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Introduction: The Next Move in Movement Disorders (NEMO) study is an initiative 
aimed at advancing our understanding and the classification of hyperkinetic 
movement disorders, including tremor, myoclonus, dystonia, and myoclonus-
dystonia. The study has two main objectives: (a) to develop a computer-aided 
tool for precise and consistent classification of these movement disorder 
phenotypes, and (b) to deepen our understanding of brain pathophysiology 
through advanced neuroimaging techniques. This protocol review details the 
neuroimaging data acquisition and preprocessing procedures employed by the 
NEMO team to achieve these goals.

Methods and analysis: To meet the study’s objectives, NEMO utilizes multiple 
imaging techniques, including T1-weighted structural MRI, resting-state fMRI, 
motor task fMRI, and 18F-FDG PET scans. We will outline our efforts over the past 
4  years to enhance the quality of our collected data, and address challenges such 
as head movements during image acquisition, choosing acquisition parameters 
and constructing data preprocessing pipelines. This study is the first to employ 
these neuroimaging modalities in a standardized approach contributing to more 
uniformity in the analyses of future studies comparing these patient groups. 
The data collected will contribute to the development of a machine learning-
based classification tool and improve our understanding of disorder-specific 
neurobiological factors.

Ethics and dissemination: Ethical approval has been obtained from the relevant 
local ethics committee. The NEMO study is designed to pioneer the application 
of machine learning of movement disorders. We expect to publish articles in 
multiple related fields of research and patients will be  informed of important 
results via patient associations and press releases.
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FIGURE 1

Schematic diagram of the technical approach for project NEMO. The diagram covers (A) the study participant groups, (B) the data modalities of all 
measurements, (C) the planned approaches for feature engineering, (D) phenotype characterization and (E) phenotype classification, and (F) the 
desired project results.

1 Introduction

Hyperkinetic movement disorders are clinically characterized by 
excessive involuntary movements (Abdo et al., 2010). Three of the 
main phenotypes are essential tremor, dystonia and cortical 
myoclonus. Essential tremor has a prevalence of 0.9% in the general 
population and incidence increases with age to 4.6% in the population 
older than 65 years (Louis and Ferreira, 2010). This phenotype is 
characterized by rhythmic and sinusoidal alternating movements 
(Bhatia et al., 2018). Dystonia is defined as sustained or intermittent 
muscle contraction causing abnormal, often repetitive movements, 
postures, or both, and has a prevalence of 16 per 100.000 (Steeves 
et  al., 2012). Myoclonus, defined as sudden, brief shock-like 
movements, has a prevalence of 9 per 100.000 (Caviness et al., 1999). 
These disorders often severely limit patients in their daily lives 
(Chandran and Pal, 2013; van der Stouwe et al., 2015), and, because of 
the visibility of the disorder, patients are prone to embarrassment and 
social isolation (Chandran and Pal, 2013; Cullinane et al., 2014; Van 
der Stouwe et al., 2015).

It is important to classify the movement disorder phenotype 
correctly, as this determines the subsequent diagnostic and treatment 
process that will be initiated for a patient (Brandsma et al., 2021; van 
der Veen et al., 2021; Sadnicka and Edwards, 2023). For example, in 
dystonia it is important for the diagnosis if a patient has isolated 
dystonia or dystonia with tremor and/or myoclonus, as this can 
provide clues about the underlying etiology, i.e., by which disease the 
dystonic phenotype is caused. In addition, treatment in hyperkinetic 
movement disorder patients is mainly symptomatic and differs per 
phenotype. For example, botulinum toxin injections are effective in 
dystonia, sometimes in dystonic tremor, but almost never in isolated 
tremor. In patients with medically refractory movement disorders, 

deep brain stimulation (DBS) has become a preferred treatment 
(Krack et al., 2019). Importantly, the optimal brain target for DBS 
primarily depends on phenotype, underscoring the need for 
objective phenotyping.

Currently, clinical classification of involuntary movements (i.e., 
phenotyping) is purely based on clinical definitions and thus on expert 
opinion (Abdo et al., 2010). However, there is large inter- and intra-
observer variability during phenotyping (Van der Salm et al., 2013; 
Beghi et al., 2014; Eggink et al., 2017; Van der Salm et al., 2017). This 
is a major problem, which impairs patient diagnostics, evaluation of 
disease progression, personalized treatment, and treatment 
monitoring. To solve this problem, the Next Move in Movement 
Disorders (NEMO) project was set up by the Department of 
Neurology, University Medical Center Groningen (UMCG) in 2018. 
The aims of this project are twofold: firstly, to develop a computer-
aided classification tool that can support neurologists to quickly and 
confidently arrive at phenotype classification of hyperkinetic 
movement disorders, and secondly, to better understand the 
pathophysiology of these hyperkinetic movement disorders.

The technical approach of NEMO is shown in the diagram 
illustrated in Figure 1. Currently, we are recruiting adult tremor, 
myoclonus, dystonia, and myoclonus-dystonia patients (Figure 1A, 
see section 2) but also plan to extend this work to, e.g., more complex 
and mixed movement disorders, such as functional movement 
disorders and movement disorders caused by cerebral palsy. To 
achieve our aims, we acquire data using movement registration and 
neuroimaging measurements (Figure  1B). The methodology 
regarding the study setup and movement registration is further 
explained in detail by Van der Stouwe et al. (2021). The current 
protocol review is focused on the neuroimaging modalities of 
NEMO and describes the methods used for the functional magnetic 
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resonance imaging (fMRI) and 18F-fluorodeoxyglucose positron 
emission tomography (18F-FDG PET) measurements of the brain. 
From each data modality, we  estimate and extract features 
(Figure  1C) that we  use for analyses to gain insights into how 
hyperkinetic movement disorders affect brain metabolism and to 
perform comparative analyses among disorders to improve our 
understanding of their distinctive attributes. These comparative 
analyses will involve (a) group comparisons for phenotype 
characterization (Figure  1D1), in which we  try to find and 
understand group differences in brain metabolism during rest and 
during motor action, and (b) machine learning approaches to assist 
neurologists with explainable phenotype classification (Figure 1D2). 
For phenotype characterization, we will consider analyses that are 
classically used in the respective research domains, which we will 
supplement with machine learning approaches such as multivoxel 
pattern analyses to increase sensitivity for finding group differences 
(Haxby, 2012). Classical analyses may also provide multimodal 
feature inputs for these machine learning approaches. For example, 
18F-FDG PET group comparison results may be  used to define 
regions of interest for analyses in the fMRI data or vice versa.

