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Introduction: This study investigates the multifaceted nature of motor learning

in a complex bimanual task by examining the interplay between mental

representation structures, biomechanics, tactile pressure, and performance. We

developed a novel maze game requiring participants to maneuver a rolling

sphere through a maze, exemplifying complex sequential coordination of vision

and haptic control using both hands. A key component of this study is the

introduction of cognitive primitives, fundamental units of cognitive and motor

actions that represent specific movement patterns and strategies.

Methods: Participants were divided into two groups based on initial

performance: poor performers (PPG) and good performers (GPG). The

experimental setup employed motion capture and innovative tactile sensors to

capture a detailed multimodal picture of the interaction process. Our primary

aims were to (1) assess the e�ects of daily practice on task performance,

biomechanics, and tactile pressure, (2) examine the relationship between

changes in mental representation structures and skill performance, and (3)

explore the interplay between biomechanics, tactile pressure, and cognitive

representation in motor learning.

Results: Performance analysis showed that motor skills improved with

practice, with the GPG outperforming the PPG in maze navigation e�ciency.

Biomechanical analysis revealed that the GPG demonstrated superiormovement

strategies, as indicated by higher peak velocities and fewer velocity peaks

during task execution. Tactile feedback analysis showed that GPG participants

applied more precise and focused pressure with their right-hand thumb,

suggesting enhanced motor control. Cognitively, both groups refined their

mental representation structures over time, but the GPG exhibited a more

structured and sophisticated cognitive mapping of the task post-practice.

Discussion: The findings highlight the intertwined nature of biomechanical

control, tactile feedback, and cognitive processing in motor skill acquisition. The

results support established theories, such as the cognitive action architecture

approach, emphasizing the role of mental representation in planning and

executing motor actions. The integration of cognitive primitives in our analysis

provides a theoretical framework that connects observable behaviors to

underlying cognitive strategies, enhancing the understanding of motor learning

across various contexts. Our study underscores the necessity of a holistic
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approach to motor learning research, recognizing the complex interaction

between cognitive and motor processes in skill acquisition.

KEYWORDS

bimanualmotor learning,maze, SDA-M, skill acquisition, biomechanics, tactile pressure,

cognitive primitives

1 Introduction

Motor learning, the process of acquiring and refining motor
skills through practice, is a fundamental aspect of human
development, adaptation, and performance in various domains
such as sports, rehabilitation, and daily activities (Newell, 1991).
To design effective interventions and tailored training strategies for
optimizing skill acquisition and performance, it is essential to have
a comprehensive understanding of the underlying mechanisms
of motor learning (Wulf and Shea, 2002; Wolpert et al., 2011).
Although research in motor learning has traditionally focused
on unimanual tasks or relatively simple bimanual tasks, the
processes involved in more complex, naturalistic bimanual motor
learning remain relatively unexplored (Swinnen, 2002; Swinnen
and Wenderoth, 2004; Johansson and Flanagan, 2009).

In this study, we aim to investigate how humans acquire a new
manual skill that requires the organization of a sequence of rapid
sensorimotor actions, each characterized by delicate coordination
of tactile, kinesthetic, and visual sensing. Johannson and Flanaghan
(Johansson and Flanagan, 2009) described manipulation tasks as
a series of specific sensory events linked to subgoals. To achieve
these subgoals, the brain has to select and execute appropriate
action-phase controllers (Johansson and Flanagan, 2008). We have
developed a task that involves maneuvering a rolling sphere
through a configuration of “obstacles” forming a “maze,” held and
controlled bi-manually (see Figure 1). This task exemplifies one of
the numerous skills requiring complex sequential coordination of
vision and haptic control through the use of two hands (Johansson
and Flanagan, 2009; Bentivegna et al., 2003).

Our chosen platform’s unique feature is the dynamic yet
constrained nature of the maze game itself, combined with motion
capture of the maze and the sphere and novel tactile sensors
(Schürmann et al., 2011). These elements allow us to monitor the
finger forces where the hands contact themaze to control its motion
(Maycock et al., 2010) and provide a precise multimodal picture
of the entire interaction process. Consequently, we can analyze
and model the task’s essential aspects and the progression of the
underlying multimodal interaction patterns during learning. By
devising a maze game task that exemplifies complex sequential
coordination of vision and haptic control by using two hands
(Kelso, 1984), combining motion capture and novel tactile sensors,
we aim to obtain a precise multimodal picture of the entire
interaction process. This enables us to analyze and model the
essential aspects of the task and the progression of the underlying
multimodal interaction patterns during learning (Atkeson and
Hollerbach, 1985).

Moving the sphere through the maze can be viewed as a
balanced compromise between simplifying the control task at the
sensorimotor level (e.g., reducing the dimensionality of the control

task when sliding the sphere along a maze wall toward a stable
state instead of fully controlling it “in the open”) and simplifying
the cognitive task at the planning/sequencing level (e.g., preferring
a more straightforward path shape over a more complex one).
Indeed, on the path toward complete control of the sphere in the
open, we expect interesting intermediate steps such as navigating
the sphere through the maze using a series of bounces off walls.
We observed that learning involves phenomena characterized by
different time scales, such as the transition from totally untrained,
inferior initial performance to “mediocre task mastery” within a
small number of trials (van Beers, 2009). We will characterize
this rapid learning and compare it with the structure of the more
prolonged (requiring multiple sessions) transition to “mastery.”

Daily practice significantly improves motor learning
performance, enhancing movement accuracy and reducing
error rates (Ericsson et al., 1993; Ericsson, 2008; Hardwick et al.,
2017; Magill Richard and Anderson, 2021). This improvement has
been suggested to be linked to biomechanical adaptations, resulting
in more efficient movement patterns and optimized joint torques,
particularly in lower limbs during activities like sit-to-stand
transitions (Serbest et al., 2015; Schmidt et al., 2018). Practice also
leads to behavioral changes, increasing speed, reducing cognitive
load, and promoting automaticity (Haith and Krakauer, 2018;
Krakauer et al., 2019). These changes are supported by neural
adaptations, with shifts in brain activation patterns indicating
reduced prefrontal cortex activity and increased subcortical
engagement as tasks become more automatic (Poldrack et al.,
2005; Sadtler et al., 2014). Tactile feedback plays a crucial role,
allowing fine-tuning of motor actions based on sensory input,
although specific studies on tactile pressure are limited (Johansson
and Flanagan, 2009; Lederman and Klatzky, 2009; Gopaul et al.,
2023). The interaction between these dimensions is vital; intrinsic
feedback mechanisms are known to enhance motor learning (Wulf
et al., 2010), while the importance of sensorimotor integration
is well-documented (Wolpert et al., 1995; Körding and Wolpert,
2004; Ernst, 2007). Overall, daily practice leads to improved
performance, biomechanical efficiency, and refined tactile control,
underpinned by neural and behavioral adaptations (Yamada et al.,
2019; Krakauer et al., 2019).

The cognitive action architecture approach (CAA; Schack,
2004, 2020) posits that mental representation structures play a
crucial role in motor learning by serving as a foundation for
planning and executing motor actions. Consistent with this view,
previous research has demonstrated the importance of mental
representation structures in developing and controlling voluntary
movements (Mechsner et al., 2001; Schack and Mechsner, 2006;
Frank et al., 2013; Schack and Frank, 2021). However, the
relationship between mental representation structures and motor
performance in complex bimanual tasks remains to be elucidated.
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FIGURE 1

The figure illustrates the computer-aided design (CAD) of the maze game alongside the physical maze. The CAD design depicts the maze’s structure,

corridors, and walls, while the physical maze object showcases the tangible representation. The tactile sensors are visibly attached to the sides of the

maze (Cienfuegos, 2024).

Moreover, motor learning research has often overlooked the
role of biomechanics and tactile pressure in skill acquisition,
despite their potential importance in achieving efficient movement
control and optimal performance (Enoka, 1997; Dahiya et al.,
2009; Lee-Miller et al., 2019). Understanding the interplay between
biomechanics, tactile pressure, and mental representation structure
can offer valuable insights into the multifaceted nature of motor
learning processes.

