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Attention deficit hyperactivity disorder (ADHD) is one of the most common

neurodevelopmental disorders in childhood. Numerous resting-state functional

magnetic resonance imaging (rs-fMRI) studies in ADHD have been performed

using traditional low-frequency bands (0.01–0.08 Hz). However, the neural

activity patterns of frequency subbands in ADHD still require further

investigation. The purpose of this study is to explore the frequency-dependent

characteristics and neural activity patterns of ADHD subtypes. We selected

the ADHD combined type (ADHD-C, N = 25), ADHD inattentive type (ADHD-I,

N = 26) and typically developing (TD, N = 28) children from the ADHD-

200 Consortium. Based on the slow-5 band (0.01–0.027 Hz) and slow-4

band (0.027–0.073 Hz), we generated static and dynamic fractional amplitude

of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) maps

for each participant. A flexible-factorial analysis of variance model was

performed on static and temporal dynamic rs-fMRI measurements within

two subbands. Results revealed that the orbital-frontal gyrus, precuneus,

superior temporal gyrus and angular gyrus were found to have obvious

frequency band and group interaction effects. The intrinsic neural activity

differences among three groups were more prominent in the slow-5

frequency band compared to the slow-4 band. In addition, the indices of

significant interaction regions showed correlations with the progression of

the disease and the features in slow-5 showed an advantageous diagnostic

performance compared with those in slow-4. The results suggested the

intrinsic neural activities of ADHD subtypes were frequency-dependent.
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The frequency-specific analysis of static and dynamic brain activity may provide

a deeper understanding of neurophysiological dysfunction patterns in ADHD

subtypes and provide supplementary information for assessing ADHD subtypes.

KEYWORDS

attention deficit hyperactivity disorder, resting-state fMRI, ADHD subtype, frequency
band, temporal dynamics

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is one
of the most common neurodevelopmental disorders in
childhood. Patients are characterized as having inattention
and/or hyperactivity-impulsivity symptoms, which often exert
a negative effect on the quality of their social and academic
activities. In China, the total prevalence of ADHD in children and
adolescents is 6.26%. In addition, the prevalence rate of ADHD in
males is significantly higher than that in females (Wang T. et al.,
2017). ADHD has a high degree of heritability and significant
familial aggregation (Faraone and Larsson, 2019; Tistarelli et al.,
2020), which may be related to genetic or environmental factors
(Rhee et al., 1999). Although the symptoms of ADHD partially
decrease with age, more than half of cases persist into adulthood
(Faraone et al., 2006).

The fifth editions of the Diagnostic and Statistical Manual of
Mental Disorders (DSM-V) published by the American Psychiatric
Association (APA) classified ADHD into different subtypes:
inattentive presentation (ADHD-I), hyperactive-impulsive
presentation (ADHD-HI) and combined presentation (ADHD-C).
The prevalence of ADHD-I is the highest among the subtypes,
followed by ADHD-C and ADHD-HI (Wang T. et al., 2017). In
the latent class analysis (LCA), the quantitative analysis of ADHD
subtypes in different periods emphasized that the symptoms of
ADHD would change with the physical development of patients
(Krasner et al., 2018). Due to the strong heterogeneity among
ADHD individuals (Lahey et al., 2005), it is necessary to monitor
and investigate characteristic neurophysiological activities of
ADHD subtypes.

Functional magnetic resonance imaging (fMRI), including
resting-state and task-state imaging, is a well-known technique for
measuring brain function and has been widely used to explore
the pathophysiological mechanism of ADHD. Structural imaging
(Ellison-Wright et al., 2008; Frodl and Skokauskas, 2012) and task-
state imaging (task-fMRI) (Cortese et al., 2012; McCarthy et al.,
2014; Lei et al., 2015) were used in early studies of ADHD. Task-
fMRI included a variety of tasks in the form of go/no-go, stop-signal
or n-back, but multiple meta-analyses showed that the results did
not show good consistency (Samea et al., 2019). Resting-state fMRI
(rs-fMRI) has gradually garnered attention and it provides a more
convenient method compared to task- fMRI (Cortese et al., 2021).
For example, psychiatric patients, especially preschool children,
are often unable to cooperate with the assigned task, while rs-
fMRI can be performed when the patient is lying still without
performing tasks. Rs-fMRI is designed to examine spontaneous

neural fluctuations in the resting state and is a noninvasive tool for
obtaining information on brain function.