In addition to phenotype characterization, we plan to fuse data 
(Figure  1E1) from different modalities to identify which 
complementary data modalities result in the best prediction 
performance and to determine which data modalities are most 
efficient in terms of costs and benefits. Our ultimate goal is to build 
explainable phenotype classification tools (Figure  1E2). For the 
adoption of such technology in clinical practice, it is imperative that 
machine learning “decision-making” is insightful and a transparent 
guiding tool for clinical experts. We plan to employ machine learning 
systems that are either genuinely interpretable, such as prototype-
based techniques, or combine machine learning with tools that 
provide interpretable explanations for complex models (Biehl et al., 
2016; Barredo Arrieta et al., 2019; Van et al., 2022). The models need 
to be supplemented with feature ranking (Figure 1E2) techniques that 
show where—in time and space—important phenotyping information 
is present and why it is important. Initially, these models will 
be developed for classifying clear and isolated hyperkinetic movement 
disorders, as a first step toward classifying more complex and mixed 
movement disorder phenotypes.

2 Study population

2.1 Recruitment

Neuroimaging data is currently being acquired from 20 dystonia, 
20 essential tremor, 20 cortical myoclonus, and 40 mixed movement 
disorders patients (i.e., myoclonus-dystonia) in whom the disorder 
affects hand or arm function. Furthermore, 40 age- and sex-matched 
healthy participants are being recruited for comparison. Patients are 
selected from the UMCG hyperkinetic movement disorders database, 
and are recruited mainly at the UMCG outpatient clinics, with 10 
patients via other hospitals in the Netherlands, patient associations, 
and patient research platforms. Healthy participants are recruited via 
the UMCG. Participants receive written information about the study 
and have the opportunity to ask the investigators questions 
beforehand. Participants are included if they are 16 years of age or 

older. Exclusion criteria are: (Abdo et al., 2010) other neurological 
conditions that lead to movement problems other than the 
hyperkinetic movement disorder, (Louis and Ferreira, 2010) other 
conditions that lead to impaired hand or arm function, and (Bhatia 
et  al., 2018) any contraindications for MRI. In addition, healthy 
volunteers who are first-degree relatives of patients with movement 
disorders are excluded as well. For the current protocol review, 
patients or the public were not involved in the design, or conduct, or 
reporting, or dissemination plans of our research. They will 
be  involved in follow-up studies that will report on the NEMO 
study results.

2.2 Sample size

Estimating the necessary sample size for machine learning studies 
is challenging. Unlike hypothesis testing, where power analysis is 
common, machine learning focuses on assessing the model’s 
generalizability through validation on independent data sets. For our 
study, we selected 20 subjects per group based on relevant literature 
and our experience, believing this number would be  sufficient to 
develop initial machine learning classifiers for clear and isolated 
hyperkinetic movement disorders. Phenotypes. The group sizes were 
realistic given the rarity of these disorders and the fact that a number 
of patients had to be excluded since they had already undergone deep 
brain stimulation or had contraindications for MR imaging. Despite 
our clinic being one of the few rare movement disorder expertise 
centers in the in the Netherlands reaching patients across the country, 
we anticipated that larger group sizes were not feasible.

To determine if our sample sizes were sufficient to detect 
differences between groups, we conducted a power calculation using 
NeuroPowerTools (Durnez et al., 2016).1 This calculation was based 
on brain maps from two groups: 21 essential tremor patients 
performing a postural task and 21 healthy participants mimicking 
tremor during the same task (Van Der Stouwe et al., 2016). With a 
significance level (alpha) of 0.05 (corrected) and a desired power of 
0.80, the Bonferroni correction indicated that the between-group 
comparison achieved a power of 0.87. Based on these results, 
we concluded that having 20 participants per group would be sufficient 
for our planned neuroimaging group comparisons.

2.3 Ethics and dissemination

The study was approved by the medical ethical committee of the 
UMCG (METc 2018/444) and written informed consent is obtained 
from all subjects according to the Declaration of Helsinki. Given the 
scope of this study, we expect to publish multiple articles in the fields 
of neuroimaging, clinical neurology, particularly movement disorders, 
clinical neurophysiology, artificial intelligence and visual analytics. 
Moreover, patients will be informed of important study results via the 
different patient associations, press releases, the website www.
movementdisordersgroningen.com and at biannual Movement 
Disorders Groningen Patient Days.

1 https://github.com/neuropower/neuropower-core
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FIGURE 2

Multi Echo data acquisition at different echo times (TE).

3 Methods and analysis

3.1 fMRI acquisition strategies

Hyperkinetic movement disorders are often mild or non-existent 
during rest but become more pronounced during postural or kinetic 
tasks (Abdo et al., 2010; Jinnah and Factor, 2015; Bhatia et al., 2018; 
Roze et al., 2018). Therefore, we aimed to measure brain function both 
in rest and during a motor task to evoke the disorders. As a result, one 
of the main challenges for the neuroimaging part of the NEMO 
project was accounting for the increased risk of involuntary 
movement-induced artifacts during the measurements, as removing 
the artifacts is crucial to properly studying the true neurobiological 
signals (Power et al., 2018). To mitigate this risk, we took extra care in 
designing the neuroimaging protocols.