In line with these perspectives, we hypothesize that mastery
in motor learning is accompanied by a gradual emergence of
strong “blending patterns.” This involves a gradual transformation
from a “program-like discrete” structure of successive Basic Action
Concepts (BACs) (Schack and Frank, 2021) into a more “holistic”
interaction pattern, where consecutive BACs are strongly “blended”
into each other.

Therefore, we aim to (1) investigate the effects of daily
practice on task performance, biomechanics behavior, and tactile
pressure, (2) examine the relationship between changes in mental
representation structures and changes in skill performance on
a complex movement, and (3) explore the interplay between
biomechanics, tactile pressure, and mental representation structure
in motor learning. By integrating findings from performance,
biomechanics, tactile pressure, and mental representation structure
analyses, our study seeks to provide a more comprehensive
understanding of the underlying processes involved in motor

learning and contribute to the broader understanding of motor
learning and neurocognition.

Our investigation into the maze game task also affords an
excellent opportunity for observing both error-based learnings
(Martin et al., 1996) and reinforcement learning (Izawa and
Shadmehr, 1996), which for human motor tasks has thus far
received little attention. Furthermore, our approach seeks to
capture the essence of human learning for novel tasks such as
the maze game to gain insights into the process and perhaps
use this knowledge to bootstrap machine learning algorithms on
our anthropomorphic robot systems (Bentivegna et al., 2004).
By studying the fine-grained details of human learning during
the acquisition of a complex bimanual skill, we hope to uncover
general principles of motor learning that could be transferable
to other domains, such as sports training, rehabilitation, and the
development of more efficient and human-like robotic systems.

In summary, the present study aims to explore the multifaceted
nature of motor learning in a complex bimanual task, examining
the interplay between mental representation structures,
biomechanics, tactile pressure, and performance (Karniel and
Mussa-Ivaldi, 2002; Latash, 2012; Land et al., 2013). By providing
a comprehensive understanding of the underlying processes
in motor learning, our findings will not only contribute to the
growing body of knowledge in the field of motor learning but
also have practical implications for designing effective training
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FIGURE 2

The hardware maze setup. The starting position is marked with an a; the b indicates the goal position. There are a total of nine pits, see example at c,

distributed along the maze pathways, and four small reflective markers were placed in the corners of the maze as exemplified at d. A small bright red

steel sphere was used to navigate the maze.

strategies, interventions, and robotic systems that emulate human
motor control and learning capabilities (Peters and Schaal, 2006;
Maycock et al., 2010; Sigrist et al., 2013).

2 Materials and methods

2.1 Participants

Twelve participants from a local university (five female,
seven male; Mage = 21.38 years, SD = 1.92 years) took part in
the present study. All of the participants were initially naive
about the purpose of the experiment and gave their informed
consent prior to the experiment. They were required to self-
report that they were healthy, had normal or corrected to
normal visual acuity, and had no known cognitive or neurological
problems. Participants self-reported being right-handed; however,
no formal handedness inventories were applied. The experiment
was conducted in accordance with the ethical standards stated
in the 1964 Declaration of Helsinki and revised in 2013,
and approved by the Ethics Review Board (EUB) of Bielefeld
University.

TABLE 1 Experimental procedure design including three test days and

post-test.

Pre-test Skill acquisition phase Post-test

Day 1 Day 1–Day 3 Day 4

SDA-M + performance
rating

Maze practice SDA-M

SDA-M: structural dimensional analysis of mental representation; performance rating: 10min

of maze play to rate participants’ initial performance; maze practice: 20 min of maze play after

three warm-up minutes.

2.2 Apparatus and maze design

The experiment was carried out in the Manual Intelligence
Laboratory (MILAB) (Maycock et al., 2010) which houses 14 Vicon
(VICON, 2015) MX3+ cameras (200 Hz) for motion capture. The
maze was designed with attached tactile sensors (Schürmann et al.,
2011) to capture the pressures applied by participants during their
execution. The maze measures 17 cm × 15 cm, with additional
tactile sensor pads on the left and right, each sized 9 cm × 9
cm (sensor area 8 cm × 8 cm, including a 5 mm frame). The
overall weight of the maze, including the tactile pads, is 650 g. A
contact microphone was added to the underside of the maze in
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order to detect contact collision events, and four retroreflective
markers were placed on the corners of the maze. The experiments
were recorded using a high-speed Basler camera capturing at 200
Hz. The maze includes a series of straight, turns, cross-junctions,
and terminal sections. There are nine pits distributed along the
two possible pathways (upper and lower path) (see Figure 2 for a
detailed view).

2.3 Experimental procedure

The present study consisted of a pre-test, a skill acquisition
phase of three consecutive days of practice, and a post-test (see
Table 1) following the same procedure for all participants.

2.3.1 Pre-test
First, participants were informed about the overall investigation

and were asked to read and sign an informed consent form.
Next, before beginning the experiment and having any contact
with the maze itself, the initial state of the mental representation
structure was evaluated. Expressly, participants were provided
with an explanation regarding the splitting procedure process and
the significance of the 14 movement situations present in the
maze. Then, participants were instructed to decide whether the
situations or basic action concepts were related to one another
or not to execute the required movement when solving the
maze. Following this, the participants completed the splitting
procedure to determine their starting mental representation
structure. After that, participants had an initial 5-min period to
familiarize themselves with the maze. During this time, the goal
was to navigate the sphere through the maze from the starting
to the target position while avoiding the pits. Subsequently, to
assess participants’ initial performance rating, each participant
navigated the maze for an extra 10 min. This time, they were
told to avoid contact with the walls altogether. A complete
trial was considered every time the sphere reached the target
position; anytime the sphere fell into a pit, the trial was deemed
terminated, and they had to restart from the starting point. We
also controlled the amount of time the participants performed in
the upper path and the lower path for parity. It was made clear
to participants that they could take as long as they needed to
complete each trial.

2.3.2 Skill acquisition phase
Participants performed a warm-up playtime of 3 min with

the maze, followed by a practice period consisting of 20 min
of maze play per day for three consecutive days, following the
same rules as before. Participants should avoid contacting the
walls or falling into the pits, otherwise, the trial is restarted, and
they had no time limit restrictions for individual trials. In detail,
participants played for 10 min in the upper path and 10 in the
lower path, and the order of play was respectively counterbalanced.
No feedback was given during this phase. The only feedback
received by the participant was that of the visible outcome (i.e.,
trial terminated).

2.3.3 Post-test
The post-test was done the day after the end of the skill

acquisition phase. The same experimental procedure for assessing
mental representation was followed. The goal of the procedure
was to determine alterations in participants’ mental representation
structure induced by mastering the maze.

2.4 Measurements

2.4.1 Cognitive primitives in maze task
Previous studies (Bentivegna and Atkeson, 2001; Bentivegna

et al., 2004) have proposed a set of primitives extracted from
observing humans playing a maze game followed by self practice.
Bentivegna and colleagues argued that if primitives are not used
to learning, generalization is not feasible. Primitives provide a
way to allow the reuse of learned actions. The primitives they
identified include “Guide,” “Roll To Corner,” “Roll From Wall,”
and “In Corner.” These primitives represented sequences of task
states, including the position and velocity of the marble, as
well as the maze tilt angles. While their results are remarkable,
and they have succeeded in endowing robots with the ability to
play a maze game (Bentivegna et al., 2004), we observed that
these primitives were derived solely from successful trials and
did not account for scenarios involving mistakes or variations in
sensorimotor control.

2.4.2 Introduction of cognitive primitives
To address this limitation and provide a more comprehensive

representation of the maze game, we introduced the concept of
“cognitive primitives.” Cognitive primitives are fundamental units
of cognitive and motor actions that represent specific movement
patterns and strategies in the context of the maze task. This
approach aligns with the concept of action primitives as elementary
building blocks for action representation, widely supported in the
literature (Handzel and Flash, 1999; Bennequin et al., 2009; Giszter,
2015).

