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Slow cortical oscillations play a crucial role in processing the speech amplitude 
envelope, which is perceived atypically by children with developmental dyslexia. 
Here we  use electroencephalography (EEG) recorded during natural speech 
listening to identify neural processing patterns involving slow oscillations that may 
characterize children with dyslexia. In a story listening paradigm, we find that atypical 
power dynamics and phase-amplitude coupling between delta and theta oscillations 
characterize dyslexic versus other child control groups (typically-developing 
controls, other language disorder controls). We further isolate EEG common spatial 
patterns (CSP) during speech listening across delta and theta oscillations that identify 
dyslexic children. A linear classifier using four delta-band CSP variables predicted 
dyslexia status (0.77 AUC). Crucially, these spatial patterns also identified children 
with dyslexia when applied to EEG measured during a rhythmic syllable processing 
task. This transfer effect (i.e., the ability to use neural features derived from a story 
listening task as input features to a classifier based on a rhythmic syllable task) is 
consistent with a core developmental deficit in neural processing of speech rhythm. 
The findings are suggestive of distinct atypical neurocognitive speech encoding 
mechanisms underlying dyslexia, which could be targeted by novel interventions.
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Introduction

Developmental Dyslexia affects around 7% of children in all languages, negatively impacting 
education and life chances (Lyon et al., 2003). Behavioral research shows that atypical linguistic 
processing lies at the heart of dyslexia (Stanovich, 1998; Snowling et al., 2000). Neural studies reveal 
that even as infants, individuals at family risk for dyslexia show both atypical auditory processing 
and atypical speech processing (EEG and MEG studies; Guttorm et al., 2001, 2003; Leppänen et al., 
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1999, 2002; van Leeuwen et al., 2006; van Zuijen et al., 2013; Mittag et al., 
2021). While dyslexia is diagnosed primarily on the basis of difficulties in 
reading and spelling once schooling begins, at-risk children show atypical 
processing of phonology (the sound structure of speech) as preschoolers 
(Goswami, 2022a, for recent review). Crucially, these phonological 
difficulties cannot be attributed to lower intellectual ability, overt hearing 
impairment or lower-quality home learning environments (Scarborough, 
1990; Lyytinen et al., 2006). Linguistically, recent neural research has 
shown across languages that dyslexia in children is characterized by 
impairments in processing the speech amplitude envelope, with associated 
difficulties in processing speech rhythm (Goswami, 2022a, for review). 
For example, cortical speech tracking of the amplitude envelope in both 
the delta (0.5 – 4 Hz) and theta (4 – 8 Hz) electrophysiological bands 
(thought to be critical for encoding syllabic and prosodic [speech rhythm] 
information) has been shown to be impaired in children with dyslexia 
who are learning English, French or Spanish, in both connected speech 
listening tasks and sentence repetition tasks (Molinaro et al., 2016; Power 
et al., 2016; Di Liberto et al., 2018; Destoky et al., 2020, 2022; Mandke 
et al., 2022; Keshavarzi et al., 2022a). The dyslexic brain also shows a 
different preferred phase in the delta band when listening to rhythmic 
syllable repetition (repetition of the syllable “ba” at a 2 Hz rate; Power 
et al., 2013; Keshavarzi et al., 2022b), and both cortical tracking and 
preferred phase measures are related to individual differencs in 
phonological awareness.

Theoretically, it has been hypothesized that the impairments in 
speech envelope processing found in children with dyslexia are related 
to atypical neural oscillatory responses: ‘Temporal Sampling’ (TS) 
theory (Goswami, 2011, 2015, 2022b). Linguistically, TS theory 
proposes that children with dyslexia are impaired at extracting 
prosodic information from the speech signal, which affects the 
development of phonological awareness at all linguistic levels (stressed 
syllables, syllables, onset-rimes, phonemes). The TS framework 
proposes that atypical oscillatory processing of amplitude modulation 
(AM) information at lower frequencies (<10 Hz, hence related to the 
EEG delta and theta frequency bands) is related to the speech rhythm 
impairments found in children with dyslexia. For example, children 
with dyslexia show impairments in perceiving syllable stress patterns, 
a fundamental component of speech rhythm carried by low-frequency 
AMs in the speech envelope (Goswami et al., 2010, 2013). Perceiving 
syllable stress depends in part on the accurate perception of amplitude 
rise times (ARTs), as stressed (strong) syllables have larger rise times 
(Greenberg, 2006). Accordingly, the speech rhythm impairments 
found in children with dyslexia may also be  related to impaired 
perceptual and neural mechanisms of speech edge detection (ART 
detection, Lizarazu et al., 2021; Mandke et al., 2023). Speech edges or 
ARTs are known to play an automatic role in phase-resetting neural 
oscillations during speech encoding (Gross et al., 2013; Doelling et al., 
2014). Consistent with an atypical speech edge processing account, a 
recent MEG study with dyslexic children found that neural responses 
in the delta and theta frequency bands during story listening became 
less atypical if amplitude rise times and delta-band AMs were 
enhanced by filtering natural speech (Mandke et al., 2023).

To date, however, no studies have identified neural mechanisms 
capable of distinguishing children with dyslexia from typically-
developing children based on temporal parameters in naturalistic 
speech conditions. To remedy this omission, here we examined the 
relative magnitude and coupling of low-frequency neural oscillations 
–delta and theta, as identified by TS theory – during two different 

receptive speech tasks, story listening and rhythmic repetition of the 
syllable “ba.” Given the impairments in ART discrimination that are 
found in both infants at family risk for dyslexia (Kalashnikova et al., 
2018) and children with dyslexia [see Goswami (2022a)], it could 
be expected that individuals with dyslexia have impaired neural phase-
resetting mechanisms, which may contribute to the impairments 
documented in delta- and theta-band cortical speech tracking in 
different languages (English, Power et al., 2016, Di Liberto et al., 2018, 
Mandke et al., 2022, Keshavarzi et al., 2022a; French, Destoky et al., 
2020, 2022; Spanish, Molinaro et al., 2016). Oscillatory cross-frequency 
coupling (CFC) is also known to be important in encoding the speech 
signal (Giraud and Poeppel, 2012; Gross et al., 2013). Accordingly, 
atypical CFC could also potentially identify individuals with dyslexia. 
Neurally, the primary auditory cortex is organized in phase-amplitude 
hierarchies, so that delta phase modulates theta phase and amplitude, 
and the theta phase controls gamma amplitude (Lakatos et al., 2005; 
Gross et  al., 2013). Changes in low-frequency oscillatory coupling 
(namely delta and theta) have been reported both when stimulus 
rhythm is relevant to the task (Schroeder and Lakatos, 2009) and in 
long time windows of audio-visual stimulus integration (Schroeder 
et al., 2008). Therefore, studying the relative magnitude and coupling 
of delta and theta oscillations in children with and without dyslexia 
may identify sensory-neural deficits that can uniquely classify children 
with developmental dyslexia, offering novel biomarkers. As well as 
improving diagnosis, improved understanding of potential sensory-
neural deficits may enable the development of novel interventions for 
children with dyslexia, such as BCIs (Brain-Computer Interfaces; see 
Araujo et al., 2024). Our first research question was thus whether it 
would be possible to identify different delta/theta dynamics in children 
with dyslexia during natural speech processing. Our second research 
question was whether different delta/theta dynamics would also occur 
during the simpler rhythmic speech processing task (“ba.ba.ba”).

Recent EEG studies using rhythmic auditory non-speech stimuli with 
dyslexic children have shown that it is possible to build dyslexia classifiers 
[white AM noise, see Ortiz et al. (2020) and Gallego-Molina et al., (2022). 
These prior classifier studies used several different types of features (time, 
frequency, fractal or CFC graph networks). They employed large and 
complex non-linear models, achieving good performance metrics 
(>80%). However, due to the inherent nature of these modeling 
approaches, the connection between model parameters for neural data 
and the underlying cognitive/linguistic processes is not transparent. By 
contrast, here we aimed to develop an interpretable EEG classifier that can 
distinguish reliably between children with dyslexia and typically-
developing (TD) control children. Our third research question was 
whether distinct patterns of oscillatory dynamics during natural speech 
listening would be robust enough to build a classifier for dyslexia, and our 
fourth question was whether a reliable classifier could be based on the 
same neural features for natural connected speech and simplified 
rhythmic speech. By comparing spatial patterns of oscillatory activity 
from two different receptive speech tasks (natural speech and rhythmic 
speech), we also aimed to shed light on how the estimated biomarkers 
might relate to cognitive/linguistic processes, such as rhythm processing.

