilities in engineering students. However, to achieve
the definition of an evaluation protocol that adapts to our KSA
taxonomy, it is necessary to continue exploring other tests and
assessment tools to continue integrating the pull of abilities framed
in Industry 5.0.

In the future, one of the benefits that the design of an evaluation
protocol can bring is integrating its S&A diagnoses into training
programs and human-centered collaboration spaces.
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