We expanded the original set of primitives to include additional
primitives that capture a wider range of movements and scenarios.
The newly introduced cognitive primitives include “Random
Bounce,” “Controlled Bounce,” “Steady,” “Roll Along Wall,” “Roll
To Wall,” and “At Rest,” (see Table 2).

TABLE 2 Definitions of cognitive primitives in maze task used in the study.

Random bounce The ball bounces around randomly with little or no
apparent control

Roll along wall The ball rolls along the wall continuously

Controlled bounce The ball bounces off a wall once before exiting a
particular section of the maze

Roll to wall The ball rolls to a wall and then rolls along the wall

Steady A variant to the Guide primitive, the ball rolls forward
without touching any walls and then returns to a
similar position

At rest The ball is motionless for a defined period of time
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FIGURE 3

The chosen set of maze primitives. The left-hand side box contains primitives from Bentivegna et al. (2004) in the tilt maze environment, which we

extended to include those shown in the box on the right.

These cognitive primitives encompass a broader spectrum
of actions, including bouncing, rolling along walls, resting, and
controlled maneuvers, thereby accommodating scenarios involving
mistakes or imperfect control (see Figure 3).

2.4.3 Cognitive structures and mental
representation

The term “cognitive primitives” allows us to link the observed
behavior to the practical strategies employed by participants to
solve the maze task. These primitives are not merely kinematic
patterns but we see them as cognitive and functional units
representing the mental representation structures underlying the
planning and execution of movements. To provide a clearer
understanding of the concept, cognitive primitives refer to
the basic units of thought and action planning required for
efficient navigation of the maze. They are crucial for constructing
and refining the mental representations that guide movement,
integrating sensory feedback and motor commands to optimize
performance. Consistent with this view, previous research has
demonstrated the importance of mental representation structures
in developing and controlling voluntary movements (Mechsner
et al., 2001; Schack and Mechsner, 2006; Frank et al., 2013; Schack
and Frank, 2021). This concept is supported by recent research
on the role of the cerebellum in constructing functional and
geometrical spaces, which emphasizes the importance of motor
primitives in explaining movement and perception-action coupling
(Langlois et al., 2024).

2.4.4 Skill performance
After deciding on the cognitive primitives that best suit our

maze game, we follow a similar approach as laid out by Bentivegna
et al. (2003) to recognize these primitives and annotate and
segment trials automatically. To avoid subjective variations caused
by manual annotation processes, we automated the primitive
detection procedure. Four Viconmarkers were placed on themaze’s
corners, and the Basler camera was calibrated with the Vicon
setup. The steel sphere was painted bright red to facilitate tracking.
Furthermore, a model of the maze, divided into 21 sections to
assist with tracking and improve the identification of the cognitive
primitives, was then overlaid on top of the maze image. Each of
these 21 sections was further analyzed by the computer vision
algorithm.

Breaking each trial into a sequence of cognitive primitives
allowed us to compute a performance score. This was done by
assigning a penalty to primitives which contained a contact with the
wall. Thus, a symbolic representation of each trial was produced,
and an overall fitness score was computed by calculating the
distance each trial was from an ideal trial containing only “Guide”
primitives (i.e., completely avoiding all contact with the walls). An
ideal trial, composed solely of “Guide” primitives and other non-
wall-contact primitives, was assigned a score of 1. Therefore, 1 is the
maximum score, and every time wall-contacting primitive occurs,
a corresponding penalty was subtracted from this ideal score until
the lowest possible score of 0. The length of the strings (i.e., the time
duration of each trial) was not penalized. See Figure 4 for a single
trial example.

2.4.5 Biomechanic metrics
The aforementioned 14-camera Vicon system was used to

capture the position of 4 retroreflective markers attached to the
maze corners at 200 Hz. The raw three-dimensional coordinates
were exported and preprocessed. Specifically, the data was filtered
through a fourth-order low-pass Butterworth digital filter with an
estimated optimum cutoff frequency ranging from 6 to 17 Hz,
depending on the data frequency and value ranges (Yu et al., 1999).
This filtering process helps mitigate the influence of high-frequency
noise that could skew the results.

For each trial, we extracted velocity profiles using a custom
MATLAB R2021a program (MATLAB, 2021) calculating the
velocity in three-dimensional space to obtain the magnitude of
the joint velocity in Euclidean terms for each marker (Robertson
et al., 2013). These profiles were derived by calculating the average
rate of change of position of all markers with respect to time.
The profiles of all markers were then averaged to produce a
single, comprehensive velocity profile of the maze. From these
velocity profiles, we identified two key metrics: the peak velocity
and the number of velocity peaks. The peak velocity is defined
as the maximum instantaneous velocity achieved during the trial.
To ensure robustness against outliers, we applied an additional
step of detecting and removing spurious spikes that deviate
significantly from the local velocity trend before determining the
peak velocity. The number of velocity peaks is determined by
counting the instances of local velocity maxima that exceed 40%
of the peak velocity, with each peak separated by a minimum
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FIGURE 4

A single trial example, highlighting the process of scoring and evaluating trial performance in the maze game. The maze is divided into 21 sections,

and each section is further analyzed by the computer vision algorithm. Penalties are assigned for wall contact, and the algorithm reports the latest

identified primitive and its corresponding section. Additionally, the algorithm visually represents performance by coloring each section, ranging from

red to green. Full green represents an ideal scenario with “Guide” primitives, while full red indicates a chain of penalized primitives, indicating poor

performance.

interval of 100ms to ensure distinctness (Thomas et al., 2022).
These peaks generally represent the sub-movements within the
task. These sub-movements refer to different motions that are
present in the primitives; they tend to exhibit these sub-movements,
characterized by a pattern of initiating and then halting motion.
The task, therefore, consists of a sequence of sub-movements,
each displaying a bell-shaped velocity profile. While this metric
counts the number of peaks, it does not account for the amplitude
of velocity variations. Therefore, it should be noted that a high
peak velocity does not necessarily equate to effective or controlled
movement performance. Small and large velocity variations are
treated equally in this analysis. However, these sub-movement
peaks are essential in understanding the task’s completion as they
highlight the participant’s movement strategy and control.

2.4.6 Tactile pressure
Using the tactile sensors, we obtained the pressure values for

the thumb finger of the left and right hand, respectively. The
pressure range of the sensor was calibrated for 3–100 kPa, and the
response values range from 0 to 4,095. However, due to the sensor
characteristics, the response values cannot be taken as a simple
linear measure of the net normal force applied to the sensor. A 16
× 16 tactile image was extracted from the values and preprocessed
with a 3-by-3 neighborhood median filter to remove any possible
undesired noise and artifacts. Thereafter, a mean tactile pressure
image was produced for each trial using a custom program written
in MATLAB R2021a (MathWorks, Inc., Massachusetts, USA) by
averaging the tactile values.

We used the 16 × 16 tactile image to represent the spatial
distribution of pressure across the sensor’s surface, as the raw sensor
response values cannot be linearly interpreted as a direct measure
of the net normal force applied. This approach allowed us to better
understand the pressure interaction between the thumb finger and
themaze, as well as identify any variations or patterns in the contact
pressure during the trials. Thus, using tactile images provided

a more comprehensive and informative representation of the
pressure involved in the experiment, enhancing the overall analysis.

To address potential non-linearity and ensure consistency
across sessions, we normalized the pressure images by averaging
the values relative to each session. This normalization accounted
for any deviations in measurements between sessions, given the
inherent characteristics of the sensors and the possibility of
calibration differences.

2.4.7 Mental representation structure
The structural dimensional analysis of mental motor

representations (SDA-M) was utilized to evaluate the participants’
mental representation structures for the maze game. This method
provides a psychometric assessment of the relational structures
and dimensions of mental representations of complex movements
stored in long-term memory (see Schack, 2012, 2020 for more
details). Instead of relying on explicit participant statements, the
SDA-M reveals representational structures through knowledge-
based decisions in an experimental context. In essence, SDA-M
identifies relationships between basic action concepts (BACs) of a
motor action in memory.