FMRI measures blood oxygen level dependent (BOLD) signals. 
However an (f) MRI signal is sensitive to body movements resulting 
in motion artifacts and thereby the reduction of signal to noise ratios 
(SNR) in the data. For fMRI studies in patients with movement 
disorders, this means that a greater number of trials is needed to 
produce data of sufficient quality thus limiting the number of 
experimental variables one can introduce. This constrains the 
hypotheses that can be tested. Fortunately, advances in MRI hardware 
and analysis tools allow for creating fMRI protocols that are more 
robust against such movement-induced signal artifacts.

While setting up (f) MRI protocols for NEMO, we evaluated the 
use of multi-echo (ME) fMRI during hand movement tasks and 
resting state (i.e., absence of a stimulus or a task). In conventional 
fMRI sequences, data of an image is collected following a radio 
frequency pulse within a time period denoted as echo time. This type 
of imaging is known as single-echo fMRI. For ME fMRI, multiple 
brain images are collected following each radio frequency pulse at 
different echo times. Figure 2 shows how signal intensity decays over 
time as a function of echo time on a 3 T MRI scanner. In some areas, 
signal intensity fully decays, a phenomenon called ‘signal dropout’, 
which is caused by inhomogeneities in the main magnetic field 
(Glover, 2011). By using data across multiple echo times, the images 
can be combined into an optimal brain image. This strategy not only 
improves spatial image quality by recovering signal loss in dropout 
areas, but also offers a twofold increase in temporal SNR for BOLD 
fMRI (Kundu et al., 2013).

The relationship between signal strength and echo time may also 
be exploited to assess underlying signal sources. By analyzing signal 

change across time points and echo times, BOLD (neuronal) and 
non-BOLD (artifactual) signal components can be  distinguished 
using an approach that combines ME fMRI imaging with independent 
component analysis (ME-ICA). In this context, non-BOLD 
components, such as movement-induced artifacts, are removed from 
the data, resulting in a fourfold improvement in BOLD SNR (Kundu 
et al., 2013; Olafsson et al., 2015; Kundu et al., 2017; DuPre et al., 2021).

A common challenge for constructing (ME) fMRI protocols is 
choosing a set of parameters affecting the spatial and/or temporal 
resolution of the measurements. To improve the resolution, (ME) 
fMRI protocols generally make use of acceleration techniques for data 
acquisition. Two common fMRI acceleration techniques are 
GeneRalized Autocalibrating Partially Parallel Acquisition [GRAPPA, 
also termed iPAT, (Griswold et  al., 2002)], and partial Fourier 
(Feinberg et al., 1986). GRAPPA allows acquiring less data to construct 
brain volumes by integrating spatial information from reference 
volumes that are obtained prior to the scan. The advantage of this 
acceleration technique is that it reduces both image distortion and 
drop out effects (Schmiedeskamp et al., 2010). However, the use of 
reference scans makes this method more susceptible to head motion; 
when subjects move during reference scans, the entire time-series will 
be affected.

A different approach to increase the spatio-temporal resolution is 
partial Fourier. Like GRAPPA, partial Fourier acquires less data per 
volume but does not require reference volumes. Instead, partial 
Fourier mathematically synthesizes missing data from the volumes 
themselves. The strength of partial Fourier compared to GRAPPA, is 
that it is less sensitive to motion. However, partial Fourier has slightly 
lower spatial SNR (resulting in less sharp images) and is more prone 
to signal drop out, especially in the frontal cortex and lateral temporal 
lobes (Smith et al., 2013).

In addition to GRAPPA and partial Fourier, data acquisition may 
be accelerated using multiband (MB, also termed simultaneous multi 
slice, SMS) acceleration. Conventional fMRI sequences acquire data 
slice-by-slice to create 3D volumes. Multiband fMRI makes use of a 
multiband radiofrequency pulse that simultaneously excites and 
receives signals from multiple slices reducing the time needed to 
acquire brain volumes [i.e., time repetition (TR)]. The benefit of 
shortening the TR in the context of hyperkinetic movement disorders 
is that it allows for better sampling of (movement induced) artifacts. 
However, multiband acceleration also leads to spatially heterogeneous 
noise amplification reducing SNR. The recommended balance 
between costs and benefits is an acceleration factor of MB = 4 on a 3 T 
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MR scanner, reflecting a four-fold increase in the rate that brain 
volumes are acquired (Risk et al., 2021).

To measure BOLD fMRI in patients with hyperkinetic movement 
disorders, and acknowledging the increased risk of motion-induced 
artifacts while scanning, we  aimed to build two protocols with 
different trade-offs affecting spatial and temporal signal quality. For 
the first acquisition protocol, we  aimed to make relatively small 
sacrifices in spatial and temporal signal quality and created a full brain 
T2*-weighted echo-planar imaging (EPI) protocol that combined 
Partial Fourier acceleration and multiband imaging with an isotropic 
voxel resolution of 2 mm and a temporal resolution of 1,600 ms.

The second protocol involved hand movement, and thus 
we expected more movement related artifacts. Therefore, we aimed to 
make the second acquisition protocol more robust against head 
movement induced artifacts and chose for a shorter TR to enhance 
artifact sampling, using multi-echo imaging to separate BOLD from 
artifact signal sources using ME-ICA, and relatively large voxels as 
larger voxels are less sensitive to motion artifacts (Risk et al., 2021). To 
this end, we  created a full brain T2*-weighted EPI protocol that 
combined Partial Fourier acceleration, multi-echo, and multiband 
imaging with an isotropic voxel resolution of 3.5 mm and temporal 
resolution of 1,101 ms.

