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Background: Channel selection has become the pivotal issue a�ecting the

widespread application of non-invasive brain-computer interface systems in

the real world. However, constructing suitable multi-objective problem models

alongside e�ective search strategies stands out as a critical factor that impacts

the performance of multi-objective channel selection algorithms. This paper

presents a two-stage sparse multi-objective evolutionary algorithm (TS-MOEA)

to address channel selection problems in brain-computer interface systems.

Methods: In TS-MOEA, a two-stage framework, which consists of the early and

late stages, is adopted to prevent the algorithm from stagnating. Furthermore,

The two stages concentrate on di�erent multi-objective problem models,

thereby balancing convergence and population diversity in TS-MOEA. Inspired

by the sparsity of the correlation matrix of channels, a sparse initialization

operator, which uses a domain-knowledge-based score assignment strategy for

decision variables, is introduced to generate the initial population. Moreover, a

Score-based mutation operator is utilized to enhance the search e�ciency of

TS-MOEA.

Results: The performance of TS-MOEA and five other state-of-the-art multi-

objective algorithms has been evaluated using a 62-channel EEG-based

brain-computer interface system for fatigue detection tasks, and the results

demonstrated the e�ectiveness of TS-MOEA.

Conclusion: The proposed two-stage framework can help TS-MOEA escape

stagnation and facilitate a balance between diversity and convergence.

Integrating the sparsity of the correlation matrix of channels and the

problem-domain knowledge can e�ectively reduce the computational

complexity of TS-MOEA while enhancing its optimization e�ciency.

KEYWORDS

multi-objective evolutionary algorithm, channel selection, two-stage framework, sparse

initialization, score assignment strategy

1 Introduction

Brain-computer interface systems (BCIs) have garnered increasing attention within

academic and industrial circles due to their broad real-world applications. By acquiring

brain signals, BCIs facilitate external device control and communication without

necessitating physical movement. For instance, individuals with paralysis can employ

BCIs to manage external devices like wheelchairs, prosthetics, and robots, consequently

enhancing their quality of life (Krishna Rao et al., 2022). Furthermore, BCIs find

utility in monitoring patients’ cerebral functions within the medical domain and

delivering enhanced immersive experiences in the realm of gaming (Qu et al., 2023).
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The majority of existing non-invasive BCIs utilize external

sensors equipped with multiple channels (32 channels, 62 channels,

or even more) for the acquisition of electroencephalography (EEG)

signals (Sibilano et al., 2024). More channels lead to a more

comprehensive capture of EEG signals. However, owing to the

impact of the skull and scalp on electrical signal transmission, EEG

signals obtained through external sensors frequently contain noise

and extraneous information irrelevant to specific tasks. Moreover,

the extensive number of EEG channels compounds the difficulties

in data collection and significantly increases the computational

complexity of processing this data, leading to increased and often

unnecessary computational costs. Therefore, selecting appropriate

channels (known as channel selection optimization) from the

entirety has emerged as a pivotal challenge in the realm of BCIs

(Almanza-Conejo et al., 2023).

A significant portion of research in channel selection

optimization is grounded in EEG signal analysis (Martínez-Cagigal

et al., 2022). The channel selection method based on signal analysis

begins by extracting and selecting features from EEG signals,

subsequently choosing the most suitable subset of channels for a

specific task. On the one hand, such methods require users to have

domain-specific expertise related to the task; otherwise, it may lead

to selecting sub-optimal channel subsets. Furthermore, the pre-

designed algorithmic workflow may become entirely inappropriate

if the task changes. On the other hand, most signal analysis-based

channel selection methods focus on a single optimization objective,

with task accuracy often chosen as the optimization goal in many

algorithms (Rocha-Herrera et al., 2022). However, in addition to

task accuracy, the number of selected channels is also a crucial

metric when conducting channel selection. This is because the

number of channels adopted will determine the convenience of

using BCI devices. However, there is typically a trade-off between

the number of selected electrodes and task accuracy. Therefore,

an efficient channel selection approach must strike a compromise

between the number of selected channels and task accuracy since

these two factors are mutually exclusive. In this context, the

utilization of multi-objective evolutionary algorithms (MOEAs)

(He et al., 2022), recognized for their efficiency in resolving

problems with conflicting multiple objectives, has captured the

attention of researchers. In most multi-objective channel selection

algorithms, the number of selected channels (or the number of

deleted channels) and the accuracy of tasks are directly employed to

construct the multi-objective problemmodel (Alotaiby et al., 2015).