The SDA-M involves four steps: First, a splitting procedure is
used to obtain distance scaling, resulting in a Euclidean distance
that measures the proximity between representational object units
(BACs) associated with a specific motor action in long-term
memory (LTM). Second, hierarchical cluster analysis organizes the
BACs into a hierarchical structure, forming a dendrogram. Third,
factor analysis combined with a cluster-oriented rotation process
is performed to dimension the cluster solutions, producing a
factor matrix categorized by clusters. Finally, an invariance analysis
compares cluster solutions both between and within individuals.
For a more detailed explanation, refer to Schack (2012, 2020).

Following the SDA-M methodology, the first step, the splitting
task, was performed on the representational distance between the
selected BACs. The participants were asked to subjectively judge
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FIGURE 5

An example of an item comparison from the SDA-M questionnaire for the maze game. Participants were required to choose either the negative or

positive sign based on whether the two presented basic action concepts (BACs) at each time, which refer to the type of movement within the given

maze situation, are related to each other during motor performance or not.

the functional equivalence of pairs of BACs (BAC × BAC: pairs
of BACs are judged as “functionally related” or “not functionally
related” to each other) responding on a positive/negative basis
(i.e., positive if related, negative if different) on a computer-
based experiment. Functionally related refers to the mobilization of
body segments, muscles, and proprioception within an egocentric
reference frame, according to their own motor execution of
the movement. Specifically, participants were required to judge
whether two movement maze situations are related to one another
or not regarding the movement execution to solve the maze
sequence (see Figure 5). For the specific purpose of the present
study, a pre-determined set of 14 BACs of the maze game were used
(see Table 3), each BAC pertaining to one particular movement
type of the maze game: down-right (BAC 1, 9, 14), right-around
(BAC 2–3), down-left (BAC 7–8, 13), up-right (4, 6, 11), and
right-diagonal-up (BAC 5, 10, 12). Among the fourteen BACs
chosen for this study, a randomly selected BAC is presented as an
anchor on a computer screen; the remaining thirteen BACs are
presented one after another in a randomized order (see Figure 6
for an overview of the fourteen BACs). The same procedure is
repeated, randomly selecting a different anchor BAC until every
BAC has been compared to every other. Thus, in total, participants
were asked to make a total of 182 judgments (14 anchors × 13
comparisons).

2.5 Data analysis

Before proceeding with any analysis, the participants’ data
were split into two groups according to their initial maze
performance (first 5 min of practice during the first day). These
maze performance scores were based on the overall fitness
score described prevously, where higher scores indicate better
performance with fewer penalty primitives for wall contact.
Individual scores from these initial minutes were collected and
analyzed using a linear regression method to identify performance
trends and progression throughout the experiment. Based on this
regression analysis, participants were categorized into two groups:

TABLE 3 Each of the 14 basic action concepts (BACs) mapping the

movement situations of the maze game can be functionally assigned to

one of the movement types.

No. Movement (BAC) Movement type

(1) Down-right Down-right

(9) Down-right

(14) Down-right

(2) Right-around-right Right-around

(3) Right-around

(7) Right-down Down-left

(8) Down-left

(13) Down-left

(4) Up-right Up-right

(6) Up-right

(11) Up-right

(5) Right-diagonal-up Right-diagonal-up

(10) Right-diagonal-up

(12) Right-up-around

The numbers on the left relate to the different BACs; they do not reflect any particular order

but serve to better display the concepts in Figures 10, 11.

poor performance group (n = 6, three female, three male; mean age
= 21.83 years, SD = 1.32 years), and good performance group (n =
6, two female, four male; mean age = 20.73 years, SD = 1.83 years) ,
ensuring equal group sizes. After establishing these two groups, we
continued with the following analyses.

2.5.1 Maze score performance and biomechanics
We evaluated the possible relation between the maze score

performance and the maze’s biomechanics measurements using
a Multivariate Analyses of Variance (MANOVA) testing for
interaction and main effects by day (repeated measures). The
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FIGURE 6

Sequence of 14 pictures depicting the functional movement situations in the maze game, each corresponding to one of the points from 1 to 14.

Participants were required to judge these situations, with each picture representing a specific type of movement within the maze game (refer to

Table 3).

significance level for data analysis was set at 5%. The sphericity
assumption was also assessed using Mauchly’s test in the
between-subject repeated measure analysis. Whenever the test was
violated, necessary technical corrections were performed using the
Greenhouse–Geisser test (Greenhouse and Geisser, 1959; Abdi,
2010).

2.5.2 Tactile pressure
For this experiment, we were not interested in the absolute

forces exerted by the thumbs but in the pressure that each thumb
applies on the sensors during the experiment and how this evolves
as the training days progress. To this purpose, we generated a mean
tactile pressure two-dimensional map image for each training day
between the groups. From these generated images, we computed
the image centroids (center of pressure) using the method of
moments first described by Hu (1962), and using the idea of contact
centroid introduced by Bicchi et al. (1993) and later adapted by
Cannata et al. (2008) for each tactile image. The centroids represent
the high-pressure region and approximate the shape of the pressure
distribution to an ellipsoid.

Following a similar approach as with the performance
and biomechanics analysis, we evaluated the ellipsoid areas
using Multivariate Analyses of Variance (MANOVA) testing for
interaction and main effects by day (repeated measures) for each
thumb’s hand respectively. We set the significance level at 5%,
kept the same assumptions for the between-subject analysis, and

performed the technical corrections using the Greenhouse–Geisser
test when necessary.

2.5.3 Mental representation structure
A cluster analysis of the mean dendrogram for each group

was performed. The purpose of the cluster analysis is to reveal
the significant clusters in the mean dendrogram by the group; for
details, see Schack (2012, 2020). For all cluster analyses conducted,
the significance level was set to a 5% (α = 0.05), which corresponds
to a 95% confidence level for decisions made (i.e., p < 0.05).
The threshold value of 3.42 (dCrit = 3.42) is a critical value for
the dissimilarity measure used in the clustering algorithm. This
threshold was determined based on the statistical method employed
to ensure that the identified clusters are statistically significant.
All the clusters in the dendrograms below 3.42 are considered
statistically significant, whereas those above this value are taken as
statistically irrelevant. Then, an invariance analysis was performed
to investigate the statistical differences in the mental representation
structures between the groups. The invariance (λ) is a measure of
the similarity between cluster solutions, where lower values indicate
greater differences. According to Lander (1991) and Lander and
Lange (1992); see also Schack (2012), two cluster solutions are
variant, that is significantly different, for λ < 0.68, while two cluster
solutions are invariant for λ ≥ 0.68. This threshold value of 0.68
was also used in our study to determine the invariance or variance
between the cluster solutions. It corresponds to a critical point
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derived from empirical studies and statistical methods, ensuring
that clusters with λ values below this threshold are significantly
different. In addition, the adjusted rand index (ARI; Rand, 1971;
Santos and Embrechts, 2009) was used to examine the degree of
similarity between the group’s mental representation structure and
the reference structure. The reference structure, which represents
the idealized cognitive structure that expert participants are
expected to develop through extensive practice and experience with
the task, has been manually designed for our particular maze to
the best of our expertise (see Supplementary Figure S1). To learn
more about how reference structures are built, please see Schack
and Mechsner (2006) and Frank et al. (2013). The ARI serves as
an index of similarity on a scale from –1 to +1. On this scale,
values close to –1 indicate that the two compared cluster solutions
are different, with –1 indicating a “completely different” degree of
similarity. The values close to 1 indicate that the two compared
cluster solutions are similar, with 1 indicating that the cluster
solutions are “completely same” or identical.

3 Results

3.1 Skill level and days of practice impact

A 2 (skill level group) × 3 (practice days) MANOVA, with
repeated measures, was computed. The MANOVA was conducted
for the skill performance and the biomechanic metrics (maximum
velocity and number of peaks). The skill level group acted as the
independent variable over all the skill acquisition phase (3 days of
practice) for the analysis. Interactions effects were observed for the
practice days, and the between-group factor (p < 0.05) suggesting
that any change-over-time patterns were not similar across the
groups. Subsequently, data is presented across the two skill level
groups for the three training days (Table 4).