3.2 fMRI protocols

Magnetic resonance imaging (MRI) data are collected on a 3 T 
Siemens Prisma scanner at the UMCG using a Siemens 64-channel 
head coil. T1-weighted sagittal images (MPRAGE) are acquired at 
1 mm isotropic resolution with the following parameters: 
TR = 2,300 ms; TE: 2.98 ms; FA = 9°; 256 slices; Bandwidth = 240 Hz/
Px. Functional MRI data is being acquired using two protocols: a 
multiband as well as a multiband multi-echo protocol. The multiband 
protocol consists of a full brain T2*-weighted echo-planar sequence 
with scanning parameters: TR = 1,600 ms; TE = 34 ms; FOV = 224 mm; 
FA = 70°; voxel size = 2 mm isotropic; 72 slices; Partial Fourier = 6/8; 
MB = 4; Bandwidth = 1828 Hz/px; Pulse duration = 5,120 μs; AP phase 
encoding direction; MB LeakBlock kernel enabled; EPI factor = 114. 
The multiband multi-echo protocol consists of a full brain 
T2*-weighted echo-planar sequence with scanning parameters: 
TR = 1.101 ms; TE = 12, 36.1, 60.2 ms; FA = 45°; voxel size = 3.5 mm 
isotropic, 48 slices, Partial Fourier = 6/8 (no IPAT), MB = 4; 
bandwidth = 2,604 Hz/px; pulse duration = 2,560 μs; AP phase 

encoding direction, MB LeakBlock kernel enabled; EPI factor = 64. In 
addition, 10 additional volumes with inverted RO/PE polarity are 
acquired for each protocol for distortion correction purposes. The EPI 
pulse sequence used for both protocols was generously provided by 
the Center for Magnetic Resonance Research (CMRR) at the 
University of Minnesota (Xu et al., 2013).

3.3 fMRI tasks and procedures

To assess spatial and temporal signal quality of the fMRI protocols 
during rest and hand movements, the first 23 participants underwent 
an extended fMRI session comprised of two resting-state and three 
task T2*-weighted fMRI scans, and one T1-weighted anatomy scan. 
Resting-state was measured once using the multi-echo fMRI protocol 
(9 min 54 s) and once using the single-echo (9 min 52 s) (“rest1” & 
“rest2,” respectively). For the resting-state scans, participants were 
instructed to lie motionless in the scanner, fixate their eyes on a white 
fixation cross on a black screen, and let their mind wander freely.

Since hyperkinetic movement disorder phenotypes become more 
pronounced during postural or kinetic tasks, we measured brain 
responses during two different hand movement tasks. The first hand 
movement task was a postural task in which participants were 
instructed to keep their arms pronated and outstretched with 
extended wrists (“hands1”). The second hand movement task was a 
kinetic self-paced four-finger tapping task in which participants had 
to tap their fingertips simultaneously on the thumb repeatedly, which 
was performed once during single-echo fMRI and once during multi-
echo fMRI measurement (“hands2” & “hands3”). Brain responses 
during this task were only measured using the single-echo fMRI 
protocol. We chose a postural and a kinetic task as we were not sure 
if a kinetic hand movement task would cause too much 
head movements.

Figure  3 provides a schematic overview of the fMRI task 
paradigms. Tasks were alternated between the right and left hand 
during 10 trials. Throughout the tasks, participants received visual 
cues and instructions in Dutch provided on a computer screen. Each 
trial began with the message “Right hand” (in Dutch: “Rechter hand” 
displayed in red font) or “Left hand” (in Dutch: “Linker hand” 
displayed in blue font) to indicate the corresponding hand movement 
block for the right and left hand, respectively. Within each block, 
participants performed the assigned hand movement task for a 
duration of 10 s. The hand used for tapping alternated between left and 

FIGURE 3

Overview of the fMRI finger tapping task paradigm.
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right, repeating a total of five times. A 15-s rest condition, indicated 
by a black dot, separated each hand tapping condition. The entire task 
lasted for 4 min and 43 s. To ensure accurate task performance, 
participants watched an instruction video prior to the scan and 
practiced the protocol inside the scanner before measurements began. 
Furthermore, we recorded task performance on video during the scan 
to later inspect data quality and ensure task compliance.

After assessing the protocols in 23 participants (see section 6), 
we condensed the fMRI session to one resting-state scan using the 
single-echo fMRI protocol, one kinetic hand movement task fMRI 
scan using the multi-echo fMRI protocol, and one anatomy scan.

3.4 fMRI preprocessing

3.4.1 Anatomical data preprocessing
T1-weighted (T1w) images are corrected for intensity 

non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 
2010), distributed with ANTs 2.3.3 (Avants et al., 2008), and used as 
T1w-reference throughout the workflows. The T1w-reference was 
then skull-stripped with a Nipype implementation of the 
antsBrainExtraction workflow (ANTs 2.3.3), using OASIS30ANTs as 
target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), white-matter (WM) and gray-matter (GM) was performed on 
the brain-extracted T1w using fast [FSL 6.0.5, (Zhang et al., 2001)]. 
Volume-based spatial normalization to two standard spaces 
(MNI152nLin2009cAsym, MNI152nLin6Asym) was performed 
through nonlinear registration with antsRegistration (ANTs 2.3.3), 
using brain-extracted versions of both T1w reference and the 
T1w template.