To characterize the fluctuating patterns of brain activity,
various voxel-based rs-fMRI indices have been proposed.
ALFF/fALFF (Zang et al., 2007; Zou et al., 2008) and ReHo
(Zang et al., 2004) are among the most commonly used functional
indices in fMRI studies. ALFF is defined as the average power
spectrum of the time series after Fourier transform in a particular
low-frequency band (Zang et al., 2007), and fALFF is the ratio
of the power spectrum in the low-frequency band to the entire
frequency range (Zou et al., 2008). ALFF reflects the intensity of
neural activity by the amplitude of the spectrum, while fALFF
represents the relative contribution of a particular oscillation
to the entire detectable frequency range. ReHo is a method for
calculating time series between a particular voxel and its nearest
neighboring voxels (Zang et al., 2004). ReHo reflects the degree
of concordance in regional neural activity. They have been widely
applied to ADHD patients to reveal aberrant neural activities.
Previous studies found that, compared to healthy controls, ADHD
patients showed decreased ALFF in the left frontal gyrus, while
increased ALFF in the right dorsal superior frontal gyrus (Li et al.,
2014). ReHo are observed to show widely-distributed differences
in the fronto-cingulo-occipito-cerebellar circuitry (An et al., 2013).
Additionally, ALFF/fALFF and ReHo measures are data-driven
and might not be biased by factors such as seed definition in seed-
based correlation analysis and component selection in independent
component analysis. In addition, fALFF is reported to show less
susceptible to nuisance noise and higher sensitivity and specificity
than ALFF (Zou et al., 2008; Yan et al., 2013). The static measure of
fMRI indices assume that the functional activity of brain regions
remains stationary throughout the entire resting-state scan. In
addition to static rs-fMRI measurements, evidence has shown
that spontaneous neuronal activity shows dynamic fluctuations
in the resting state (Calhoun et al., 2014; Preti et al., 2017). The
dynamic measures estimate the temporal fluctuation patterns of
interregional neural interactions (Hutchison et al., 2013; Lurie
et al., 2020). A report utilized temporal dynamic rs-fMRI indices in
ADHD patients and found a decreased variability in dynamic ALFF
in the middle frontal gyrus (Lou et al., 2021). Dynamic functional
network analysis revealed that ADHD patients exhibit distinct
interactive states in static and dynamic functional connectivity
(Ahmadi et al., 2021).

The spontaneous low-frequency oscillations (LFO) of the
blood oxygen level-dependent (BOLD) signal measured in rs-fMRI
typically are characterized in the range of 0.01–0.08 Hz, which are
considered may reflect spontaneous neuronal activity (Penttonen
and Buzsáki, 2003). Physiological noise such as the respiration rate
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and heart rate is recorded within the range of 0.1–0.3 Hz and 0.6–
1.1 Hz, respectively (Cordes et al., 2001). In addition, Buzsáki et al.
divided the neural oscillation frequency in the brain into multiple
subfrequency bands and found that the oscillation within disparate
frequency bands may related to different neural processes (Buzsáki
and Draguhn, 2004). A study on functional connectivity found that
the strengths of functional connections attenuate at different rates
as frequency increases across multiple networks (Wang Y. et al.,
2020). The LFO can be subdivided into slow-5 (0.01–0.027 Hz)
and slow-4 (0.027–0.073 Hz) (Buzsáki and Draguhn, 2004). Studies
reported that the amplitude of LFO in gray matter is higher than
in white matter and the contributions of slow-4 and slow-5 to LFO
amplitudes were different in brain regions such as the precuneus,
basal ganglia and thalamus in healthy subjects (Zuo et al., 2010).
Xue et al. replicated the experiment and obtained similar findings
(Xue et al., 2014). Furthermore, previous studies have shown that
Alzheimer’s disease (Yang et al., 2020) and Parkinson’s disease
(Wang Z. et al., 2020) exhibit discrepant neural activity in slow-
5 and slow-4 bands, suggesting frequency-dependent alterations
in the amplitude patterns of mental disorders. However, to the
best of our knowledge, few studies have focused on the neural
activity patterns of ADHD-C and ADHD-I subtypes in specific
subfrequency bands. It is currently urgent to clarify the discrepancy
of frequency characteristics in ADHD subtypes. Finer frequency-
dependent features may provide important implications and help
quantify neural functions in the brain. The approach may hold the
potential to help explore the mechanisms driving the differences
between subtypes of ADHD.