A significant multivariate (skill group× days) interaction were
observed in the MANOVAs testing, Pillai’s trace = 0.111, F(6,384)
= 7.99, p < 0.001, η2p = 0.111. In detail, significant between-group
(PPG × GPG) differences were revealed, Pillai’s trace = 0.483,
F(3,387) = 120.35, p < 0.001, η2p = 0.483 regardless of time period.
Furthermore, across all analysys, significant variances were noted
for within-subject (practice days), Pillai’s trace = 0.483, F(6,384) =
49.87, p < 0.001, η2p = 0.483.

3.2 Maze score performance

The univariate test revealed a significant between-subjects
(skill group × days) interaction effect for the maze performance
scores, F(1.83,713.47) = 8.589, p < 0.001, η2p = 0.22. A further
inspection of the follow-up test revealed both inter and
intra-group differences. Notably, between-subject ANOVA
noting group differences, F(1,389) = 119.77, p < 0.001, η2p =
0.23, and within-subject ANOVA noting significant changes
throughout all the practice day phase, F(1.834,713.47) = 120.89,
p < 0.001, η2p = 0.23. Specifically, the PPG exhibited lower
scores than the GPG throughout all the skill acquisition
phases (Table 4). In addition, corrected t-tests further showed
performance improvement within the days, with a more

pronounced development during the third day for the two
groups (Figure 7A).

3.3 Maze maximum velocity

A significant between-subjects (skill group × days) interaction
effect was observed for the maximum velocity applied in the maze,
F(1.94,757.42) = 7.70 p < 0.001, η2p = 0.01. A further inspection
of the follow-up test revealed between differences through the
3 days, F(1,389) = 315.70, p < 0.001, η2p = 0.44. In addition,
a within-subject ANOVA showed variances during the days
F(1.947,757.42)= 9.65, p < 0.001, η2p = 0.24. Specifically, the PPG
performed higher maximum velocity values when manipulating
the maze compared to the GPG throughout all the practice days
(Table 4). The corrected t-tests further showed that the differences
were significant for the GPG group during all stages of the
skill acquisition phase. The PPG, however, although showing a
slightly similar trend of declining values among the days, the
corrected t-test revealed the differences to be non-significant
(Figure 7B).

3.4 Maze number of velocity peaks

A significant between-subjects (skill group × days) interaction
effect was observed for the number of velocity peaks applied in
the maze, F(1.879,730.76) = 7.04 p = 0.001, η2p = 0.018. Particularly,
a between-group ANOVA exposed differences among the two
groups, F(1,389) = 6.57, p = 0.11, η2p = 0.017. The corrected
t-test further showed that the differences were present only
between the second and third day of practice for the two groups,
with both groups exhibiting similar behavior during the first
day (Table 4). Additionally, noticeable differences arose from
the within-subject ANOVA during the skill acquisition phase,
F(1.897,730.76) = 18.99, p < 0.001, η2p = 0.047. The corrected t-
tests further showed that the differences were significant for the
GPG group over the 3 days, exhibiting a negative trend with
fewer peaks executed each day. The PPG performed a similar
number of peaks on the first and second day, and a significantly
lower number of peaks only during the third day of practice
(Figure 7C).

3.5 Tactile pressure

A 2 (skill level group) × 3 (practice days) MANOVA, with
repeated measures, was computed for the area of the center
of pressure (centroids) for the left and the right-hand thumbs.
Interaction effects were found for the practice days, between the
different hands, and the between-group factor (p< 0.05) suggesting
that there were significant differences in how pressure patterns
developed over time for both groups and for both hands. The mean
tactile pressure areas for both hands are presented across the two
skill level groups for the three training days (Table 5).
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TABLE 4 Comparative table showing the mean area and standard deviations for the three variables and the two groups across the 3 days.

Days Maze score Maximum velocity (mm/s) Number of velocity peaks

Poor (PPG) Good (GPG) Poor (PPG) Good (GPG) Poor (PPG) Good (GPG)

Day 1 0.58± 0.0 0.65± 0.0 69.64± 1.9 40.69± 2.1 7.87± 0.3 8.43± 0.3

Day 2 0.61± 0.0 0.68± 0.0 69.83± 1.9 26.70± 2.1 8.08± 0.2 6.72± 0.3

Day 3 0.68± 0.0 0.81± 0.0 67.95± 2.4 26.00± 2.6 6.98± 0.1 5.94± 0.2

FIGURE 7

Maze performance, maximum velocity, and velocity peaks di�erences across skill groups and practice days. In (A), the Poor Performers’ Group (PPG)

consistently obtained lower scores compared to the Good Performers’ Group (GPG) during the skill acquisition phase, with noticeable improvements

observed on the third day. (B) reveals consistent di�erences in maximum velocity, with the GPG consistently performing at lower values compared to

the PPG throughout all practice days. (C) highlights variations in the number of velocity peaks. The GPG exhibited a decreasing trend in the number

of peaks executed each day, while the PPG displayed a similar number of peaks on the first and second day but significantly fewer on the third day.

3.5.1 Right hand thumb
A significant multivariate (skill group × days) interaction was

observed in the MANOVA testing, Pillai’s trace = 0.227, F(2,145) =
21.29, p < 0.001, η2p = 0.227. A further inspection of the follow-up
test revealed inter and intra-group variances. Specifically, between-
group (PPG×GPG) differences were noted for the group F(1,146) =
12.63, p < 0.001, η2p = 0.080 regardless of the training period time.
In general, the PPG group produced mean larger area sizes (M =
14.53 pixels) than the GPG group (M = 13.36 pixels). An additional

corrected t-test showed no significant differences during the first
and second day between the two groups, whereas a significant
difference was found for the third day of practice, F(1,146) = 61.23, p
< 0.001, η2p = 0.295, with the GPG exhibiting a significantly smaller
area size than the PPG group (see Table 5).

Furthermore, across all analyses, significant variances were
noted for within-subject (practice days), Pillai’s trace = 0.575,
F(2,145) = 53.49, p < 0.001, η2p = 0.425 for the area sizes, with a
follow-up within-subject ANOVA noting considerable changes for
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TABLE 5 Comparative table showing the mean centroid area and

standard deviations for the right and left thumb and the two groups

across the 3 days.

Days Right thumb Left thumb

Poor
(PPG)

Good
(GPG)

Poor
(PPG)

Good
(GPG)

Day 1 15.66± 0.33 16.49±
0.40

17.05±
0.70

16.61± 0.78

Day 2 13.49± 0.44 12.85±
0.54

15.03±
1.26

15.22± 1.40

Day 3 14.45± 0.30 10.73±
0.36

14.87±
0.50

13.70± 0.55

the PPG, Pillai’s trace = 0.106, F(2,145) = 8.58, p < 0.001, η2p =
0.106, and for the GPG, Pillai’s trace = 0.438, F(2,145) = 56.49, p
< 0.001, η2p = 0.438. An inspection of the corrected t-tests further
indicated the area values reduced significantly within the first and
second day of practice, p < 0.001, but not within the second
and third day for the PPG, whereas the area values significantly
decreased within all stages of the skill acquisition phase, p <

0.01, for the PPG. The averaged tactile pressure distribution is
shown in Figure 8 corresponding to the thumb of the right hand of
the participants.

3.5.2 Left hand thumb
A significant main effect (practice days) was observed in the

MANOVA testing, Pillai’s trace = 0.120, F(2,111) = 7.55, p < 0.001,
η2p = 0.120. A further inspection of the follow-up test revealed no
between-group (PPG × GPG) significant differences, indicating
that both groups performed similarly, with the PPG producing a
slightly mean larger area sizes (M = 15.65 pixels) than the GPG
group (M = 15.18 pixels), and without any significant differences
during the practice days between the two groups (see Table 5).