3.4.2 Multiband fMRI
The multiband data was preprocessed using fMRIPrep v20 

(Esteban et al., 2019). The following methodology was used; first, a 
reference volume and its skull-stripped version were generated using 
custom methodology of fMRIPrep. A B0-nonuniformity map (or 
fieldmap) was estimated based on two EPI references with opposing 
phase-encoding directions, with 3dQwarp (Cox and Hyde, 1997; 
AFNI 20160207). Based on the estimated susceptibility distortion, a 
corrected EPI reference was calculated for a more accurate 
co-registration with the anatomical reference. The BOLD reference 
was then co-registered to the T1w reference using flirt (FSL 5.0.9; 
Jenkinson and Smith, 2001) with the boundary-based registration 
cost-function (Greve and Fischl, 2009). Co-registration was 
configured with nine degrees of freedom to account for distortions 
remaining in the BOLD reference. Head-motion parameters with 
respect to the BOLD reference (transformation matrices, and six 
corresponding rotation and translation parameters) are estimated 
using mcflirt (FSL 5.0.9; Jenkinson et  al., 2002) before any 
spatiotemporal filtering. BOLD fMRI timeserieswere slice-time 
corrected to 0.745 s (half of slice acquisition range) using 3dTshift 
from AFNI 20160207 (Cox and Hyde, 1997). The BOLD time-series 
(including slice-timing correction when applied) were resampled onto 
their original, native space by applying a single, composite transform 
to correct for head-motion and susceptibility distortions. These 
resampled BOLD time-series will be  referred to as preprocessed 
BOLD. The BOLD time-series were resampled into MNI space, 
generating a preprocessed BOLD time series in MNI space. Automatic 

removal of motion artifacts using independent component analysis 
[ICA-AROMA; Pruim et  al. (2015)] was performed on the 
preprocessed BOLD on MNI space time-series after removal of 
non-steady state volumes and spatial smoothing with an isotropic, 
Gaussian kernel of 6 mm FWHM (full-width half-maximum). Thus, 
“non-aggresively” denoised BOLD timeseries were produced. Gridded 
(volumetric) resamplings were performed using antsApplyTransforms 
(ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels (Lanczos, 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf 
(FreeSurfer).

3.4.3 Multiband multi-Echo fMRI
Multiband multi-echo fMRI data was preprocessed using an 

in-house constructed nipype pipeline, which consisted of fMRIprep 
v22, TE-dependence analysis (tedana) v0.0.12, and Advanced 
Normalization Tools (ANTs) v2.3.5 (Avants et al., 2008; Gorgolewski 
et al., 2011; Esteban et al., 2019; DuPre et al., 2021). Here, fMRIPrep 
v22 was used instead of the long-term support version v20 since v22 
provides enhanced functionalities for multi-echo fMRI that better 
support post-processing with tedana. First, fMRIprep preprocessing 
was applied to the data using the “single-echo” output parameter. The 
following methodology was used; first, a reference volume and its 
skull-stripped version were generated from the shortest echo of the 
BOLD timeseries using custom methodology of fMRIPrep. A B0-
nonuniformity map (or fieldmap) was estimated based on two EPI 
references with topup (FSL 6.0.5.1; Andersson et al., 2003; Graham 
et  al., 2017). Head-motion parameters with respect to the BOLD 
reference (transformation matrices, and six corresponding rotation 
and translation parameters) are estimated before any spatiotemporal 
filtering using mcflirt (FSL 6.0.5.1; Jenkinson et  al., 2002). The 
estimated fieldmap was then aligned with rigid-registration to the 
target EPI reference volumes. The field coefficients were mapped on 
to the reference EPI using the transform. BOLD timeseries were slice-
time corrected to 0.495 s (half of slice acquisition range) using 3dTshift 
from AFNI (Cox and Hyde, 1997). A T2* map was estimated from the 
preprocessed EPI echos, by voxel-wise fitting the maximal number of 
echoes with reliable signal in that voxel to a monoexponential signal 
decay model with nonlinear regression. The T2*/S0 estimates from a 
log-linear regression fit were used for initial values. The calculated T2* 
map was then used to optimally combine preprocessed BOLD across 
echoes following the method described in (Posse et al., 1999). The 
optimally combined time series was carried forward as the preprocessed 
BOLD. The BOLD reference was then co-registered to the T1w 
reference using mri_coreg (FreeSurfer) followed by flirt (FSL 6.0.5.1; 
Jenkinson and Smith, 2001) with the boundary-based registration 
cost-function (Greve and Fischl, 2009). Co-registration was 
configured with six degrees of freedom. The same confounds and 
resampling were calculated as for the multiband fMRI protocol.

The fMRIPrep “single-echo” output parameter provided individual 
echo time series with slice, motion and susceptibility correction. These 
individual echo time series were used as input for multi-echo 
independent component analysis (ME-ICA) denoising, using Python 
library tedana (DuPre et al., 2021). A custom brain mask was used 
calculated from the BOLD-reference file generated by fMRIPrep. The 
resulting denoised BOLD time series was normalized to MNI space 
with ANTs using the transformation file generated by fMRIPrep, and 
finally resliced to 2 mm isotropic voxels.
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3.5 fMRI task and protocol evaluation

To assess spatial and temporal signal quality for the two fMRI 
protocols across rest and hand movement tasks, we compared data 
quality metrics in a small cohort of hyperkinetic movement disorder 
patients (1 dystonia, 7 myoclonus, 2 tremor) and 13 healthy controls 
using framewise displacement (FD), derivative of the root mean 
square variance over voxels (DVARS), spatial SNR, and temporal (t) 

SNR estimated by MRIQC [48, 49]. The results are shown in Figure 4 
and Table 1.

Our aims were to compare (Abdo et  al., 2010) spatial SNR 
across protocols, (Louis and Ferreira, 2010) head movements and 
head movement related artifacts across movement and rest tasks, 
and whether these differed between patients and controls, and 
(Bhatia et al., 2018) temporal SNR across protocols and tasks after 
preprocessing and denoising. Statistical comparisons were 

TABLE 1 Average signal quality metrics across fMRI protocols and tasks.