We aimed to identify the representative neural activity patterns
and frequency-dependent characteristics of ADHD-C and ADHD-
I subtypes. We utilized both static and dynamic measurements
of fALFF and ReHo indices to investigate frequency-related
characteristics within the slow-5 and slow-4 bands. We expected
to improve the understanding of neurophysiological dysfunction
patterns in ADHD subtypes.

2 Materials and methods

2.1 Participants

In the present study, data were collected from the ADHD-
200 Consortium (HD-200 Consortium, 2012). The dataset contains
data from eight sites and the consortium is committed to facilitating
research on the neural basis of ADHD. Access to these data
was approved by the research ethics review committees of the
respective institutions, and all participants or legal guardians signed
informed consent forms before participating. A previous study
showed that the cohorts in ADHD-200 were highly inconsistent,
and the author suggested that future studies should be conducted
using pooled or single cohort data (Wang J. et al., 2017). Therefore,
we selected data from one site at Peking University, which
possessed more subtypes and more complete information. All
participants were assessed using the Computerized Diagnostic
Interview Schedule IV (C-DIS-IV), a structured clinical interview
of computerized version to provide diagnoses of major psychiatric
disorders based on the DSM-IV criteria. They were also evaluated
using the Schedule of Affective Disorders and Schizophrenia

for Children—Present and Lifetime Version (K-SADS-PL). It is
a semistructured interview administered by trained assessors,
that contains the screening interview and diagnostic supplement
to evaluate comorbid psychiatric disorders. The participants
underwent MRI scanning using Siemens 3T Trio scanners, and
the scan parameters used were 2000 ms for the repetition time
(TR) and 30 ms for the echo time (TE). The acquired voxel size
was 3 mm and 4.5 mm. The dataset contains three groups, and
the scanning parameters of two groups were identical, but one
group had slightly different parameters. More detailed scanning
parameters can be found in http://fcon_1000.projects.nitrc.org/
indi/adhd200/. We excluded female and left-handed individuals
to eliminate the effects of sex and handedness factors on the
study. We excluded participants with poor-quality images and
incomplete clinical information. Then, based on the DSM-IV
diagnostic criteria at enrollment, we divided participants into
three categories: ADHD-I, ADHD-C and typically developing (TD)
groups. We matched the three groups by age. Participants with
excessive head movement (translation > 3 mm, rotation > 3◦) and
mean Jenkinson’s framewise displacement (FD) (Jenkinson et al.,
2002) greater than 0.2 mm were excluded. Finally, we included 25
ADHD-C, 26 ADHD-I and 28 healthy participants. The flowchart
of data exclusion was shown in Figure 1.