Furthermore, significant variances were noted for within-
subject (practice days), Pillai’s trace = 0.120, F(2,111) = 7.55, p <

0.001, η2p = 0.120 for the area sizes, with a follow-up within-subject
ANOVA noting considerable changes for the PPG, Pillai’s trace =
0.057, F(2,111) = 3.37, p < 0.05, η2p = 0.057, and for the GPG, Pillai’s
trace = 0.073, F(2,111) = 4.33, p < 0.05, η2p = 0.073. An inspection
of the corrected t-tests further indicated the area values reduced
significantly only within the first and third day of practice, p <

0.05 for the PPG. A further inspection within the GPG showed
a reducing trend in the area sizes with a significant difference, p
< 0.05, between the first and the third day. The averaged tactile
pressure distribution is shown in Figure 9 corresponds to the
thumb of the left hand of the participants.

3.6 Mental representation structure

As a result of cluster analysis, statistically, significant clusters
were found in the mean group dendrograms for the pre and
post-test (see Figures 10, 11).

3.6.1 Poor performers group
The cluster analysis showed that the number of statistically

significant functional clusters had increased over the skill
acquisition sessions (see Figure 10). More specifically, the clusters
were (BAC 1, 9, 14), (BAC 4, 6, 11), (BAC 8, 13) at the pre-test, and
(BAC 9, 14), (BAC 4, 6, 11), (BAC 8, 13), and (BAC 5, 10) at the
post-test. Thus, for the PPG group, an increase in the number of
clusters was revealed in their mental representation structure over
the course of the skill acquisition phase. The statistical analysis of
invariance, however, showed that this increment does not represent
a significant difference between the pre, and post-test structures (λ
> 0.69). When examining the adjusted rand indices of the pre-
test (ARIpre = 0.59) and the post-test (ARIpost = 0.66), the results
indicated that over the course of the practice days, given that the
ARI value ranges from –1 (i.e., completely different) to +1 (i.e.,
completely same), the mean dendrogram of the PPG group became
more similar to the reference dendrogram. That indicates that the
changes in the representation structure of the PPG group reflect a
development toward an optimal structure; nevertheless, this slight
improvement is considered not statistically relevant according to
the invariance analysis.

3.6.2 Good performers group
Similar to the PPG group, the mental representation structure

of the GPG group was more elaborated after the skill acquisition
phase (see Figure 11). In detail, three clusters were evident in the
combined GPG group’s mean dendrogram at the pre-test: (BAC 9,
14), (BAC 4, 6, 11), and (BAC 8, 13). For the post-test, the mean
group dendrogram revealed the fourth cluster, with the previous
rest remaining nearly the same. More explicitly, the clusters were
(BAC 1, 9, 14), (BAC 4, 6, 11), (BAC 8, 13), and (BAC 2, 3).
Hence, for the GPG group, the number of clusters increased as well
over the course of the skill acquisition phase. Statistical analyses
of invariance indicated significant differences in representation
structure between pre-test and post-test (λ < 0.68), indicating
furthermore that there was a statistically significant difference
between the two groups at the significance level of 5%. Lastly, to
evaluate the degree of similarity between the mean dendrogram
of the GPG group and the reference dendrogram the ARI was
calculated. The ARI analysis revealed that the similarity became
higher over the skill acquisition phase. Specifically, ARIpre = 0.51,
and ARIpost = 0.73 were shown at pre-, and post- retention tests,
respectively. Thus, the representation structure of the GPG group
approached more of an optimal representation.

3.6.3 Di�erence between groups
The initial stage of the mental representation structure showed

similarity between the groups, as indicated by our invariance
analysis (λ = 0.70). Specifically, both the PPG and GPG groups
exhibited functional clusters representing down-right, up-right,
and down-left movement types during the pre-test.

After 3 days of game practice, the invariance analysis revealed
significant differences in the mental representation structure
between the two groups (λ = 0.51). This suggests a divergence in
the cognitive architecture of the mental representation of the maze
game post-practice.
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FIGURE 8

The averaged tactile pressure distribution on the right thumb for the good performers’ group (GPG) and poor performers’ group (PPG). Row (A)

displays the results of the GPG across three practice days, while Row (B) shows the corresponding results for the PPG. The GPG exhibited significant

decreases throughout the skill acquisition phase, with a significantly smaller area size than the PPG observed on the third day. The PPG demonstrated

significant reductions in area values on the first and second days, with generally larger area sizes compared to the GPG.

FIGURE 9

The averaged tactile pressure distribution on the left thumb for both the good performers’ group (GPG) and poor performers’ group (PPG) across

three practice days. Row (A) displays the results of the GPG, while Row (B) shows the corresponding results for the PPG. Both groups displayed a

decreasing trend in area size values across practice days, with a significant di�erence observed between the first and third days. The PPG exhibited

slightly larger area sizes compared to the GPG, although no significant di�erences were found between the groups throughout the practice days.
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FIGURE 10

Mean dendrograms indicate the mental representation structure of the poor performance group (PPG) at (A) pre-test and (B) post-test. The horizontal

line indicates the critical Euclidean distance. The critical value of the Euclidean distance (dCrit = was 3.42 for an α level of 5%). The basic action

concepts (BACs) above this line are considered unrelated. The underlined BACs below this line are considered functionally related to each other.

These findings highlight that while the initial mental
representations were similar, the subsequent practice led to distinct
changes in the mental representation structures of the two groups.

4 Discussion

In this paper, we introduce a new novel maze game tool for
studying naturalistic motor learning during a bimanual complex
motor skill task. We investigated the effects of daily practice
by comparing two groups (GPG vs. PPG) on task performance,
biomechanics behavior, and tactile pressure. We also examined

the relationship between the changes in mental representation
structures and the changes in skill performance on a complex
movement. In general, we hypothesized that the GPG group
would develop more effective outcomes than the PPG group, both
in the development of mental representation structure and in
improving skill performance, the biomechanics metrics, and the
tactile pressure in the early stage of skill learning. Furthermore,
we expected changes in mental representation structure to correlate
with changes in skill performance and behavior. Our results present
new insights into complex bimanual motor learning tasks—a novel
maze paradigm—and provide a multi-modal glimpse into how
human behavior progresses during early skill acquisition.
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FIGURE 11

Mean dendrograms indicate the mental representation structure of the good performance group (GPG) at (A) pre-test and (B) post-test. The

horizontal line indicates the critical Euclidean distance. The critical value of the Euclidean distance (dCrit = was 3.42 for an α level of 5%). The basic

action concepts (BACs) above this line are considered unrelated. The underlined BACs below this line are considered functionally related to each

other.

4.1 Novel sensorimotor learning task

We designed a novel maze paradigm here presented to
study bimanual motor learning. Our experimental setup allowed
participants to perform unconstrained movements while solving
themaze; did not include any artificial go signal, and the duration of
each trial did not affect the scoring system, allowing for self-paced
movements. Likewise, subjects receive natural somatosensory
feedback from the task without unnatural or artificial perturbations

that alter the behavior to induce a specific learning strategy.
This approach prioritized precision and accuracy as the primary
constraints within the maze task, steering participants’ learning
toward minimizing contact with the maze walls. By not penalizing
the time spent on the task, we aimed to encourage careful and
deliberate navigation, fostering a blend of rapid movement and
strategic control (Kumar et al., 2017). However, the absence of
time constraints may have influenced the participants’ learning
strategies, potentially encouraging more cautious approaches that
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limited the development of speed-related motor skills (Schmidt
et al., 2018). This design choice proved effective in enhancing skill
development, as participants refined their techniques over time.

Our results present new insights into complex bimanual motor
learning tasks. Our findings demonstrate that our strategy of using
precision as the main factor to induce learning was successful.
Participants improved inmovement and precision, i.e., they learned
the novel task without a speed-accuracy trade-off. Performance
improvements have been previously observed in simple bimanual
tasks (Wolff et al., 1998; Bangert et al., 2010; Loehrer et al., 2016;
Kajal et al., 2017) and more complex tasks (Fagard et al., 1985;
Mueller et al., 2009; Sisti et al., 2011; Yeganeh Doost et al., 2017;
Haar et al., 2020; Schoenfeld et al., 2021) with different induced
learning modalities. Therefore, factors such as time, precision, or
error can be independently used to observe learning in a novel
bimanual motor task.