Sequence Single-echo Multi-echo

Task rest2 hands3 rest1 hands1 hands2

Echo time 
(ms)

34 34 12 36.1 60.2 12 36.1 60.2 12 36.1 60.2

Spatial SNR

4.33

(0.32)

4.34

(0.31)

2.17 

(0.22)

2.10 

(0.25)

1.83 

(0.31)

2.22 

(0.15)

2.13 

(0.22)

1.85 

(0.30)

2.20 

(0.17)

2.12 

(0.23)

1.85 

(0.30)

Temporal SNR

40.81

(6.96)

35.64

(6.34)

84.94 

(26.17)

54.76 

(15.19)

35.79 

(10.40)

67.48 

(17.25)

44.25 

(10.74)

28.58 

(7.63)

64.35 

(19.04)

42.97 

(11.14)

28.13 

(7.83)

FD

0.27

(0.14)

0.39

(0.19)

0.24 

(0.12)

0.23 

(0.12)

0.23 

(0.12)

0.31 

(0.16)

0.32 

(0.16)

0.32 

(0.16)

0.33 

(0.17)

0.34 

(0.17)

0.33 

(0.17)

DVARS

48.90

(8.52)

51.33

(8.85)

18.38 

(4.75)

23.85 

(6.07)

32.66 

(9.32)

22.21 

(6.85)

28.82 

(7.65)

39.80 

(11.39)

23.18 

(6.88)

29.95 

(8.24)

41.80 

(12.59)

All values are expressed in mean and (sd). Ms, milliseconds; SNR, signal to noise ratio; FD, framewise displacement; DVARS, derivative of the root mean square variance over voxels.

FIGURE 4

Signal Quality Metrics across fMRI Protocols and Tasks. (A) Spatial and Temporal signal to noise (SNR) metrics for both fMRI protocols across all tasks 
before preprocessing. (B) Head movement metrics for both fMRI protocols across all tasks. We show DVARS (D referring to temporal derivative of time 
courses, VARS referring to RMS variance over voxels) and Framewise Displacement (Power et al., 2012). Metrics were calculated for gray matter voxels 
using MRIQC (Esteban et al., 2017). (C) Temporal SNR for the single-echo and multi-echo protocol after fMRIPrep preprocessing, ICA-AROMA 
denoising (Pruim et al., 2015) and ME-ICA denoising (Kundu et al., 2013; DuPre et al., 2021).
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performed in R 4.3.12 using mixed effect models (LME4 1.1–35.1 
and LmerTest 3.1–3).

To investigate differences in spatial SNR across protocols 
(Figure 4A), we constructed a mixed effect model with spatial SNR as 
dependent variable, protocol (single-echo vs. multi-echo) as 
independent variable and participant ID as random variable. 
We found that the single-echo protocol had 2.12x higher spatial SNR 
than the multi-echo protocol [t (229) = 73.85, β = 2.29, p < 0.001].

To find differences in head movement related differences across 
tasks (Figure  4B), we  constructed two models that tested for 
differences in head displacements and movement related noise 
variance (DVARS), respectively, as a function of the interaction 
between task type (movement vs. rest) and participant group (patient 
vs. control). Again, patient ID was used as random variable. We found 
that head displacements were 1.34x larger [t (228.02) = 11.98, β = 0.097, 
p < 0.001] and that DVARS was 1.11x larger during hand movement 
tasks [t (228.12) = 4.92, β = 5.37, p < 0.001]. We found no differences 
between patients and controls (all p > 0.5).

Finally, data quality after preprocessing and denoising 
(Figure  4C) was investigated using a mixed effect model with 
temporal SNR as dependent variable, the interaction between 
protocol type (single-echo vs. multi-echo) and task type (movement 
vs. rest) as independent variables, and patient ID as random 
variable. For single-echo data, preprocessing and denoising 
comprised of fMRIPrep combined with ICA-AROMA while 
fMRIprep combined with ME-ICA were used for the multi-echo 
data. The results showed that tSNR was 1.24x higher for the resting 
task compared to the movement task [t (24) = 2.92, β = 9.89, 
p < 0.01]. After ME-ICA denoising of the multi-echo data, we found 
that tSNR was 1.11x higher in the rest task compared to the hands2 
task [t (47.22) = 3.47, β = 0.097, p < 0.01 corrected] but we found no 
difference between the rest1 and hands1 tasks. More importantly, 
tSNR was 2.69x higher for the denoised multi-echo data compared 
to the denoised single-echo data [t (98.34) = 26.33, β = 95.72, 
p < 0.001].

During the protocol assessment, we thus found that multi-echo 
fMRI provides an almost threefold increase in BOLD signal quality by 
removing (motion-induced) signal artifacts but that protocol 
adjustments come at a cost in spatial SNR; for our protocols, single 
echo fMRI provided an over twofold increase in spatial SNR. As 
we  observed relatively little head movements during resting-state 
scans, we  decided to continue measuring resting-state using the 
single-echo protocol for the remaining participants.

Since head movements were far greater during hand movement 
tasks compared to rest, we decided to continue measuring brain 
responses using the multi-echo protocol for the movement task to 
benefit from the almost threefold improvement in temporal 
SNR. For the hand movement task, we  decided to continue 
measurements using the kinetic hand movement task (“Hands2”), 
since it contains both a postural and kinetic component to invoke 
a wider spectrum of movement disorders than a purely postural 
task while head displacement and noise variance were similar 
between both tasks.