2.2 Data preprocessing

The Data Processing Assistant for Resting-State fMRI
(DPARSF, RRID:SCR_002372) (Chao-Gan and Yu-Feng,
2010) was used to preprocess resting-state fMRI data based
on Statistical Parametric Mapping (SPM, RRID:SCR_007037)
and the Resting-State fMRI Data Analysis Toolkit V1.8 (REST
1.8, RRID:SCR_009641) (Song et al., 2011). (1) The first 10 time
points of the imaging data were excluded to avoid signal instability
as the participants adapted to the fMRI environment. (2) Time
sequence correction was performed to rearrange the images in
time and space. (3) Head movement correction was conducted
(participants with head translational movement > 3 mm or
rotation > 3◦, and mean Jenkinson’s FD > 0.2 mm were excluded).
(4) Individual structural images were adjusted to the mean
functional images for registration. (5) Nuisance covariates,
including linear drift, Friston-24 motion parameters, white matter
signals and cerebrospinal fluid signals, were regressed out. (6)
Functional images were normalized from the original space to the
standard space (Montreal Neurological Institute, MNI) with 3 mm
isotropic voxels.

The fALFF and ReHo were calculated based on the whole-brain
voxel analysis. The calculation method for fALFF was based on
the approach proposed by Zou et al. (2008), where it is obtained
by the ratio of the power spectrum in the specific frequency band
(slow-5 and slow-4 obtained through band-pass filtering in the
study) to the entire frequency range (without band-pass filtering).
ReHo was measured in both slow-5 and slow-4 bands by calculating
Kendall’s coefficient of concordance (KCC), which calculated the
similarity of time series between a given voxel and its nearest
neighboring voxel (Zang et al., 2004). The criterion for the trueness
of adjacent voxels was cornered connections with 26 adjacent
voxels. Therefore, the static fALFF and ReHo maps were obtained
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FIGURE 1

The flowchart of data exclusion.

within the slow-5 and slow-4 bands, respectively. All the fMRI maps
were then Z-standardized and smoothed with a 4 mm full width at
half maximum Gaussian kernel (FWHM).

Subsequently, as an approach to evaluate the characteristics
of the temporal variation in the aforementioned measurements,
we used the sliding window method to calculate dynamic fALFF
and ReHo indices with Hamming windows. The window length
was 48 TR, and the step size was 4 TR. Previous studies showed
that different window lengths do not produce significantly different
results (Deng et al., 2016; Preti et al., 2017). Moreover, the step
size does not significantly affect the variability of fMRI dynamic
characteristics, but the empirical value is equal to one-tenth of the
window length (Liao et al., 2019). More importantly, we varied
the window length (32 TR/64 TR) to validate the reliability of
the results. The results of dynamic indices have been included in
the Supplementary materials. The voxel-wised fALFF/ReHo indices
were calculated in each window and each voxel was assigned one
fMRI value in each window. To measure the variability of the
dynamic indices over time, the mean and standard deviation (SD)
maps across time windows were computed for each index. Finally,
the mean and SD maps were Z-standardized and a 4 mm FWHM
was used for smoothing.

2.3 Statistical analysis

Age, IQ and ADHD-related clinical characteristics were
assessed by performing normality and homogeneity of variance
tests. Then, demographic and clinical characteristics of ADHD-C,
ADHD-I and TD groups were compared by analysis of variance

(ANOVA). These statistical analyses were conducted using the IBM
SPSS Statistics 26.0 software package (RRID: SCR_016479).

We designed a flexible-factorial ANOVA model to perform
voxel-based two-way analysis based on fALFF and ReHo maps
using the SPM software package. The model included three
groups (ADHD-C, ADHD-I and TD) as between-subject factors
and frequency bands as (slow-5 and slow-4) as within-subject
factors to observe the effects of interactions between subtypes and
frequencies. Age and mean FD were added as covariates and the
mask was constructed jointly from the gray matter regions of
90% of the participants. All the statistical maps were corrected
for multiple comparisons by using Gaussian Random Field (GRF)
correction, combining voxel-wised thresholding p < 0.001 and
cluster-wised thresholding p < 0.05. Then, we extracted regions
showing subtype × frequency interaction effects as regions of
interest (ROIs). A post-hoc analysis was performed on ROIs to
investigate simple effects of fMRI measures among groups and
frequency bands. The post-hoc results were corrected for multiple
comparisons by Bonferroni correction with p < 0.05.