4.2 Task performance and biomechanic

We observed improvement in maze score performance for
both groups across the 3 days, supporting the notion that practice
leads to the enhancement of motor skills (Ericsson et al., 1993;
Ericsson, 2008). This finding aligns with previous research on skill
acquisition, which has shown that practice plays a crucial role in
developing expertise in various domains (Fitts and Posner, 1967).
The more pronounced improvement observed on the third day for
both groups suggests that a critical point in skill developmentmight
have been reached, where the rate of improvement accelerated.
This observation is consistent with the concept of a learning
curve (Newell and Rosenbloom, 1980), indicating that participants
reached a higher level of familiarity with the maze, leading to the
more efficient execution of the task (Magill Richard and Anderson,
2021).

We observed a noticeable improvement during the third day
compared to the other days in both groups. Studies investigating
motor learning and performance changes across consecutive days
of practice have reported mixed results. Typically, significant
improvements in performance occur during the first few days of
practice, followed by a plateau (Fagard et al., 1985; Karni et al., 1998;
Dayan and Cohen, 2011). However, other studies have noted that
most significant performance improvements occur at a later stage.
Salmoni et al. (1984) reported the most significant improvement
occurred between the third and fourth days over 6 days of practice.
Overall, various factors like task complexity, individual differences,
and type and amount of practice impact the timing and magnitude
of performance changes during consecutive days of training on
early skilled acquisition tasks (Sánchez et al., 2017; Kantak and
Winstein, 2012).

Regarding the difference between the two groups’ performance,
the good performers’ group (GPG) significantly outperformed
the poor performers’ group (PPG) during each day. The results
revealed that GPG maintained a higher level of performance
throughout the skill acquisition phase compared to PPG. This
finding is consistent with previous studies that have reported that
good performers exhibit better retention and transfer of learned
motor skills (Shea and Kohl, 1991; Kantak and Winstein, 2012).
Several explanations for the differences in performance between

good and bad performers have been laid out. One argument
is that good performers have more efficient and stable motor
control strategies, which allow them to better adapt to changing
task demands during learning in contrast to bad performers
(Magill and Hall, 1990; Schmidt et al., 2018). Another possible
explanation for the differences in performance between good
and bad performers during motor learning tasks is related to
differences in movement control and joint kinematics. Good
performers may have more efficient and effective movement
patterns, such as smoother and more coordinated movements,
compared to bad performers (Swinnen, 2002; Haaland and Hoff,
2003; Leukel et al., 2012). This can lead to better motor control
and precision during motor learning tasks, resulting in faster and
more accurate learning. In contrast, bad performers may exhibit
less efficient movement patterns, characterized by more variable
and uncoordinated movements, which can lead to slower and less
accurate learning.

Studies have also shown that good performers have more
efficient and precise joint kinematics during movements, allowing
them to generate greater movement accuracy and efficiency
(Schmidt et al., 2018; Franklin et al., 2012). On the other hand,
bad performers may have less efficient and more variable joint
kinematics, leading to less precise and less efficient movements.
The significant differences in maximum velocity and the number of
peaks between the GPG and PPG groups highlight the distinction
in motor skill development between the two groups. The GPG
group demonstrated better performance, reflecting a more efficient
movement strategy and better control of the sphere throughout
the maze. This finding aligns with the idea that individuals with
higher initial performance levels might have a better ability to adapt
and improve their motor skills with practice (Beilock et al., 2002).
Research in motor learning has shown that individual differences
in factors such as cognitive ability, attentional capacity, and prior
experience can impact the rate of skill acquisition (Ackerman,
1987; Wulf et al., 2010). Our results extend this line of research by
demonstrating the relationship between initial performance, skill
development, and biomechanic progress in a maze navigation task.

4.3 Mental representation

With regard to the mental representation structure of the maze
game, it was revealed that the mental representation structures of
both groups (i.e., good performers and bad performers) changed
over time, leading to more elaborate and structured representations
in the direction of the expert reference dendrogram as analyzed
with the SDA-M (Schack, 2004, 2012), reflecting well the five
types of movements identified in the maze (i.e., down-right,
right-around, down-left, up-right, right-diagonal-up). This result
indicates that in the early stages of skill acquisition in a new motor
task, functional changes in task-specific mental representation in
long-term memory occur, consistent with the notion that changes
in cognitive levels of action organization are linked to changes
in the motor level (Frank et al., 2013, 2014, 2016; Kim et al.,
2017). In relation to this, Land found a close link between
movement kinematics and the structure of expert golfers’ cognitive
representation of the entire swing movement (Land et al., 2013).
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The results of the invariance analysis provide important
insights into the mental representation structures of the PPG
and GPG groups. Initially, both groups demonstrated similar
mental representations, as indicated by the λ value of 0.70. This
suggests that participants, regardless of group, started with a
comparable cognitive framework for the maze game, characterized
by functional clusters for down-right, up-right, and down-left
movement types. Accordingly, these clusters are functionally or
biomechanically related to movement components and phases
for the achievement of action goals (Schack, 2012, 2020). Thus,
participants of both groups had a similar initial cognitive
architecture of the mental representation of the maze game even
though they had no previous performance experience with the task,
likely due to common underlying biomechanical principles and
functional movement patterns.

However, after 3 days of game practice, the λ value dropped to
0.51, indicating significant differences in the mental representation
structures between the two groups. This divergence suggests that
practice induced distinct cognitive changes in how each group
internalized and represented the maze game. The specific cognitive
mechanisms leading to different effects in both groups for the
development of mental representation during the early motor
learning phase are unclear. A possible explanation is that the
slope of representation development is likely to be different due
to significant intra-individual top-down mechanism differences
present in novices during the early learning stages (Frank et al.,
2014; Kim et al., 2017).

The introduction of cognitive primitives in our study intends to
connect to broader theories of motor control and learning. These
primitives are not only relevant to the specific context of the maze
task but also contribute to a deeper understanding of how cognitive
and motor processes interact (Schack, 2020; Giszter, 2015). The
adoption of cognitive primitives allows us to develop a theoretical
framework that can be linked to explicit or implicit tests of motor
representation. This framework could provide insights into the
cognitive aspects of motor learning that may be applicable to other
tasks and contexts (Frank et al., 2014; Schack and Frank, 2021).
We see cognitive primitives as analogous to Basic Action Concepts
(BACs), which we define as “Basic Movement Concepts” (BMCs).
These BMCs encapsulate fundamental units of thought and action
planning essential for efficient navigation and task execution.

The introduction of BMCs into our analysis aims to examine
how these foundational elements contribute to the overall mental
representation and motor learning processes (Schack, 2004;
Frank et al., 2016). This approach aligns with previous research
highlighting the role of modularity in motor control, where
complex movements are composed of simpler, reusable elements
(Handzel and Flash, 1999; Giszter, 2015; Langlois et al., 2024). The
concept of BMCs thus provides a structured way to analyze the
development and refinement of motor skills (Krakauer et al., 2019;
Franklin et al., 2012).

We hypothesize that there should be some correlation
between low-level sensorimotor actions and higher-level mental
representations. Consequently, we assume that the performance
or the “learning” in those BACs that resulted differently may also
be related to this issue. Future studies should analyze individual
performance and the initial representation structure with a detailed
focus on specific BACs and investigate the relationship between

them for a better understanding of the development of mental
representation structure.

Nevertheless, the current results support the notion that
task-specific representation structures can be developed through
practice, which is in line with the perceptual-cognitive perspective
(Mechsner et al., 2001) and the cognitive action architecture
approach (CAA; Schack, 2004, 2020), emphasizing the critical
role of mental representation for the generation and control of
voluntary movements.