However, researchers have found that utilizing the aforementioned

multi-objective problem model can sometimes lead to premature

convergence of MOEAs (Abdullah et al., 2022). Consequently,

developing a well-designed and practical multi-objective problem

model becomes a critical factor influencing the performance of

multi-objective channel selection algorithms.

Studies have demonstrated that connectivity information can

effectively capture the attributes of EEG signals, given that

interactions and collaborations among various regions shape the

neural activity in the brain (Moon et al., 2020). Recently, there has

been a rising trend in utilizing the correlation matrix of channels to

address channel selection optimization problems. This is primarily

because the correlation matrix can depict the interactions and

cooperative activities among different brain regions (Liu and Ye,

2023). It has been demonstrated that due to the non-uniform

connectivity patterns in the brain, the correlation matrix of EEG

signals is typically sparse (Liu et al., 2019). For example, Figure 1

exemplifies the correlation matrix of 62 EEG channels utilized

in a fatigue detection task with a classification accuracy of 94%.

In Figure 1, the red color represents that the corresponding

two channels are entirely linearly correlated (linear correlation

coefficient of 1), while the blue color indicates that the two

channels are linearly independent (linear correlation coefficient

of 0). It can be observed from Figure 1 that the majority of cells

in the correlation matrix are depicted in blue, indicating that the

correlation coefficients of the corresponding elements are close to

zero, thereby demonstrating the sparse nature of the correlation

matrix. However, few studies consider the sparsity of the correlation

matrix when adopting it for solving channel selection problems.

This paper introduced a two-stage sparse multi-objective

evolutionary algorithm (TS-MOEA), tailored for optimizing

channel selection in BCIs. To prevent the algorithm from

stagnating, TS-MOEA employs a two-stage framework. In this

framework, the entire optimization process is divided into two

phases, namely the early and late stages, with each stage addressing

different multi-objective problem models. Specifically, in the early-

stage phase, the adopted objective function is more sensitive to

the deletion of channels to prevent the algorithm from falling

into local optima. Furthermore, inspired by the sparsity of the

correlation matrix of channels, a sparse initialization operator

is employed when initializing the population in TS-MOEA. In

the sparse initialization operator, a domain knowledge based

strategy, which utilizes channels’ positions and distance matrix,

is used to assign scores to decision variables. Additionally, in

the early stage of the algorithm, a Score-based mutation strategy

is employed to enhance the search efficiency of the algorithm.

In summary, the algorithm presented in this paper differs from

existing multi-objective lead optimization algorithms in three main

aspects. First, the proposed algorithm employs two distinct multi-

objective optimization models, whereas current methods optimize

for a single multi-objective model throughout the entire search

process. Second, the proposed algorithm analyzes the sparsity of

the channel correlation matrix and incorporates a sparsity-based

strategy in the design of the operators to enhance the efficiency

of the algorithm. Lastly, the proposed algorithm utilizes domain-

specific knowledge to guide the search process of the algorithm. The

primary contributions of this paper are outlined as follows:

1. A two-stage framework is employed in this study to assist the

algorithm in escaping local optima. This framework divides the

optimization process into the early and late stages, and different

multi-objective problem models are used in the two stages.

2. Inspired by the sparsity observed in the correlation matrix of

channels, a sparse initialization operator is introduced to create

the initial population. Within this operator, a strategy based on

domain knowledge is employed, leveraging channels’ positions

and distance matrix to allocate scores to decision variables.

3. A Score-based mutation strategy is employed to enhance the

search efficiency in the early stage of TS-MOEA.

4. The performance of TS-MOEA and five other advanced multi-

objective algorithms has been evaluated using a 62-channel

EEG-based BCI system for a fatigue detection task.
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FIGURE 1

Correlation matrix of 62 channels under 94% accuracy for a fatigue detection task.

The remainder of this paper is structured as follows: Section

2 presents the relevant background theory, followed by the

description of the proposed TS-MOEA in Section 3. Section 4

covers the experiment and result analysis. Section 5 contains a

discussion of the parameters and results, while Section 6 presents

the concluding remarks.