As well as employing TD controls, we compared the neural oscillatory 
responses hypothesized as core by TS theory to those exhibited by a small 
group of children presenting with a different linguistic disorder, 
Developmental Language Disorder (DLD). This group is conceptually 
important in order to identify potential neural features that are exclusive 
to dyslexia. We predicted that the relative amplification of theta versus 
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delta responses and delta-theta cross-frequency coupling might also 
be altered in children with dyslexia compared to DLD children. For 
example, TS-theory driven modeling of the speech amplitude envelope 
shows that delta-theta AM phase alignment underpins speech rhythm 
perception, accordingly delta-theta coupling could be atypical in children 
with dyslexia (Leong et al., 2014; Leong and Goswami, 2015; see research 
questions 1 and 2). We also hypothesized that delta and theta oscillatory 
responses to connected speech might provide sufficient information to 
classify neural patterns that identify dyslexia at the single trial level (see 
research question 3). Finally, we investigated how specific or universal 
these discriminatory patterns might be to natural language versus general 
rhythmic speech processing (see research question 4). We were able to do 
this using EEG recorded during a rhythmic syllable repetition task 
collected with different dyslexic and TD children (but no DLD children). 
By training a classifier on the EEG from rhythmic syllable listening using 
discriminatory features derived from story listening, we  may find a 
generalization of features for classification. If this were the case, our 
modeling would suggest that classification of dyslexia is related to atypical 
neural processing of linguistic rhythm, rather than semantic or syntactic 
processing. As the aim of the current modeling was to distinguish neural 
characteristics of the dyslexic brain, the typically-developing children in 
the two samples covered a range of ages, language levels and reading levels.

Materials and methods

Participants

We analsyed EEG collected from two different groups of children 
drawn from community samples, 65 Australian English children who 
received the story listening paradigm and 48 British English children 
who received the rhythmic syllable repetition paradigm (see 
Experimental Tasks below). The Australian sample included typically-
developing children (with similar age as dyslexic children – CA – or 
younger children with similar reading level as dyslexic children – RL), 
dyslexic children and a small group of children with Developmental 
Language Disorder (DLD). The latter were included as a control group 
that, while not typically-developing, present with a language disorder 
distinct from dyslexia (hence would be expected to show different 
neural features to children with dyslexia). Australian children received 
a range of neuropsychological and cognitive tests, see Table  1. To 
be included, participants had to have no reported history of hearing 
difficulties, non-verbal IQ scores within the normal range (85 and 
above) on the Kaufman Brief Intelligence Test (KBIT, Hildman et al., 
1993). To qualify as dyslexic, children had to score at least 1 SD below 
the norm of 100 for single word or nonword reading measures on the 
Test of Word Reading Efficiency (84 and below, Torgesen et al., 1999), 
and show average scores (less than 1 SD from the norm of 100, so 85 
or above) on at least one of the measures of language development, the 
TROG (Test of Receptive Oral Grammar, Bishop, 2003), CELF (Clinical 
Evaluation of Language Fundamentals, Wiig et al., 2000) or WIAT 
Vocabulary (Wechsler, 2009). Children also received the CTOPP 
(Comprehensive Test of Phonological Processing, Wagner et al., 1999) 
as a measure of phonological awareness, this test requires the oral 
blending or elision of words, syllables and other phonological units. To 
qualify as DLD, children had to receive standard scores at least 1 SD 
below the norm of 100 for the TROG, WIAT and CELF measures, and 
an average score (less than 1 SD from the norm of 100) on the reading 

measures. Please note that the vocabulary test was changed during the 
Australian project from the CELF vocabulary scale to the WIAT 
vocabulary scale. Fewer DLD children (N = 7) were in the Australian 
sample than dyslexic children (N = 16). No participants with ADHD 
were included. After the pre-processing pipeline, 2 typically-developing 
participants were excluded due to noisy EEG measurements, hence 
data from a total of 63 Australian participants were analyzed.

The British English dataset included data from 48 children 
comprising two groups: typically-developing children (chronological 
age controls) and dyslexic children. Typically-developing versus 
dyslexia status was also ascertained by neuropsychological and 
cognitive testing (see Table 2). Participants had full scale IQs (FSIQ) 
in the normal range (85 and above) as estimated from four subtests of 
the Wechsler Intelligence Scale for Children (WISC, Wechsler, 2016): 
similarities, vocabulary, block design and matrix reasoning (Aubry 
and Bourdin, 2018), and had also passed a short hearing screen, based 
on the ability to hear pure tones of various frequencies presented at 
20 dB hearing Level (HL). To qualify as dyslexic, children had to score 
at least 1 SD (15 standard points) below the standard score of 100 on 
at least two of 4 measures of single word or nonword reading and 
spelling (scoring 84 or less on the British Ability Scales, BAS, Elliott 
et al., 1996, and TOWRE). Children also received the Phonological 
Awareness Battery (PhAB, Frederickson et al., 1997) rhyming test as 
a measure of phonological awareness.

Experimental tasks

Two EEG datasets generated in prior studies by our group were 
used for the modeling (Di Liberto et  al., 2018; Keshavarzi et  al., 

TABLE 1 Details of the Australian sample.

TD controls DYSLEXIC
n =  16 [6F]

DLD
n =  7 
[2F]RL

n =  13 
[7F]

CA
n =  27 
[10F]

Age 

(months)
83.7 (6.0) 113.6 (13.1) 114.1 (18.5) 95.0 (15.3)

PH_AWa 106.4 (10.0) 103.7 (10.5) 86.0 (11.4) 91.9 (8.0)

TOWRE_Wb 100.9 (15.6) 102.6 (14.2) 77.3 (11.1) 94.4 (6.9)

TOWRE_

NWc
99.2 (14.7) 102.5 (13.3) 78.2 (8.2) 94.7 (12.7)

TROGd 106.5 (6.7) 106.0 (8.6) 101.1 (9.5) 81.7 (16.1)

WIAT_

VOCABe
107.5 (11.8) 106.7 (11.3) 102.4 (10.8) 90.1 (12.4)

CELF_

SENTENCESf
11.2 (2.7) 11.8 (2.3) 9.4 (2.8) 7.3 (2.3)

NVIQg 111.6 (11.4) 114.4 (9.0) 104.9 (9.3) 99.0 (12.2)

TD, typically developing; RL, reading level matched; CA, chronological age matched; DLD, 
developmental language disorder.  
aComprehensive test of phonological processing.  
bTest of word reading efficiency: words.  
cTest of word reading efficiency: non-words.  
dTest for reception of grammar.  
eWIAT vocabulary.  
fClinical evaluation of language fundamentals- recalling sentences (M = 10, SD = 3).  
gNon-verbal IQ: Kaufman brief intelligence test-matrices. Number of female participants (F) 
in squared brackets. Standard deviations in parentheses.
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2022b). The first data set was collected during a story-listening task 
(see Di Liberto et al., 2018), and the second data set was collected 
during a rhythmic syllable repetition task [listening to the syllable “ba” 
repeated every 500 msec, see Keshavarzi et al. (2022b)]. In each case, 
cortical activity was recorded using the scalp potentials measured by 
non-invasive EEG. In the story listening paradigm, participants were 
presented with an audio-story for 9 min read by a female Australian 
English speaker while EEG was recorded (see Figure 1A). The stimulus 
was presented monophonically at a sampling rate of 44,100 Hz using 
loudspeakers in a silent room. Participants also watched a cartoon 
corresponding to the story (Winnie the Pooh), but the visual input 
was not synchronized to the detailed temporal events coming from 
the auditory modality (i.e., to the speech). EEG was recorded using 
129-channel Hydrocel Geodesic Sensor Net (HCGSN), NetAmps 300 
amplifier and NetStation 4.5.7 software (EGI Inc.). The sampling rate 
of this system was 1 kHz and channel impedances were always kept 
below 50 kΩ throughout the session.