2 https://www.R-project.org/

3.6 [18F]FDG PET acquisition strategies

PET is an imaging technique that relies on the injection of a 
radioactive compound (i.e., radiotracer). Many different radiotracers 
have been developed to visualize different brain functions or 
pathologies in vivo. 18F-FDG is the most commonly used radiotracer 
in clinical practice. It is a radioactive analog of glucose and depicts 
glucose consumption in the brain and, therefore, measures brain 
metabolism. The main advantage of the use of PET is that it is a 
quantifiable imaging technique, allowing for a direct comparison of 
function (radiotracer uptake by certain brain regions) between 
patients and healthy volunteers. By having subjects undergo 18F-FDG 
PET scans at rest with their eyes closed, we acquire images that show 
default baseline brain function.

The main challenges to scan patients for NEMO using 18F-FDG 
PET are (Abdo et  al., 2010) the fact that hyperkinetic movement 
disorders may be mild or non-existent at rest, (Louis and Ferreira, 
2010) increased risk of movement induced measurement artifacts, and 
(Bhatia et al., 2018) partial volume effects.

Movement disorders have been hypothesized to be  network 
disorders (Andersson et al., 2003; Gorgolewski et al., 2011; Graham 
et al., 2017). This means that instead of affecting specific aspects of the 
brain, they affect the connections between brain regions. At rest, the 
combination of active regions that keep basic functions of the body at 
work is called the default mode network (Posse et al., 1999). While the 
histopathological hallmark of movement disorders is located in the 
basal ganglia, the effects of these diseases can be observed within the 
cortex, in which the default mode network resides. We  therefore 
expected specific patterns of abnormal brain function affecting 
multiple regions of the brain at rest.

Similarly to fMRI, PET is a technique that is sensitive to head 
movements during image acquisition. Head movements may reduce 
image resolution and distort uptake values (especially in smaller brain 
regions). For the NEMO PET protocol, we decided not to restrict head 
movement using a stereotactic device or a thermoplastic mask to 
avoid patient discomfort. Instead, to verify how much head movement 
was happening during the scan, we opted for a dynamic acquisition 
protocol, in which brain images are reconstructed every 2 min during 
a 10-min data acquisition, resulting in 5 images per subject. Head 
movements between these images are assessed per individual. To 
generate single static 18F-FDG PET images for further analysis, the 5 
dynamic images were corrected for motion using a conservative 
frame-based image-registration (FIR) approach, and then averaged to 
form a single image (Power et  al., 2012). This procedure was 
performed during reconstruction on the scanner.

In addition to head movement susceptibility, PET images have a 
limited spatial resolution compared to MRI. Resolution can be affected 
by the inherent physical effects such as detector size, positron range, 
and non-collinearity (Esteban et al., 2017). Partial volume effects are 
a consequence of low spatial resolution, which result in lower 
radioactive uptake measurement than expected. Advances in PET 
imaging technology are reducing these image resolution effects by 
reducing the size of the crystals in the detectors and by using 
corrections during reconstruction such as time-of-flight (Boellaard 
et al., 2010) and iterative imaging reconstruction approaches, e.g., 
ordered subsets expectation maximization (OSEM; Peretti et  al., 
2019). Post-reconstruction partial volume effects correction can also 
be  performed using methods such as recovery coefficient (Peretti 
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et al., 2021), geometric transfer matrix (Cox, 1996; Esteban et al., 
2017), and the Muller-Gartner approach (Hoopes et  al., 2022). 
However, there is no clear consensus on which method for correction 
should be used. Furthermore, partial volume correction has been 
shown to increase variance in the data (Isensee et al., 2019), leading to 
a larger biases when comparing patients and controls (Avants et al., 
2011; Norgaard et al., 2022). As images were acquired on Siemens 
Biograph mCT PET/CT scanners, which are two of the most recent 
scanners from Siemens, providing high resolution images, combined 
with OSEM and time-of-flight correction reconstructions, we decided 
against using partial volume corrections during image processing in 
the NEMO project.

3.7 [18F]FDG PET protocol

Prior to the scan session, subjects were asked to fast for at least 6 h 
and not to perform any heavy physical activity. These requirements 
are made to guarantee a higher uptake of 18F-FDG to brain tissue and 
less in other tissues, such as muscles or organs in the digestive tract, 
ensuring high measurement signal to noise ratio in the brain. To 
confirm subject compliance to the fasting protocol, plasma glucose 
levels were measured before PET scans and only subjects with levels 
lower than 7 mmol/L were scanned (Boellaard et al., 2010).

After glucose measurement, a bolus injection of an average of 
200 MBq 18F-FDG via intravenous catheter was performed. Next, a 
buffered saline injection (approximately 10 mL) was administered to 
flush out the cannula. Participants were left to rest awake in a silent 
room with dimmed lights for 30 min before image acquisition for the 
radiotracer to achieve a steady state throughout the body (i.e., the net 
flux of tracer through tissue is stable).

Images are acquired using a Siemens Biograph 40 or 64mCT PET/
CT scanner at the Department of Nuclear Medicine and Molecular 
Imaging of the University Medical Centre Groningen. Both scanners 
are from the same manufacturer and generation, acquisition and 
reconstruction protocols are harmonized, and the calibration of the 
systems is done equally. Therefore, we expected no difference between 
data from both scanners, as shown in previous studies (Peretti et al., 
2019, 2021). 18F-FDG was synthesized at the radiopharmacy facility at 
the Department of Nuclear Medicine and Molecular Imaging 
according to Good Manufacturing Practice.

Dynamic image acquisition lasts 10 min (5 × 2 min) and images 
are averaged into a single static scan. Data are acquired in list-mode 
format for all scans and reconstructed using a 3D OSEM (3 iterations 
24 subsets, 2 mm FWHM Gaussian kernel) using point-spread 
function and time-of-flight corrections. Final images are 
400 × 400 × 111 matrices, with isotropic 2 mm voxels.