4.4 Tactile performance

The examination of tactile pressure patterns revealed notable
differences between the two groups in relation to skill acquisition
and the role of tactile feedback in motor learning. Specifically, the
analysis showed significant differences in pressure distribution for
the right-hand thumb between the good performers’ group (GPG)
and the poor performers’ group (PPG). The GPG demonstrated a
significantly smaller area size on the third day, suggesting more
focused pressure application and potentially better control of the
maze. This observation might indicate that as skill level increases,
participants relymore on refined pressure application for successful
navigation (Lederman and Klatzky, 2009; Hatwell et al., 2003). This
finding aligns with the concept of force control in motor tasks,
where efficient force application is crucial to achieving optimal
performance (Enoka, 1997; Lee-Miller et al., 2019), highlighting the
importance of tactile feedback in motor learning.

In contrast, the left-hand thumb exhibited no significant
differences between the groups, which could imply that this hand
played a less critical role in the task’s execution, regardless of the
group. The absence of significant differences in pressure patterns
for the left-hand thumb suggests that the right-hand thumb might
play a more dominant role in the maze navigation task. It is
important to note that the maze task involved rolling the sphere
consistently from the left to the right side, which could contribute to
themore significant role of the right hand compared to the left hand
during the task execution. This task-specific demand may have led
to the observed differences in pressure application patterns between
the two hands. Additionally, it is relevant to consider the potential
influence of dominant and non-dominant arm reaching control in
understanding the differences in pressure patterns (Sainburg and
Kalakanis, 2000).

The observed differences between the GPG and PPG groups
in our study can be attributed to more efficient movement
strategies and better control of the sphere throughout the maze
for the GPG group (Krakauer and Mazzoni, 2011; Latash, 2012).
Specifically, the enhanced motor control in the GPG group may
have allowed them to apply more focused and precise pressure
using their right thumb (Naceri et al., 2021). This improved
motor control could contribute to their better performance and
adaptation in biomechanic velocity and tactile pressure patterns,
thereby providing a possible explanation for the distinct outcomes
observed between the groups.

Moreover, the observed differences in tactile pressure patterns
between the GPG and PPG groups may also be associated with
variations in mental representations of the task. The GPG group’s
more focused and precise pressure application, as evidenced by
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their right thumb’s pressure distribution, suggests that they might
have developed a more refined mental representation of the task
(Wolpert et al., 2011; Schack, 2004; Schack and Mechsner, 2006;
Cienfuegos et al., 2022). This enhanced mental representation
could facilitate better motor planning and execution, leading to
improved performance and adaptation in biomechanic velocity
(Wolpert et al., 2011; Land et al., 2013).

These findings emphasize the role of tactile feedback in motor
skill acquisition (Johansson and Flanagan, 2009; Ostry and Gribble,
2016) and provide valuable insights into how pressure distribution
changes as training progresses. Understanding the importance of
tactile feedback in motor learning can inform the development
of more effective training interventions (Wulf and Shea, 2002;
Krakauer and Mazzoni, 2011), and help tailor motor learning
strategies to the specific needs of individuals.

4.5 Overall

Our study on skill acquisition in the context of a novel
maze game provides a comprehensive understanding of motor
learning by integrating findings from performance, biomechanics,
tactile pressure, and mental representation structure analyses.
The performance analysis revealed that practice led to enhanced
motor skills, with the good performers’ group (GPG) consistently
outperforming the poor performers’ group (PPG). Biomechanic
findings indicate that the GPG group demonstrated more
efficient movement strategies and better control of the sphere
throughout the maze, as reflected in their significant differences
in maximum velocity and the lower number of velocity peaks.
Mental representation structure analysis showed that both groups
developed more elaborate and structured representations over
time. The GPG group’s post-test representation exhibited a more
refined mental representation, potentially contributing to better
motor planning and execution. Tactile pressure analysis revealed
notable differences in pressure distribution, particularly for the
right-hand thumb, with the GPG group demonstrating more
focused pressure application and better control. These findings
highlight the importance of tactile feedback in motor learning
and suggest that the GPG group’s improved mental representation
and motor control allowed them to apply more focused and
precise pressure, leading to better performance and adaptation in
biomechanic velocity.

The findings from our study on skill acquisition in the
context of a novel maze game contribute significantly to the
broader understanding of motor learning and neurocognition.
By examining multiple aspects of skill acquisition and
performance, including biomechanics, tactile pressure, and
mental representation structure, our study provides a more
comprehensive understanding of the underlying processes
involved in motor learning.

Our results align with the cognitive action architecture
approach (CAA; Schack, 2004, 2020) and emphasize the
importance of mental representation in the generation and
control of voluntary movements (Mechsner et al., 2001; Frank
et al., 2013; Cienfuegos et al., 2022). The changes in mental
representation structures observed in our study support the notion
that practice leads to functional changes in task-specific mental

representation in long-term memory (Frank et al., 2014; Kim et al.,
2017). This finding is consistent with Schack’s CAA approach,
which posits that mental representations play a crucial role in
motor learning, serving as a foundation for planning and executing
motor actions (Schack and Ritter, 2013; Schack and Frank, 2021).

Our study also highlights the importance of examining
biomechanics and tactile pressure in motor learning research.
By demonstrating significant differences in movement strategies
and pressure application between the GPG and PPG groups, our
findings emphasize the role of efficient force control andmovement
patterns in achieving optimal performance (Enoka, 1997; Lee-
Miller et al., 2019). These observations align with Meschner’s
perceptual-cognitive perspective (Mechsner et al., 2001; Schack and
Mechsner, 2006), which posits that efficient movement control is
crucial for skill acquisition. It highlights the advantages of this
approach in adapting actions to effectively function at different
levels of motor control.

Furthermore, our findings underline the importance of
investigating the interplay between different aspects of skill
acquisition, such as biomechanics, tactile pressure, and mental
representation structure. Our study shows that the GPG group’s
more focused pressure application and better control of the
sphere in the maze could be related to their more refined mental
representation of the task (Wolpert et al., 2011; Land et al., 2013;
Schack and Frank, 2021). This observation highlights the need for
a holistic approach to motor learning research, considering the
intricate relationships between various factors contributing to skill
acquisition.

4.6 Study limitations

Our study has some limitations that should be acknowledged.
The small sample size (n = 12) limits the generalizability of our
findings. A larger sample size would provide more robust results
and reduce the potential for Type I and Type II errors. Additionally,
the 3-day training duration may not be sufficient to observe
long-term effects on motor learning and mental representation.
Grouping participants into good and poor performers based on
initial performance could introduce bias, as it assumes that early
performance reflects overall improvement potential. Moreover,
individual differences in learning ability, such as prior experience,
cognitive abilities, and motivation, were not controlled. The results
obtained might differ when applied to simpler motor tasks, as
the complexity of the maze task may elicit different cognitive
and motor processes. Therefore, caution should be exercised when
extrapolating these findings to more general contexts. Finally, the
absence of time as a performance constraint could have influenced
the development of speed-related skills. Future research should
address these factors to better understand their impact on motor
learning and mental representation.

5 Conclusions

In conclusion, our study presents a novel maze game tool for
studying naturalistic motor learning during a bimanual complex
motor skill task, providing valuable insights into the underlying
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processes involved in motor learning and neurocognition. By
investigating the effects of daily practice on task performance,
biomechanics behavior, tactile pressure, and mental representation
structure, our study offers a comprehensive understanding of early
skill acquisition. The findings demonstrate that efficient force
control, movement patterns, and refined mental representations
contribute to better performance, highlighting the importance of
examining the interplay between these factors.

Our results align with the cognitive action architecture
approach and emphasize the significance of mental representation
in the generation and control of voluntary movements. The
study’s findings also underline the importance of investigating
biomechanics and tactile pressure in motor learning research,
revealing the crucial role of efficient movement control in skill
acquisition. Ultimately, our study calls for a holistic approach to
motor learning research, considering the intricate relationships
between various factors contributing to skill acquisition. This
comprehensive understanding of motor learning can pave the way
for the development of more effective training interventions and
tailored motor learning strategies to meet the specific needs of
individuals, further advancing the field of motor learning and
neurocognition.
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