The second paradigm was a rhythmic entrainment task (Keshavarzi 
et  al., 2022b). Children listened to rhythmic speech comprising 
multiple repetitions of the syllable “ba” at a 2 Hz rate. In common with 
the story-listening task, the auditory targets were presented at 
44100 Hz, this time via in-earphones. Synchronized visual information 
(a “talking head” providing articulatory cues onsetting 68 ms before the 
syllable onset) was also presented (synchronized audio-visual task). 
Participants were instructed to concentrate their gaze on the lips of the 
talking head to prepare for every new trial. In each trial, the syllable 
“ba” was presented 14 times and the child was instructed to press a key 
on the keyboard if they detected any syllable that violated the uniform 
2 Hz rhythm. Feedback was presented after each 14-item trial. The full 
experimental session consisted of 90 trials divided into 3 blocks of 30. 
Each block comprised 25 trials where a rhythmic violation would occur 
randomly between the 9th and 11th syllable and 5 catch (i.e., absence of 
rhythmic violation) trials. For the rhythmic violation trials, the degree 
to which the violator was out of sync changed with each child’s 
performance on the task to optimize their level of engagement. This 
was achieved by a three-down one-up staircase procedure – if a child 
correctly identified 3 violations in a row, the stimulus onset asynchrony 

would be reduced 16.67 ms on the following non-catch trial and if a 
violator was not detected, the deviation would be increased 16.67 ms 
(Keshavarzi et  al., 2022b). Similar to the story-listening set-up, a 
129-channel Hydrocel Geodesic Sensor Net was used to record EEG 
scalp potentials during the task. The sampling rate was 500 Hz and 
electrode impedances were kept below 50 kΩ.

EEG signal pre-processing

The pre-processing pipeline was similar for both the story listening 
and rhythmic syllable repetition data to ensure analysis consistency and 
maximize the validity of cross-set comparisons. The EEG signal was first 
bandpass-filtered between 1 and 25 Hz using a 4th order Butterworth filter 
to remove very low-frequency and high-frequency noise (including 
power line noise). A zero-phase filtering method (backwards and 
forwards filtering – using the filtfilt function in MATLAB) was used to 
prevent phase shifting and reconstruct the original properties of the signal 
of interest as much as possible. Data were subsequently re-referenced to 
mean mastoids. Since one of the objectives of this study was to classify 
signals in a window length suited for Brain-Computer Interface (BCI) 
applications – whether for potential diagnosis or operant learning 
interventions – data was epoched to 5-s windows. The epoching of the 
story-listening data in short windows not only provides a way to evaluate 
the behavior of any EEG signal metric across the session but also allows 
for the comparison with the rhythmic syllable trials. Specifically, this 
epoching consisted in the extraction of consecutive non-overlapping EEG 
data windows representing 5 s of data – a procedure that was similar for 
both the story listening and the rhythmic syllable task, allowing cross-task 
comparison. To further remove noise sources like blinks or EMG activity, 
for each trial, channels with voltages over the absolute value of 100 μV 
were considered noisy and were interpolated using the spline method 
(EEGLAB; Delorme and Makeig, 2004). If over a third of the total number 
of channels were considered noisy, the trial was excluded. As in Di Liberto 
et al. (2018), data were downsampled to 100 Hz to reduce processing time 
and memory requirements, and EEG electrodes positioned at the jaw, 
mastoids, and forehead were removed from the analysis (91 channels 
total, see Figure 1B). After the pre-processing pipeline, each participant 
kept on average 88.63 epochs (st.d = 29.3) for the story listening task, and 
45.23 epochs (st.d = 18.61) for the rhythmic syllable task.

Deriving unsupervised spatial filters using 
principal components analysis

Given the absence of a specific hypothesis on which channel or 
channel ensembles would be the most appropriate to pinpoint group 
differences, a data-driven (albeit group-blind) way of estimating 
adequate spatial filters was derived. Principal Components Analysis 
(PCA) is used in this work to (1) allow dimensionality reduction of 
a 91-dimensional space of channels and in the process (2) create 
relevant spatial ensembles of channels that represent distinct 
(uncorrelated) sources of cortical activity. This ensemble analysis 
aims to create a more meaningful basis for analysing the whole-
brain EEG signal than just relying on multiple single-channel 
analyses. In general, PCA will find the set of vectors A that project 
the original data X into a new space explaining the maximum 
original uncorrelated variance in the least number of vectors 
possible. This is one of the bottom-up methods for deriving spatial 

TABLE 2 Details of the British sample.

TD age-matched controls
n =  21 [6F]

DYSLEXIC
n =  27 [13F]

Age (months) 109.1 (5.4) 109.3 (6.8)

PHAB_Ra 102.6 (5.7) 90.9 (11.5)

TOWRE_Wb 101.1 (7.7) 79.4 (13.3)

TOWRE_NWc 98.0 (8.6) 76.9 (9.3)

BPVSd 103.3 (11) 103.7 (11.6)

BAS_Re 99.5 (6.2) 80.3 (7.4)

BAS_Sf 97.0 (6.1) 78.6 (6.1)

FSIQg 104.1 (10.8) 101.7 (9.9)

TD, Typically developing.  
aPhonological assessment battery: rhyme awareness.  
bTest of word reading efficiency: words.  
cTest of word reading efficiency: non-words.  
dBritish picture vocabulary scale.  
eBritish ability scales: reading.  
fBritish ability scales: spelling.  
gFull Scale IQ. For all tests M = 100; SD = 15. Number of female participants [F] in squared 
brackets. Standard deviations in parentheses.
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filters for EEG in an unsupervised manner (i.e., without looking at 
group labeled data). PCA can be  conceptualized as an 
eigenvalue problem:

 A A s t A A IT TΣ Λ= =. .  (1)

where .TX XΣ =  In practice, the matrix A was estimated using 
Singular Value Decomposition (svd function in MATLAB) and 

consists of a set of eigenvectors sorted by their eigenvalues (diagonal 
elements of matrix Λ). The data X consisted of the concatenation of 
standardized t epoch segments Xt ∈ RdxN (where d is the number of 
channels and N is the number of datapoints on an epoch) along the 
second dimension so that X ∈ RdxM with 
M total number of trials N= ∗   . The relative channel weights for 
each PC were determined simply as the square of their original 
coefficient for each a A∈ , since ∑ =a2 1. Initially, to decide on how 

FIGURE 1

Dyslexic children show different theta/delta oscillatory power ratios during natural speech processing. (A) Story listening paradigm (Winnie-the-Pooh) 
and pseudo-online analysis pipeline (see Methods). Dimension reduction analysis was applied to EEG data using principal component analysis. EEG 
projection to principal component (PC) 1 is used for illustration. Examples of story sessions from a dyslexic (blue), DLD (red) and a typically-developing 
child (black) are shown at top right. (B) Map of channel weights of the three most important principal components: weights and respective percentage 
of variance explained. (C) Theta/delta ratio mean and variance across all three PCs. Atypically high mean and variance is present for dyslexics on PC1 
(CTR – typically-developing children, DYS – dyslexic children, DLD – DLD children). * p <  0.05 (Bonferroni-corrected). (D) Spearman correlations and 
uncorrected p-values between PC1 theta/delta and phonological awareness (leftmost panel) and reading (timed single word reading test, right panel).
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many principal components to retain (i.e., the total new dimensionality 
of the data), a threshold of 70% variance explained was used. 3 PCs 
were found to be sufficient in both the story listening and the rhythmic 
syllable repetition EEG data (Figure  1B). Additionally, a further 
analysis of the scree plots (Figures S1a, S2a) revealed minimal 
increases of variance explained after PC3 which would usually explain 
10 times as much variance as the next best PC on both datasets. A 
quick look at the channel weights of the first 10 PCs (Figures S1b, S2b) 
suggests the first 3 PCs for the story listening and rhythmic syllable 
repetition EEG datasets are less scattered and more biologically 
plausible when compared to the other 7 PCs. Taken together, this 
evidence provided additional confidence in choosing 3 as the optimal 
number of PCs to retain.