We verified the relationship between ROI signals and disease
severity of ADHD-C, ADHD-I and TD. Partial correlation analysis
was conducted between fMRI indices and clinical scores of three
groups with age and FD as the nuisance covariates. Furthermore,
we examined the efficiency of ROIs in classifying ADHD-C,
ADHD-I and TD groups, respectively. We compared the features
of ROIs in the slow-5 and slow-4 bands. The classification efficiency
was verified by plotting the receiver operating characteristic (ROC)
curve using a logistic regression model. The area under the ROC
curve (AUC) and accuracy were calculated.
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TABLE 1 Demographic and clinical information of participants.

ADHD-C ADHD-I TD ANOVAa Between-group testsb

C-I C-TD I-TD

N 25 26 28 – –

Gender(male) 25 26 28 – –

Age(years) 11.6 ± 1.7 12.5 ± 1.7 12.1 ± 1.5 0.148 0.154 0.952 0.935

ADHD Index 56.7 ± 7.5 46.0 ± 6.4 28.5 ± 5.9 <0.001 <0.001 <0.001 <0.001

Inattentive Index 29.6 ± 3.5 27.8 ± 3.2 15.7 ± 3.5 <0.001 0.239 <0.001 <0.001

Hyper/Impulsive
Index

27.2 ± 5.2 18.3 ± 4.4 12.8 ± 3.5 <0.001 <0.001 <0.001 <0.001

Verbal IQ 115.4 ± 17.5 110.5 ± 14.7 118.0 ± 13.7 0.198 0.771 0.989 0.228

Performance IQ 100.3 ± 12.4 95.2 ± 16.6 110.6 ± 15.5 0.001 0.697 0.044 0.001

Data are presented as the mean ± standard deviation. C, ADHD-Combined; I, ADHD-Inattentive; TD, typically developing. ap-values for ANOVA among the three groups; bp-values for
between-group effects after Bonferroni multiple comparison correction.

3 Results

3.1 Demographic and clinical
characteristics

Demographic and clinical information was represented in
Table 1. The results showed no between-group variance in age and
verbal IQ. The between-group comparison of diagnostic index was
significant, except for ADHD-C and ADHD-I, which showed no
difference in the Inattentive Index. Both ADHD subtypes showed
a significant reduction in performance IQ compared with the TD
group, but no differences were observed between ADHD-C and
ADHD-I groups.

3.2 Subtype × frequency interaction
effect

The two-way ANOVA showed a significant
subtype × frequency interaction effect on the static fALFF in
the left orbital-frontal gyrus (OFC) (Figure 2A and Table 2) and no
significant difference in the static ReHo. In the analysis of dynamic
indices, the ANOVA model showed interaction effect on dynamic
mean of fALFF value in the left OFC (Figure 2B), dynamic SD of
ReHo value in the right superior temporal gyrus (STG), bilateral
precuneus (PCUN) and left angular gyrus (ANG) (Figure 2C).

3.3 ROI-based Post-hoc analysis

Regions showing subtype × frequency interaction effects were
extracted as ROIs. A post-hoc analysis was performed on ROIs to
investigate simple effects. Based on ROI analysis, rs-fMRI indices
were compared among ADHD-C, ADHD-I and TD groups in the
slow-5 band (Figure 3A) and show-4 band (Figure 3B). ADHD-
C and ADHD-I both showed significantly decreased static and
dynamic fALFF of OFC in the slow-5 band. Compared to TD,
ADHD-C also showed increased dynamic ReHo SD values in the
STG, PCUN and ANG, while ADHD-I only showed in the STG.

Under the slow-4 band, both ADHD-C and ADHD-I exhibited
decreased dynamic ReHo SD values in the PCUN. Furthermore,
the ANG of ADHD-C and ADHD-I showed differences in slow-5.
Additionally, ROI comparisons between slow-5 and slow-4 bands
was shown in Figure 4. Compared with slow-4, ADHD-C showed
increased indices of PCUN and ANG in slow-5, while ADHD-I
showed increased indices of OFC and STG in slow-5.