3.8 [18F]FDG PET preprocessing

For preprocessing the [18F]FDG PET images, we built a robust 
in-house preprocessing pipeline. First, the required anatomical 
images acquired during the MRI session, were preprocessed in 
fMRIPrep version 20.2.0 (Esteban et  al., 2019) to obtain bias-
corrected anatomical images, a brain mask, and normalization 
warping parameters to transform images from subject space to MNI 
space. Subsequently, we set up a Nipype (v1.8.3; Gorgolewski et al., 

2011) preprocessing pipeline for the PET images. First, we cropped 
PET images using the autobox function from AFNI (v21.3.04; Cox, 
1996) with 10 voxels padding. Next, we used SynthStrip for brain 
extraction (Hoopes et  al., 2022). After testing multiple brain 
extraction toolboxes (i.e., FSL bet, FSL bet2, AFNI 3dSkullStrip, 
HD-BET (Isensee et al., 2019), and SynthStrip), SynthStrip showed 
very fast and robust performance across all PET datasets during 
in-house testing. Since coregistering the PET images to the bias-
corrected anatomical images required a large spatial translation, 
we  coregistered the images in two steps using Advanced 
Normalization Tools (ANTs, v2.3.5; Avants et  al., 2011); first, 
we coregistered the brain extraction mask from SynthStrip to the 
anatomical brain mask, followed by a more fine grained 
coregistration step where the PET image was aligned to the T1 
image. This two-step procedure proved to be  more robust than 
coregistering both images in a single step. For further analyses, the 
preprocessing pipeline provides preprocessed images in subject 
space and in MNI space (i.e., MNI152NLin2009cAsym). To generate 
PET images in subject space, linear transformations from both 
coregistration steps are merged and applied to the original PET 
image. To generate preprocessed PET images in MNI space, linear 
transformations are merged with the normalization warping 
parameters from fMRIprep and then applied to the original PET 
image. An overview of the preprocessing pipeline is shown in 
Figure 5. The NEMO FDG PET preprocessing pipeline is available 
as Python package PETBrainPreprocessing at https://github.com/
jrdalenberg/PETBrainPreprocessing. This package offers an open 
source robust Nipype workflow for preprocessing PET BIDS brain 
data (Norgaard et al., 2022).

After the preprocessing, T1 and FDG PET images were loaded 
into PMOD (version 4.1; PMOD Technologies LCC). The Automated 
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was 
chosen to delineate volumes of interest (VOI) as it contains the 
parcellation of the cerebellar gray matter, a brain region that is of 
importance in movement disorders. Tissue probability maps resulting 
from the PETBrainPreprocessing pipeline were also used as input to 
align VOIs to each subjects’ anatomy and to restrict analyses to gray 
matter voxels only. To compare FDG PET uptake between participants, 
standardized uptake value ratios (SUVR) were calculated by dividing 
each image voxel by the average uptake in the cortical gray matter. 
This intensity normalization step is what allows PET images to 
be compared between individuals. VOIs were then overlaid on the 
SUVR FDG PET images and average uptake per volume was extracted 
for further data analyses. Alternatively, the normalized PET images 
(i.e., in MNI space) can be used to study differences across groups at 
a voxel level, provided that an appropriate intensity normalization step 
is included in the analysis.

3.9 Quality assurance and control for both 
fMRI and PET

We took several precautionary measures to assure high quality 
data during collection and preprocessing for subsequent analyses. 
First, we  designed study-specific case report forms in which data 
quality was carefully assessed right after each scan acquisition. When 
scan quality was insufficient (e.g., movement artifacts in the 
T1-weighted scans or when a participant accidentally moved their 
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head out of the field of view of the scanner), the anatomical scan 
was repeated.

Second, we took care in ensuring that the hand movement tasks 
were correctly performed during fMRI scans. We  created an 
instruction video that is shown prior to the MRI scan session. 
Furthermore, the movement tasks are trained inside the scanner and 
fMRI measurement starts once the task is correctly performed. In 
addition, we built an MR-compatible night-vision video-camera that 
allows us to evaluate task performance in the dark MR room during 
the scans. Video recordings during task performance are also available 
as reference during data analysis.

Third, we built in-house routines in our preprocessing pipelines 
to evaluate data quality. For the fMRI acquisitions, we use fMRIPrep 
html-reports. In addition, for the task fMRI, we construct simple mass 
univariate analysis to model motor responses of the left and right hand 
movements, create glass brain fMRI BOLD overviews, and make sure 
we  can observe brain responses in the ipsilateral cerebellum and 
contralateral motor cortex.

4 Significance

The NEMO project represents one of the most extensive 
investigations into rare movement disorders. Its distinctive 
contribution lies in the integration of PET and fMRI neuroimaging 
techniques alongside movement registration measurements. Notably, 
this study is the first to systematically apply these measurement 
modalities across multiple hyperkinetic movement disorders, 
contributing to a more standardized approach to compare these rare 
movement disorders in future studies.

After establishing the distinguishing features, data modalities, 
and models for these relatively pure movement disorder phenotypes, 
our next goals are (1) to evaluate in close collaboration with 
neurologists which modalities, features and models are most efficient 
to implement in clinical settings, (2) to build machine learning 
approaches to assist neurologists in phenotype classification, and (3) 
to move toward addressing more complex mixed movement 
disorder phenotypes.

FIGURE 5

Robust FDG PET Preprocessing pipeline for project NEMO. Schematic overview of the preprocessing pipeline for the NEMO [18F] FDG PET images. As 
inputs, the pipeline uses a static PET input image and anatomical image preprocessing outputs from fMRIPrep. The PET image is skullstripped and 
subsequently coregistered to the anatomical image using two intermediate registration steps. The image registration transformations are merged with 
the normalization warping parameters from fMRIprep and then applied to the original PET image for a final PET image in MNI space.
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