Principal component band power ratio

To calculate the band power ratio for every PC band, Welch’s 
method was used first to estimate the broadband power spectral 
density of each epoch projected in each PC. A single Hanning window 
covering the epoch’s full length (500 datapoints at a sampling 
frequency of 100 Hz) was used. In practice, this was calculated using 
MATLAB’s Welch method implementation in the pwelch function. 
Each band power was calculated by averaging the discrete Fourier 
transform points belonging to each frequency band interval (delta: 
1-4 Hz theta: 4.5-8 Hz). The theta/delta band ratio was calculated by 
dividing the averaged band power of theta and delta for each epoch. 
The band ratio metrics for each subject were calculated by taking the 
low order statistics (mean and variance) of their epochs’ theta/delta 
ratios across the session.

Phase-amplitude coupling (PAC)

To estimate phase and amplitude for each epoch on the PAC 
analysis we relied on a recently published time-frequency approach 
that does not rely on bandpass filtering (Aviyente et al., 2011; Munia 
and Aviyente, 2019). Indeed, bandpass filtering artefacts, such as 
approximating the filtered signal to a sinusoid, especially in small 
bandwidth and high order filters, can be  problematic for PAC 
estimation. Note only does the time-frequency approach used here 
solve this problem, but it also has interesting properties such as high 
frequency resolution and is more robust to noise, different data lengths 
and sampling rates (Munia and Aviyente, 2019). The method relies on 
the complex time-frequency distribution based on the interaction of 
energy at frequency f at a given time t known as Reduced Interference 
Distribution (RID) – Rihaczek distribution. The RID-Rihaczek 
distribution is a modified version of the Rihaczek distribution that uses 
the Choi-Williams kernel to filter out the cross-terms:
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where fa1 and fa2 define the high frequency amplitude bandwidth and 
ϕ(t) and θ(fp) refer to the phase of the low-frequency band in the time 
and the frequency domains, respectively. In practice, the calculation 
of the amplitude and phase for each epoch was performed by using 
the MATLAB code provided in the original publication (Munia and 
Aviyente, 2019).

The phase-amplitude coupling metric is then calculated using 
the Modulation Index (MI) (Tort et al., 2009). This method seems 
to be  relatively robust to phase biases (van Driel et  al., 2015) 
compared to other methods such as the mean vector length 
(Canolty et al., 2006) and quite conservative in low signal-to-noise 
ratio conditions. MI discretizes the phase angle time series of the 
phase frequency into N phase bins and computes the average power 
of the modulated frequency for power in each bin j. In this work, 
we set N = 18, similar to that used in other studies (i.e., 20° wide 
bins). Coupling is operationalized in an information-theoretical 
way as the deviation of the phase-amplitude histogram from the 
uniform distribution:
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where N is the number of bins, DKL is the Kullback–Leibler distance 
between the phase distribution P and the uniform distribution U:

 D P U N H PKL ,( ) = ( ) − ( )log  (6)

and H is the Shannon Entropy of the phase distribution:
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For each epoch, MIs were calculated across the full bandwidth of 
phase and amplitude bands. For each epoch, MI values across the 
comodulogram were z-scored (zMI) and the maximum zMI was the 
PAC metric for every epoch. Similar to the band ratio analysis, the 
average and variance of epoch PACs was taken for every subject. In 
practice, zMI was applied using a custom-made Python code (which 
will be made available upon request).
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Deriving supervised spatial filters using 
common spatial patterns

The Common Spatial Patterns (CSP) algorithm (Koles, 1991; 
Blankertz et al., 2007; Lotte et al., 2007, 2018) has some similarities 
with PCA in the sense that it is also an eigendecomposition method. 
However, instead of finding the filters that maximize uncorrelated 
signal variance like PCA, its aim is to find filters that maximize the 
variance for one group of subjects and minimize the variance for the 
other (i.e., discriminative EEG spatial patterns). Therefore, CSP is a 
supervised method that calculates spatial filters based on labeled data. 
Given a set of t epoch segments Xt ∈ RdxN (where d is the number of 
channels and N is the number of datapoints on each epoch), epoch 
covariances 𝜮t = XtXt

T ∈ Rdxd, and 𝜮1 and 𝜮2 as the average epoch 
covariances for group 1 and group 2 subjects, CSP is calculated by the 
simultaneous diagonalization of the two average covariance matrices

 W WTΣ Λ1 1=

 W WTΣ Λ2 2=  (8)

where W is commonly determined so that › › I1 2+ =  (with ›  being 
a diagonal matrix of eigenvalues). Technically, this is achieved by 
solving the generalized eigenvalue problem

 Σ ΛΣ1 2W W= . (9)

In practice, this was calculated either using MATLAB’s eig 
function or Python linalg.eigh function from the scipy package. The 
spatially filtered signal S of this set of EEG epoch segments is then 
given by

 S WXt=  (10)

with the leftmost spatial filters of W (first column vectors) 
maximizing the signal variance for group 1 and minimizing the signal 
variance for group 2, and the rightmost spatial filters (last column 
vectors) maximizing the signal variance for group 2 and minimizing 
the signal variance for group 1. For the CSP analyses, each participant’s 
final score was calculated as the average CSP power of their epochs.

Linear classifier

A Support Vector Machine with a linear kernel (SVM-L) was the 
classifier of choice throughout this work. SVMs are useful for data 
classification as they find the separating hyperplane with the maximal 
margin between two classes of data. Given a set of data Xi with 
corresponding labels yi ∈ −{ }1 1, , SVM solves the 
unconstrained problem:
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where T is the number of epochs, ¾W,b, ,X yi i( ) is a loss function and 
c ≥ 0 is a regularization parameter on the training error. The loss 
function used in this work was a L2-loss:
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where ϕ  is the function that maps the training data into a higher 
dimensional space in non-linear instances of SVM. In the linear case, 
however, ϕ X Xi i( ) = . Therefore, for any testing instance x , the 
predictor function for SVM-L is similar to that used in linear 
discriminant analysis:

 
f x sign W x bT( ) = +( ) (13)

To optimize the model training against the class imbalances 
present on our datasets (especially the story-listening task), the 
regularization parameter was balanced for each class. Each class 
weight would take the proportion of class frequencies into account 
and the new parameter c’ is then calculated as 

[ ]’ _ .c class weight i c= ∗  In practice, the SVM-L for classification 
was applied using Python’s scikit-learn package implementation (svm.
SVC function).

Grid search cross-validation was used to optimize not only 
the regularization parameter but also the number of features to 
use for the CSP (i.e., filters) as only a subset of the total filters is 
used (viz. the m first and last rows of S, i.e., Sp, p ∈ {1…2 m}). 
This cross-validation process was denoted as Leave-One-
Subject-Out cross-validation and worked as follows: for each fold, 
all epochs of a single participant were held for validation while 
the other epochs were used for training the classifier. In this 
work, we report the performance of the classifier on the held-out 
validation data. The label attributed to the child (e.g., dyslexic / 
non-dyslexic) was based on the majority of classifications for that 
child’s epochs. For every child, the proportion of story listening 
epochs classified as “dyslexic” was used to create the  
receiver operating characteristic (ROC) curves. The feature 
estimation process was also cross-validated between 1) variance, 
2) log variance and 3) proportional variances as in (Ang 
et al., 2008):
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Beta band responses were also included in the classifier 
analyses, following Keshavarzi et al. (2024). For both datasets, the 
variance features worked best. For all classifiers, the other 
hyperparameters were kept at m = 2, c = 100 as determined by 
grid-search cross-validation. During this feature engineering 
process we also found that normalizing variables by a power of 
10 helped model convergence in some cases. This was the case for 
the story listening task, where this constant was set to 10e4 after 
grid-search cross-validation.

https://doi.org/10.3389/fnhum.2024.1403677
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Araújo et al. 10.3389/fnhum.2024.1403677

Frontiers in Human Neuroscience 08 frontiersin.org

Results

Do children with dyslexia show different 
theta/delta oscillatory relations during 
natural speech processing?