3.4 Correlation and classification model

The results of partial correlation analysis of three groups were
shown in Figure 5. In the slow-5 band, all ROIs showed significant
correlations with the ADHD index, while OFC also significantly
correlated with the performance IQ index. In the slow-4 band,
only dynamic SD ReHo of PCUN was negatively correlated with
the ADHD index. The results showed that as static and dynamic
mean indices decreased and the dynamic variabilities increased,
the severity of disease increased. In addition, ROC curves were
used to compare the classification efficiency of combined features
from five ROIs in the slow-5 and slow-4 bands. The results
indicated that features in slow-5 showed higher AUC and accuracy
compared to features in slow-4 (Figure 6 and Table 3). Additionally,
the features showed high classification efficiency in distinguishing
between ADHD-C/ADHD-I and TD groups, while showed low
performance in distinguishing between ADHD-C and ADHD-I
groups.

4 Discussion

To the best of our knowledge, researchers have not previously
attempted to focus on comparing the neural activity patterns
in specific divided subfrequency bands between different ADHD
subtypes. We applied static and dynamic rs-fMRI measurements
in subfrequency bands to examine the neural activity of ADHD-
C, ADHD-I and TD. The results disclosed that significant
subtype and frequency interaction effects were shown in the
OFC, STG, PCUN and ANG. The post-hoc analysis showed that
the intrinsic brain activity differences among three groups were
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FIGURE 2

Results for the significant subtype and frequency interaction effect obtained from the two-way ANOVA. (A) Significant effect of the static fALFF on
the left OFC surface. (B) Significant effect of the dynamic mean of fALFF on the left OFC surface. (C) Significant effect of the dynamic SD of ReHo on
the right STG, bilateral PCUN and left ANG surface.

TABLE 2 Significant results for the subtype and frequency interaction effect and the post-hoc analysis.

Functional
Index

Region L/R Peak MNI coordinates F Cluster size
(mm2)

Group differencea

x y z Slow-5 Slow-4

F Sig. F Sig.

Static fALFF OFC L −24 18 −21 11.92 189 14.47 <0.001 0.37 0.691

Dynamic mean
fALFF

OFC L −24 18 −24 12.14 189 15.40 <0.001 0.06 0.942

Dynamic SD ReHo STG R 54 −42 18 12.53 324 13.23 <0.001 1.12 0.333

PCUN L/R 0 −63 57 12.26 324 4.72 0.012 7.05 0.002

ANG L −39 −54 21 11.74 270 12.27 <0.0001 2.72 0.073

SD, standard deviation; OFC, orbital-frontal gyrus; STG, superior temporal gyrus; PCUN, precuneus; ANG, angular gyrus. aANOVA results of significant interaction effect regions among
ADHD-C, ADHD-I and TD groups.

mainly exhibited in the slow-5 frequency band and the interaction
regions were significantly correlated with multiple clinical scores.
Additionally, the features of significant interaction regions showed
an advantageous diagnostic performance in slow-5 compared with
those in slow-4.

Compared to healthy individuals, both ADHD-C and ADHD-I
exhibited significantly decreased fALFF in the static and dynamic
mean measurements of the OFC. Based on early investigations of
the temporal and spatial structure of brain functional connections,
that the state of brain activity varies over time (Hutchison et al.,
2013; Allen et al., 2014; Yang et al., 2014). In recent years, an
increasing number of studies have recognized that the intrinsic
brain activity must be considered from the perspective of temporal

features. The fALFF is a voxel-wised fMRI measure that provides
information about the regional spontaneous amplitude intensity
of brain activity within a network (Zou et al., 2008). The inferior
frontal gyrus (orbital-frontal gyrus) has been reported to be
involved in cognitive, motor control and sustained attention
(Bush, 2011; Coffman et al., 2012). Furthermore, the orbital-frontal
cortex is closely associated with executive functions, mediating
top-down cognitive processes which operate in emotional and
motivational contexts (Zelazo and Carlson, 2012; Salehinejad et al.,
2021). This may reflect impaired activity of the motivational
executive functions in both ADHD-C and ADHD-I. Research
showed that ADHD individuals exhibit reduced activation in the
left OFC during interference inhibition tasks (Cubillo et al., 2011).
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FIGURE 3

The comparation of ROIs among ADHD-C, ADHD-I and TD groups (Bonferroni corrected). (A) fMRI indices in the slow-5 band. (B) fMRI indices in
the slow-4 band. Significant differences are marked by asterisks. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 4

The comparation of ROIs between slow-5 and slow-4 bands. Significant differences are marked by asterisks. *p < 0.05, **p < 0.01, ***p < 0.001.