Our first research question was whether the relationships between 
low-frequency oscillations during natural speech processing are 
different in children with developmental dyslexia (Figure  1A). 
We focused on delta (1-4 Hz) and theta (4.5-8 Hz) power dynamics, 
and investigated differences between the Australian typically-
developing children, children with dyslexia and children with DLD 
who participated in the story listening task (see Table 1). To focus the 
analysis, we placed emphasis on the uncorrelated brain regions that 
provided the highest differential response to the listening task. To 
identify these regions, we made use of Principal Component Analysis 
(PCA) and computed band power from each PC individually. 
We retained only PC filter vectors with the highest eigenvalues, setting 
the threshold at a total of 70% variance explained (see Methods for 
further details). Applied to the current dataset, this translated to just 
three PCs (see Figure 1B). Their associated channel weights showed 
stereotypic patterns consistent with the audio-visual nature of the 
experimental task: PC1 (total variance explained: 50%) showed an 
enrichment of channel weights in the central region of the scalp, 
where evoked auditory potentials are usually observed. PC2 (total 
variance explained: 15%) showed a pattern of bilateral temporal 
electrodes covering both auditory cortices. Finally, PC3 (total variance 
explained: 13%) lay mostly on occipital channels.

Theta/delta power ratios were calculated to test for the relative 
magnitude of theta oscillations compared to delta oscillations across 
groups. As many ratio distributions did not show a normal distribution 
(based on Shapiro–Wilk tests), non-parametric Kruskal-Wallis 
ANOVAs and post-hoc Wilcoxon tests were used to assess group 
differences. Two metrics were evaluated for each child for PC power 
ratios across the experimental session: the mean ratio value, to check 
for a general difference in the band power relationship trend; and the 
variance of this ratio, to test for differences in consistency for this 
relationship. The results are shown in Figure  1C. For PC1, group 
differences were found on the mean theta/delta ratio across groups 
(H = 10.96, p = 0.0042). Post-hoc Wilcoxon tests showed a higher 
mean theta/delta ratio for dyslexic children when compared to 
typically-developing children (Z = −2.87, p = 0.004) and DLD groups 
(Z = 2.77, p = 0.0056). Importantly, these differences did not arise 
because of a general difference in delta (H = 2.68, p = 0.26) or theta 
power (H = 1.39, p = 0.5). Group differences were also found regarding 
the consistency across epochs for theta/delta ratio variance (H = 11.49, 
p = 0.0032). Overall, ratio variances were higher for dyslexic children 
compared to typically-developing children (Z = −3.26, p = 0.0011). 
Differences in ratio variance between dyslexics and the small group of 
children with DLD were not significantly different following 
Bonferroni correction (Z = 2.24, p = 0.0252). The children with DLD 
did not differ from typically-developing children regarding the power 
ratio consistency and mean value for PC1 (p > 0.05 for both), and no 
group differences were found for the average value or consistency of 
any other PC filters (p’s > 0.05). Taken together, these results suggest 
an atypically high and less consistent power dynamic between delta 
and theta oscillations for children with dyslexia. These differences are 
present in centrally-located regions of the scalp.

To explore whether individual differences in both reading 
and phonology were related to these oscillatory dynamics, 
Spearman correlations between the mean theta/delta ratio for 
each child for PC1 and both their phonological awareness and 
word reading ability were computed (Figure 1D). For dyslexic 
children only, a significant relationship was found for 
phonological awareness (rs = −0.55, p = 0.027) but not for reading 
(rs = 0.03, p = 0.916). This suggests a dyslexia-specific pattern of 
interplay between delta and theta power during natural speech 
processing that is progressively less atypical the better the child’s 
phonological awareness. To further control for PC1 sensitivity to 
developmental and reading level effects, typically-developing 
children were divided into chronological age controls (matched 
in age to the dyslexic children, but with better reading skill) and 
reading level controls (similar reading level to the dyslexic 
children, but over 2 years younger, see Table 1). The CA and RL 
control groups were compared to see whether they showed 
significantly different mean and variance regarding their theta/
delta ratio. No significant differences were found across these 
subgroups (Figure S3). Correlations between PC1 theta/delta 
ratio and age; and PC1 theta/delta ratio and general IQ were also 
calculated. Once again, no significant relationships were found 
for any group (p’s > 0.05 for all correlations).

Do dyslexia-specific theta/delta power 
ratio differences for speech processing 
transfer to the rhythmic syllable repetition 
task?

Our second research question was whether these power 
modulation differences in dyslexia were specific to connected speech. 
This was achieved by analysing a second EEG dataset recorded while 
British children with dyslexia and TD controls performed an audio-
visual speech task without semantic or syntactic content (Figure 2A). 
The task involved repetition of the syllable “ba” by a ‘talking head’ (see 
Methods). PCA was again used to derive spatial filters for calculating 
theta/delta ratios in distinct brain regions. As with the story listening 
task, three PCs were sufficient to account for >70% of the variance 
(Figure  2B). Crucially, the spatial filters derived for the rhythmic 
repetition task shared remarkable similarities in terms of the spatial 
organisation and relative percentage of variance explained with the 
story listening task (compare Figure 2B to Figure 1B). The syllable 
repetition task showed a dominant central PC1 (total variance 
explained: 46%) followed by occipital (total variance explained: 16%) 
and bilateral temporal (total variance explained: 13%) PCs. The main 
difference between the syllable repetition and story listening task 
components was that the spatial configuration of PC2 in one task 
mirrored that of PC3 for the other task and vice-versa.

To investigate whether the rhythmic syllable repetition task would 
also show a group theta/delta ratio difference, group means and variances 
were compared. No group differences were found either for theta/delta 
mean or variance on any of the three dominant PCs (p’s > 0.05 for all 
comparisons) suggesting the theta/delta ratio effect is specific to 
connected speech (Figure 2C). However, in a further analysis for PC1, 
we found a significant group difference in delta band power (Z = 2.14, 
p = 0.032). Specifically, inspection of the EEG power spectra at 1-4 Hz 
(Figure 2D, left panel) showed that the peak difference occured at 2 Hz 
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– the “ba” repetition rate – with a stronger response for typically-
developing than dyslexic children. These data indicate a difference in 
neural steady-state responses to the rhythmic syllable targets. No other 
PCs showed this effect (Figure 2D, middle/right panels). Overall, these 
results suggest that differences regarding the interplay of delta and theta 
power dynamics in dyslexia do not transfer to a speech listening paradigm 
that lacks semantic / syntactic content or phrasal structure. Nevertheless, 
as found in previous neural investigations, the EEG delta band response 
is different in children with dyslexia.

Does delta-theta cross-frequency coupling 
(CFC) during natural speech listening vary 
across groups?

A related question was whether cross-frequency coupling of 
low-frequency oscillations – a neural mechanism crucial for 
sensory selection in speech processing – would potentially differ 
across groups. Accordingly, phase-amplitude coupling (PAC) 
differences involving the bands of interest were investigated using 

FIGURE 2

Dyslexia-specific theta/delta power ratio differences for speech processing do not transfer to rhythmic syllable repetition. (A) Paradigm and pseudo-online 
analysis pipeline (see Methods). EEG projection to PC1 was used for illustration. Sessions from a dyslexic (blue) and a typically-developing child (black) are 
shown. (B) Map of the three most important principal components – closely matching those of the story listening task (see Figure 1B). (C) No group 
differences were observed across all three PCs for theta/delta ratio mean or variance (CTR – typically-developing children, DYS – dyslexic children). 
(D) Typically-developing children show higher delta band power on PC1 only, which was maximal at the syllable presentation rate (2 Hz).
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the story listening data. Principal Component Analysis was again 
used to spatially filter whole-brain data and delta-theta PAC was 
calculated for all children. Phase and amplitude of lower and 
higher frequencies, respectively, were computed using a time-
frequency method that does not utilize bandpass filters, and a 
z-scored modulation index (zMI) was used to estimate neural 
PAC (see Methods). For each participant, the average value and 
consistency (variance) of the coupling metric across the 
experimental session was calculated. The analysis pipeline is 
depicted in Figure 3A and mean / variance group comparisons of 
delta-theta PAC are shown in Figure  3B. While maximum 
coupling for most children occurred in the lower half of the delta 
band (1-2 Hz) phase, the amplitude frequency for maximum PAC 
was highly variable across the theta band range 
(Supplementary Figure S4). In Figure 3C (all panels) it is clear 
that this coupling occurs at a preferred delta phase of around ± π 
across the 3 dominant PCs for all groups.

For PC1 (which had the largest channel weights in centrally-
located electrodes), group differences were found for zMI variance 
(H = 12.1, p = 0.0024). Wilcoxon tests comparing TD children and 
dyslexic children (Z = -2.1, p = 0.036) or TD children and children 
with DLD (Z  = 2.3, p  = 0.022) were not significant following a 
Bonferroni correction. However, the two clinical groups showed 
significantly different zMI variances (Z = 3.3, p = 9.4e-4), with children 
with dyslexia showing higher variance in maximum coupling 
compared to children with DLD across the experimental session 
(Figure 3B, left panel). Phase-amplitude plots (Figure 3C, left panel) 
indicate a relatively higher concentration of large amplitudes around 
the 0:π/4 phase of the delta band for the small group of children with 
DLD. No significant differences were found in average zMI for PC1 
across groups (p > 0.05).

For PC2 (largest channel weights for electrodes covering 
temporal areas), differences were found across groups for mean 
zMI (H  = 11.53, p  = 0.0031). The children with DLD showed 
higher delta-theta coupling (Z = −3.2, p = 0.0016) compared to 
typically-developing children (Figure 3B, middle panel). Phase-
amplitude plots (Figure  3C, middle panel) showed that this 
significantly greater phase-amplitude coupling for children with 
DLD stemmed from a higher concentration of larger theta 
amplitudes for the delta ±π phase bin, where larger amplitudes 
are also seen for the other groups. zMI mean comparisons 
between TD children and children with dyslexia (Z  = −1.5, 
p  = 0.125) and between children with dyslexia versus DLD 
(Z  = −2.2, p  = 0.025) were not significant after a Bonferroni 
correction. Delta-theta variance of zMI for PC2 was similar 
across all groups (p’s > 0.05). No differences regarding maximum 
coupling strength across groups were found for PC3, the spatial 
filter with the largest weights on electrodes covering the occipital 
cortex (p’s > 0.05).

Finally, to test the sensitivity of PC1 and PC2 delta-theta PAC to 
developmental or reading level effects, we again divided the typically-
developing Australian children into subgroups of chronological age 
and reading level matched controls. No significant differences were 
found between these subgroups for delta-theta PAC (mean or 
variance) on either PC1 or PC2 (Figure S5).

Taken together, these results show that PAC metrics can 
distinguish children with DLD from groups of both TD and dyslexic 
children. These differences in cross-frequency coupling were observed 

in principal components covering auditory / central areas. As was the 
case also regarding theta/delta power ratios, no group differences were 
observed in principal components covering primary visual areas.

Can distinct patterns of oscillatory 
dynamics enable discrimination between 
dyslexic, DLD and typically-developing 
children during natural speech listening?

Our third research question was whether distinct patterns of 
oscillatory dynamics during natural speech listening would 
be robust enough to build a classifier for dyslexia. The theta-
delta ratio and PAC results suggest that there are distinct atypical 
patterns of low-frequency oscillatory dynamics during natural 
speech listening for Australian children assigned to the dyslexia 
and DLD groups. However, potential group differences in spatial 
patterns regarding each individual oscillatory frequency have 
not yet been addressed. We therefore used the story listening 
data to seek biomarkers that could show group differences across 
delta and theta oscillations, and also included beta oscillations 
(beta oscillations were included following Keshavarzi et  al., 
2024). Previous Brain-Computer Interface studies have used 
Common Spatial Patterns (CSP, see Methods) to find optimal 
EEG patterns successfully. Applied to the present study, this 
linear method finds supervised filters (using labeled data) that 
simultaneously maximize the EEG signal variance for one group 
of children while minimizing the variance for the other, and 
vice-versa (Figure  4A). To uncover spatial filters that would 
discriminate between our three groups, 3 sets of CSP filters were 
calculated for delta, theta and beta oscillations, respectively, 
(translating to a total of 9 sets). Specifically, we compared (1) 
typically-developing versus dyslexic children, (2) typically-
developing versus DLD children, and (3) dyslexic versus DLD 
children for each oscillatory band. Each CSP calculation yielded 
the same number of filters as the number of recorded channels. 
As in previous BCI research, only a subset of these filters was 
analyzed. For each group comparison, the 2 spatial filters 
maximizing the variance for each group (i.e., for m = 2; total 
number of filters = 4) were computed and participant differences 
were assessed. Twelve comparisons were made (4 spatial filters x 
3 brain rhythms) for each group combination and only the filters 
showing significant differences in non-parametric ANOVAs that 
survived Bonferroni correction were considered (threshold 
p-value = 0.05/12 = 0.004).

Figure  4B depicts the results. When comparing typically-
developing Australian children with children with dyslexia 
(Figure 4B, upper row), filters relying mostly on occipital channels 
were the most discriminative. These filters maximized the EEG power 
for children with dyslexia on delta and theta rhythms. When 
comparing typically-developing children with children with DLD 
(Figure  4B, middle row), central / left lateralized CSP filters 
maximized the EEG power for typically-developing children 
(minimizing for DLD children) across all 3 brain rhythms. A spatial 
filter focusing on occipital channels minimized the variance for 
typically-developing children while maximizing variance for children 
with DLD in the beta band range. Overall, strongly occipital EEG 
filters minimized the EEG power of typically-developing children 
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while maximizing power for both DLD and dyslexic groups (see top 
and middle rows, Figure 4B). Finally, when comparing dyslexic with 
DLD children (Figure 4B, bottom row), the significant spatial filters 

were on delta and theta rhythms. These CSPs maximized the EEG 
power for children with dyslexia and had strong weights on the right 
temporal and left central channels.

FIGURE 3

DLD children exhibit atypical delta-theta Phase-Amplitude Coupling (PAC) during speech listening (story listening task). (A) Analysis pipeline 
example using a single epoch. The comodulogram with the z-scored Modulation Index (zMI) values and phase-amplitude polar plots of 
maximum cross-frequency coupling are shown. (B) Phase-Amplitude Coupling (PAC) results. DLD children show significantly lower variance 
than dyslexic children for PC1 and significantly higher mean than typically-developing children for PC2. * p < 0.05 (Bonferroni corrected). 
(C) Polar plots showing the concentration of theta amplitudes across delta phase bins. A relatively higher concentration of high theta 
amplitudes on PC2 at ±π can be observed for DLD children (highlighted in green) when compared to the other groups.
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FIGURE 4

Common Spatial Patterns (CSP) enable discrimination between dyslexic, DLD and typically-developing children during speech listening (story listening 
task). (A) Spatial filtering applied to the original EEG epochs (each channel depicted in grey, average in black). Spatial filters allow discrimination of EEG 

(Continued)
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Can a linear classifier trained with features 
based on common spatial patterns identify 
children with dyslexia?