A previous study also showed that ADHD patients exhibit positive
dynamic functional connectivity changes between the inferior
frontal gyrus and regions of the cognitive control network following
fMRI-neurofeedback training (Rubia et al., 2019). The abnormal

activity of OFC may serve as the foundation for cognitive
control deficits in individuals with ADHD, and the failure in
cognitive control plays a crucial role in the main symptoms of
ADHD.
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FIGURE 5

Partial correlation analysis between fMRI indices and clinical scores of ADHD-C, ADHD-I and TD.

FIGURE 6

The ROCs of ADHD-C, ADHD-I and TD classifiers with features of ROIs. (A) ROC based on features in slow-5. (B) ROC based on features in slow-4.

TABLE 3 The results for classifying in ADHD-C, ADHD-I and TD groups with features of ROIs in slow-5 and slow-4.

Classifier Features in slow-5 Features in slow-4

AUC p-value Accuracy(%) AUC p-value Accuracy(%)

ADHD-C−ADHD-I 0.782 0.0006 76.47 0.695 0.0170 68.63

ADHD-C−TD 0.956 <0.0001 90.57 0.774 0.0006 77.36

ADHD-I−TD 0.907 <0.0001 88.89 0.729 0.0038 70.37

In the slow-5 frequency band, ADHD-C showed increased
dynamic SD of ReHo in the STG, PCUN, and ANG compared
to TD, while ADHD-I only exhibited increased dynamic SD of
ReHo in the temporal lobe. ReHo is a voxel-based measurement
that assesses the similarity of the time series of a given voxel with
those of its nearest neighboring voxels (Zang et al., 2004). We
calculated SD of dynamic ReHo to measure the degree of dynamic

variability in spontaneous neural activities over time. Cognitive
function depends on dynamic interactions among large-scale
neural systems (Bassett and Sporns, 2017). Most of the abnormal
regions in our results overlapped with the default mode network
(DMN) (Buckner et al., 2008). The DMN is active at rest but its
activation decreases continuously during goal-directed behavior,
which preserves the privilege of cognitive tasks by reducing
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unrelated stimulus activation (Raichle et al., 2001; Mantini et al.,
2007). Some studies assumed that a decrease in the inhibition of the
DMN is related to attention deficits (Castellanos and Proal, 2012).
The increased SD of dynamic ReHo in the DMN reflected a high
level of functional disruption, which may be associated with the
disrupted balance within the neural network. In addition, ADHD-
C exhibited higher dynamic SD of ReHo in the ANG compared to
ADHD-C. The ANG acted as a multimodal integration center in
reading, comprehension, spatial cognition and attention (Vannini
et al., 2004) and showed reduced functional connectivity related
to motor performance in ADHD (McLeod et al., 2014). A study
examined the performance of ADHD patients in attention tasks
revealed that the functional activity of ANG is related to cognitive
performance (de Oliveira Rosa et al., 2020). Furthermore, research
showed that the reduced functional connectivity between the
PCUN and other components of the DMN is strongly associated
with attentional deficits in ADHD (Castellanos et al., 2008). In
slow-5, ADHD-C showed significant disturbances of functional
activities in the PCUN and ANG, while ADHD-I did not. It
may suggest that ADHD-C exhibits more severe symptoms of
attention deficit than ADHD-I. A previous study also showed that
ADHD-I performs better than ADHD-C in the test of attention
network tasks (Oberlin et al., 2005). Additionally, compared to
TD, both ADHD-C and ADHD-I showed decreased dynamic
ReHo fluctuations in the PCUN in slow-4, which may reflect an
excessive stability and ineffective activity. Our results suggested that
ANG and PCUN, measured in slow-5, may be the key regions
to distinguish ADHD-C from ADHD-I. The results might help
explain the behavioral differences between ADHD-C and ADHD-I.