Despite the significance of between-group differences for 
CSP-based biomarkers, it is not yet clear whether features based on 
these CSPs have enough robustness to be  used in a classifier – 
especially for the 5-s window epochs employed here. To test this 
robustness, we cross-validated linear Support Vector Machines – with 
delta, theta and beta filtered EEG CSP feature inputs, respectively – 
using Leave-One-Subject-Out cross-validation. This method allows 
repeated assessment of the model’s performance without leaking 
participant-specific information to the training set (see Figure 5A and 
Methods). SVMs have been frequently used as classifiers in the EEG 
literature and have shown performances ranging from 0.6–0.95 AUC 

in EEG classification problems using longer inputs (Gallego-Molina 
et al., 2022). Here each classifier was trained with a different number 
of CSP filters to detect the optimal number of features. Importantly, 
for each cross-validation fold, CSPs were calculated only on the 
training set to avoid feature information leakage from the test set and, 
consequently, overfitting. To avoid “double dipping,” no information 
from previous group analyses was used to influence the choice of 
specific spatial filters (see Methods).

The receiver operating characteristic (ROC) curves for the 
classifiers are presented in Figure 5B. Simple linear SVMs using 4 
feature variables (i.e., spatial filters) with the delta-CSP classifier 
reached an area under the curve (AUC) of 0.77. Since this delta-CSP 
classifier showed the best performance (compared to all the theta- and 
beta-CSP classifiers, see Figure 5B), we further analyzed the spatial 
location of its most important CSP weights. We also analyzed the 

signals from experimental groups in the story listening task by selectively maximizing the signal variance for one group while minimizing for the other. 
(B) CSP filters for delta, theta and beta showing average power for each group for each filter. These CSPs showed significant differences at the group 
level (p <  0.05, Bonferroni corrected). Upper panel shows filters yielding significant group differences for the typically-developing children vs. dyslexic, 
middle panel for the typically-developing vs. DLD children and lower panel for the dyslexic vs. DLD children.

FIGURE 4 (Continued)

FIGURE 5

Classification of dyslexia using a linear classifier trained with features based on Common Spatial Patterns on the story listening task dataset. (A) Leave-
one-subject-out cross-validation pipeline for the Linear SVM algorithm (total number of features  =  2 m). (B) Performance (based on the area under the 
curve – AUC) difference between linear classifiers using delta, theta and beta-CSP filters across a different number of features (#filters). (C) Delta-CSP 
feature weights of the linear classifier are stable across cross-validation folds.

https://doi.org/10.3389/fnhum.2024.1403677
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Araújo et al. 10.3389/fnhum.2024.1403677

Frontiers in Human Neuroscience 14 frontiersin.org

relationship between these CSPs and EEG activity, and the variance of 
the classifier’s weights for the CSP features across all 56 folds (defined 
as the number of participants in Leave-One-Subject-Out cross-
validation). The results showed that the two negative-weighted CSP 
features were those that maximized the signal variance for typically-
developing children and minimized the variance for children with 
dyslexia (Figure 5C). These spatial filters were more strongly weighted 
on central / right lateralized channels and showed relatively higher 
correlations with channel activity in left/frontal and right/central areas 
of the scalp for control children when compared to children with 
dyslexia (Supplementary Figures S6A,B). On the other hand, the 
largest positive weights were the two spatial filters that maximized the 
signal variance for children with dyslexia and minimized the variance 
for typically-developing children. These filters were mainly focused on 
occipital channels, and the absolute values of their weights were 
similar to those of other spatial filters. These occipital CSP filters 
showed stronger correlations with electric potentials in larger areas of 
the scalp for children with dyslexia (versus typically-developing 
children), extending to parietal and central electrodes 
(Supplementary Figure S6C,D). Feature weights remained stable 
across the cross-validation process (Figure 5C), despite CSP filters 
being slightly different for every fold (given the changes in the training 
set). CSP channel weight estimations across folds were also highly 
consistent (Supplementary Figure S7).

Will delta-CSP features for dyslexia 
classification transfer across from story 
listening to the rhythmic syllable repetition 
task?

Our final research question was whether a reliable classifier could 
be based on the same neural features for natural connected speech and 
simplified rhythmic speech Given the apparently central role of delta-
band responding for dyslexia, we investigated whether these same 4 
delta-band spatial filters that identified dyslexia in story listening EEG 
might contain useful information for classifying dyslexia in the 
rhythmic syllable repetition EEG. We  thus trained a linear SVM 
classifier to predict dyslexia on the rhythmic syllable repetition 
dataset, using 4 delta-CSP filters trained using the story listening 
dataset (Figure 6A). To obtain baseline performance for a classifier 
trained on the most discriminative CSP filters computed for the 
syllable repetition task, a pipeline similar to the story listening task 
(see Figure 5A) was applied to this dataset.

Figure  6B shows the results. SVM performance regarding 
classification of dyslexic children on the rhythmic syllable repetition 
data with the original CSP filters versus the story-listening CSPs was 
very similar (0.64 and 0.65 AUC, respectively). However, this 
generalization may occur simply because temporal filtering (i.e., the 
1-4 Hz bandpass for delta) is the sole provider of a whole-brain metric 
for classification, irrespective of spatial filter weights on specific 
channels. To test this possibility, we trained 50 linear SVMs, each one 
using a different random permutation shuffle of the story-listening 
CSP weights (BABA-STORY_SH condition, see also Figure S8). The 
average AUC performance of these classifiers was at chance level 
(black ROC curve, AUC = 0.5), and the model using the original story-
listening CSPs was better than 96% of models using its shuffled 
versions at predicting dyslexia status from the rhythmic syllable 

repetition task (Figure 6B, grey ROC curves). This result shows that 
the specific configuration of story-listening EEG spatial filters is 
encoding important information for classifying dyslexia using the 
rhythmic syllable repetition EEG. Accordingly, speech rhythm 
processing may be  the common factor being identified by our 
classifiers regarding dyslexia and potential biomarkers.

Discussion

Here we  show that atypical automatic low-frequency neural 
oscillatory responses to natural speech can uniquely identify children 
with developmental dyslexia. We further show that low-frequency 
oscillatory activity during speech listening can reliably classify which 
children have dyslexia (AUC 77%). Taken together, these results show 
that dyslexia classifiers can be  based on EEG-CSP features. 
Furthermore, in line with prior neural child studies, delta-band 
features were found to be  most useful to identify developmental 
dyslexia. The data from the small group of control children with a 
different linguistic disorder (DLD, N  = 7) appear to indicate that 
low-frequency neural oscillatory responses to connected speech can 
also distinguish between the two most common developmental 
disorders of language processing, dyslexia and DLD. However, 
replication of the effects reported here with larger groups of DLD 
children is required.

These data suggest that mechanistic relationships between 
low-frequency (i.e., delta and theta) oscillatory bands are fundamental 
to understanding the aetiology of dyslexia, as predicted by TS theory 
(Goswami, 2011, 2015, 2022b). The data also show the importance of 
studying children when trying to understand causal factors in 
developmental disorders of learning. Adult studies have assumed that 
faster-rate (phonemic, >30 Hz) speech envelope modulations should 
be impaired in individuals with dyslexia in alphabetic orthographies, 
as grapheme-phoneme conversion is fundamental to reading 
proficiency (Lehongre et al., 2011). However, developmental studies 
show (a) that infants extract phonetic information from natural 
speech using low-frequency oscillations (di Liberto et al., 2018) and 
(b) that phonemic information is learned via reading experience, with 
fast-rate oscillations showing atypical patterns in children only after 
the onset of reading (Vanvooren et al., 2017; Mandke et al., 2022). 
Indeed, in their MEG study of natural speech listening, Mandke et al. 
reported that minimal gamma-band synchronization was present at 
the beginning of the dyslexic reading trajectory. Further, phoneme-
level processing of speech is not related only to faster neural 
oscillations, as slower oscillations <8 Hz also yield phoneme-level 
information [e.g., about phonetic features, see Di Liberto et al., (2015, 
2018)]. Using EEG, Di Liberto et  al. (2018) showed that atypical 
speech entrainment in the right hemisphere for low-frequencies was 
associated with phoneme-level processing in dyslexia.

Low-frequency oscillations usually signal communication 
involving large populations of neurons in relatively large brain areas, 
while higher frequency oscillations are nested in these rhythms and 
act more locally (Buzsáki, 2019). The potential EEG markers found 
here for dyslexia and DLD were indeed spread across large areas of the 
scalp. The direct mechanistic consequence of such nesting is that 
atypical oscillatory patterns at lower frequencies (observed here in 
children with both dyslexia and DLD) may have downstream effects 
regarding the magnitude of oscillatory responses in high-frequency 
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brain rhythms. Therefore, our data are compatible with previous adult 
dyslexia studies indexing atypical fast-rate oscillatory power for 
non-speech steady-state stimuli (Lehongre et al., 2011). The loci found 
here for atypical low-frequency oscillatory responses are also in line 
with clinical observations of dispersed structural brain abnormalities 
in dyslexic participants (Eckert, 2004) as well as molecular differences 
in genes that regulate the development of the entire language network 
in both DLD and dyslexia (Fisher and DeFries, 2002; Bishop, 2006; 
Newbury et al., 2010).

A key finding in our study is that the relative oscillatory power of 
theta/delta responses is atypical in children with dyslexia during a 
story listening task. Such differences were seen for an electrode 
ensemble strongly weighted around the centre of the scalp. These loci 
are consistent with the hypothesis that children with dyslexia are 
accessing a mental lexicon that contains atypical auditory 
representations with less accurate representation of delta-band speech 
envelope information (Power et al., 2016; Destoky et al., 2020, 2022; 
Mandke et al., 2022; Keshavarzi et al., 2022a). Delta-band envelope 
information is crucial for perceiving prosodic structure (Leong and 
Goswami, 2015; Ghitza, 2016; Meyer et  al., 2017). Cognitive 
processing of prosodic information is impaired in children with 
dyslexia when compared to both age-matched and reading-level 

matched (hence younger) controls (Goswami et al., 2010, 2013). In 
line with these prior behavioral findings, here we find this oscillatory 
marker to be associated with performance in phonological rather than 
reading measures. These atypical patterns of neural processing are 
likely to influence the mental representation of prosody in language 
from infancy and throughout development (Attaheri et al., 2022).

When given a rhythmic syllable repetition task, the children with 
dyslexia no longer showed a difference compared to typically-
developing children regarding the theta/delta oscillation power ratio. 
In prior work, this rhythmic speech task has revealed atypical preferred 
phase in the delta band in the dyslexic child brain (Power et al., 2013; 
Keshavarzi et  al., 2022b). Here, children with dyslexia showed 
significantly lower oscillatory delta band power in this task, with 
maximal differences at the syllable presentation rate (2 Hz). Given the 
audio-visual nature of the task, this finding suggests that steady-state 
responses from the dyslexic brain are weaker even when the task 
allows supra-additive responses due to congruent information across 
visual and auditory modalities (Schroeder et al., 2008; Arnal et al., 
2011; Pattamadilok and Sato, 2022).

We further observed atypical neural cross-frequency PAC for 
delta-theta in children with DLD but not in children with dyslexia 
(story listening task). This effect was observable on electrode 

FIGURE 6

Analyses revealing successful transfer-learning of delta-CSP features for dyslexia classification across story listening and rhythmic syllable repetition tasks. 
(A) Delta-CSP filters for the rhythmic syllable task (orange) show higher weights on right temporal channels when compared to the delta-CSP filters of the 
story-listening task (teal) that show higher weights on occipital / central channels. (B) Similar AUCs for linear SVMs classifying dyslexics and typically-
developing children on the rhythmic syllable repetition task with its original cross-validated CSPs (BABA-BABA) and with CSPs derived from the story 
listening task (BABA-STORY). SVMs using spatially shuffled versions of the story CSPs (BABA-STORY_SH) resulted in chance-level performance (black).

https://doi.org/10.3389/fnhum.2024.1403677
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Araújo et al. 10.3389/fnhum.2024.1403677

Frontiers in Human Neuroscience 16 frontiersin.org

ensembles covering bilateral temporal regions, which may suggest that 
the sensory representation / binding of sound features is affected in 
children with DLD. This explanation is in line with studies showing 
atypical auditory sensory processing in DLD regarding many 
non-speech acoustic parameters, including ART as well as frequency 
and duration (e.g., Corriveau et al., 2007; Beattie and Manis, 2012). A 
recent MEG study found that children with DLD showed atypical 
cortical tracking of single words in the theta band (Nora et al., 2024). 
An unusually strong neural dependence of delta-theta coupling to 
process speech could potentially explain these difficulties for the DLD 
children. However, given the small sample size, these observations 
must remain tentative.

We also found unexpected group differences in occipital regions. 
Our CSP filtering approach revealed that filters with larger weights 
on channels covering occipital areas consistently showed group 
differences between TD children and both children with dyslexia 
(delta and theta bands) and children with DLD (beta band), even 
though the story listening task did not provide visual speech 
information. The developmental disorder groups showed notably 
high oscillatory activity in occipital regions. While occipital areas are 
not typically associated with acoustic/phonological deficits, these 
findings are compatible with a previous developmental literature 
suggesting compensatory visual mechanisms accompanying auditory 
processing deficits in children with dyslexia (Arns et al., 2007). Prior 
EEG speech studies in our own lab have also shown occipital foci 
(Power et  al., 2016). These occipital loci may also pertain to the 
automatic integration of orthography and phonology as literacy is 
taught, potentially representing an oscillatory footprint for the visual 
word-form area (VWFA). The VWFA is activated during receptive 
language processing by adults (Hickok and Poeppel, 2007), and 
functional changes have been found in the VWFA for children with 
dyslexia (Van der Mark et al., 2009; Kast et al., 2010). Meanwhile, 
children with DLD also showed weaker oscillatory activity across 
both delta and theta rhythms when CSPs with strong weights for left-
lateralized temporal and central channels were used. Left-lateralised 
effects are typical in the fMRI neuroimaging DLD literature 
(Asaridou and Watkins, 2022, for recent review). The beta band 
differences were not anticipated, nevertheless the magnitude of beta 
oscillatory responses has been associated not only with 
comprehension but also with predictive coding of speech (Gisladottir 
et al., 2018). Taken together, these findings may suggest that speech 
processing and speech prediction are atypical in children with DLD, 
a clearly different phenomenological manifestation from that 
observed in children with dyslexia.

Large non-linear EEG-based classifiers have previously been 
engineered for dyslexia using long time windows of AM noise, with 
degrees of success reaching an AUC ~ 0.8 (Ortiz et al., 2020; Gallego-
Molina et al., 2022). By contrast, we tested classification performances 
for both dyslexic and TD children using a linear classifier and short 
epochs (~5 s) of naturalistic speech listening data. We found features 
from a minimal number of EEG spatial patterns for delta oscillatory 
responses, which showed high-magnitude differences between 
dyslexic and neurotypical children. We then trained dyslexia classifiers 
for the less naturalistic rhythmic syllable repetition task using CSPs 
from the story task, enabling transfer-learning across datasets. 
Crucially, these classifiers showed performances comparable to 
classifiers trained with their original CSP features. This appears to 
suggest that we are picking up oscillatory patterns related to general 

speech rhythm processing. Interestingly, half of the CSPs from the 
syllable repetition task were specifically located in right-lateralized 
temporal areas, an area typically active during prosodic tasks 
(Sammler et al., 2015). This indicates differences in the symmetry of 
spatially filtered delta oscillations between dyslexic and typically-
developing children, matching adult data (Hämäläinen et al., 2012; 
Lehongre et al., 2013).

In conclusion, we  have identified relationships between 
low-frequency EEG oscillations related to different neural speech 
processing mechanisms that are selectively atypical in dyslexia. 
Further, we find that the magnitude of delta oscillations in a story 
listening task shows a consistently different pattern between dyslexic 
and typically-developing children, potentially enabling the 
development of a generalizable classifier for developmental dyslexia. 
Our cross-dataset approach provides evidence that these oscillations 
are likely related to speech rhythm processing, a core tenet of TS 
theory. We also demonstrate transfer-learning of EEG features for 
identification of children with dyslexia across different receptive 
speech tasks and different samples of children. Taken together, our 
data provide robust evidence of the utility of employing a temporal 
sampling framework to explain developmental disorders of 
language learning.
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