The subtype and frequency interaction effect analysis showed
that abnormal fMRI indices of ADHD were not only related
to disease factors, but also to specific frequencies. The subtype
differences were mainly observed in slow-5 frequency band.
Compared to the slow-4 band, functional signals in slow-5 tend
to exhibit increased intensity or enhanced fluctuation. The results
indicated that different frequency bands are associated with specific
pathological states in ADHD-C and ADHD-I. This could suggest
a high sensitivity of neural activity patterns in ADHD subtypes
to the slow-5 frequency band, which contains more oscillation
information in differentiating ADHD subtypes compared to slow-
4. Furthermore, our results were consistent with a previous theory
that brain regions showed different sensitivities to each frequency
band: low-frequency oscillations (slow-5) have higher power, which
is conducive to long-distance connections and large-scale neural
network construction. Therefore, low-frequency oscillations more
easily adjust the large default mode regions (Zuo et al., 2010; Han
et al., 2011; Yu et al., 2014). High-frequency oscillations (slow-4)
have lower power and are mostly related to the spatial structure
of small neurons with short connections (Baria et al., 2011; Han
et al., 2011). Moreover, it has been observed that the PCUN exhibits
decreased ReHo in the slow-4 compared to the slow-5 in typically
developing individuals. The functional connectivity showed a
decreased tendency in the slow-4 band compared to the slow-5
band (Xue et al., 2014). These findings are similar to our results.
The findings suggested that it is important to consider selecting
sensitive frequency bands when detecting abnormal spontaneous
brain activities in ADHD.

According to the correlative analysis among three groups, the
spontaneous fluctuation indices of each group could reflect the

serious trend in the development of the disease. For example, as
the disease progressed, there is a gradual decrease in both static
and dynamic mean fALFF of the OFC, and an increased variability
in the dynamic ReHo of the PCUN, STG and ANG. Our results
suggested that measuring neural fluctuation in specific frequencies
may beneficial for understanding the neuropathological basis of
ADHD and assist in future monitoring of disease progression.
The results from dysfunctional regions applied to the classification
showed that the diagnostic efficiency of features constructed in
slow-5 was better than that in slow-4. The finding confirmed
that the slow-5 frequency band contained more advantageous
diagnostic information than slow-4 and it suggested that frequency
factors should be considered when evaluating the intrinsic brain
activities of ADHD. As more categorical features were derived
from the dynamic indices, suggesting the temporal characteristics
might be a powerful tool for the detection of pathological changes
in different ADHD subtypes. Furthermore, the regions showing
interaction effects could be potential neuroimaging markers
representing the characteristics of ADHD subtypes.

Our study had some limitations that should be considered.
First, our research did not include ADHD-HI patients because
no ADHD-HI patients were included in this dataset. Second, the
relatively small sample size may have limited the effect size of the
study. As such, the replication efforts with larger sample sizes will
be necessary to further confirm the robustness and reliability of the
findings. Finally, this study focused on the assessment of ADHD
in the resting state. More experiments of task state are needed
to comprehensively evaluate the differences in brain functional
activities of ADHD subtypes in different frequency bands.

5 Conclusion

Our study revealed that the intrinsic neural activities of
ADHD subtypes were frequency-dependent and the differences
were more evident in slow-5 than in slow-4 band. Furthermore,
the abnormal indices were correlated to the trend of disease
progression in each group. The study suggested that frequency
factors should be considered when evaluating the neural substrates
in ADHD subtypes. The frequency-dependent static and dynamic
brain activities might provide potential neuroimaging biomarkers
of ADHD subtypes and provide Supplementary information for
monitoring ADHD progressions.
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