2 Backgrounds

2.1 Acquisition and processing of EEG
signals

In this study, EEG signals were collected using an ESI-64

high-resolution system (SynAmps2, Neuroscan) with 62 EEG

channels (Chen et al., 2022). These 62 electrodes were positioned

in accordance with the international 10–20 standard, as depicted

in Figure 2. The initial sampling frequency was 1,000 Hz, which

was down-sampled to 250Hz for data processing. Subsequently,

the recorded signals underwent filtering with the frequency from

0 to 40 Hz. The raw EEG signals were sampled every 5 seconds,

undergoing conversion from analog to digital signals through the

utilization of a sampling window and a sliding window of 5 seconds.

In this paper, the bilateral linked mastoid (LM) (Scannella et al.,

2016), which is the average of the left and right mastoids, was used

as the reference signal during the acquisition of EEG signals.

This study utilizes the correlation matrix to describe the

characteristics of the collected EEG signals. In recent times, the

Pearson Correlation Coefficient (PCC) (Pearson, 1895), along with

the Phase Locking Value (PLV) (Aydore et al., 2013), and Transfer

Entropy (TE) (Schreiber, 2000), have become extensively used

methods for calculating the correlation coefficient between EEG

signals in BCIs.

PCC quantifies the linear correlation between two signals, with

its value ranging from -1 to 1. A PCC value of 0 signifies that the

signals are linearly uncorrelated. Conversely, PCC values of -1 and

1 indicate negative and positive linear relationships, respectively.

Consider Xi = {x
1
i , x

2
i , ..., x

T
i } as the EEG signal from the ith

channel, where T represents the signal’s length, and µi and σi are

the mean and standard deviation of the ith signal. The PCC value

between Xi and Xk is computed using Equation (1).

PCC(i, k) =
1
T

∑T
t=1(X

t
i − µi)(X

t
k
− µk)

σiσk
(1)

PLV is used to describe phase synchronization between two

signals by averaging the absolute phase differences. PLV can be

calculated using Equation (2). In this equation, ϕt
i denotes the

phase of the signal at time point t for the ith signal.

PLV(i, k) =
1

T

∣
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TE is a metric for quantifying the directed information flow

from signal Xi to Xk, as delineated in Equation (3). Essentially, TE

assesses the extent to which signal Xi can improve the prediction

of signal Xk. A TE value of 0 indicates the absence of a causal

relationship between the two time series, implying that knowing

the past values of Xi may not aid in predicting Xk.

TE(i→ k) =
1

T − 1

T−1
∑

t=1

p(Xt
i ,X

t
k,X

t+1
k

) log
p(Xt+1
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(3)
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FIGURE 2

Electrode placement follows the standard International 10–20 System.

Researches have shown that the performance of TE is relatively

worse than that of PCC and PLV. PLV performs better than

PCC slightly (Gong et al., 2024). However, PCC is faster in

terms of computational speed because of its simplicity (Maria

et al., 2023). In this case, this paper utilizes PCC to obtain the

correlationmatrix of EEG signals in terms of both performance and

computational speed.

2.2 MOEAs

Multi-objective optimization problems (MOPs) are prevalent

in various real-world scenarios, characterized by multiple

conflicting objectives. The general formulation of a maximum

MOP is represented in Equation (4), where x = (x1, ..., xn) ∈ �

denotes the solution x within a search space of dimension n, and �

represents the feasible region in the search space. M corresponds

to the number of objectives considered in the optimization

problem. For an MOP with multiple exclusive objectives, the

optimization algorithms can not find a single optimal solution

that simultaneously optimizes all objectives. This is due to the

exclusive between objectives, where enhancing the performance

of one objective may lead to a decline in others. Consequently,

the goal of MOEAs is to identify a set of Pareto optimal

solutions. x∗ is regarded as a Pareto optimal solution if there is

no other solutions that can dominate x∗. Suppose a maximum

MOP as shown in Equation (4), x dominates x∗ if and only if

∀i ∈ {1, 2, ...,M}, fi(x) ≥ fi(x
∗) and ∃i ∈ {1, 2, ...,M}, fi(x) > fi(x

∗).

Being population-based search methods, evolutionary algorithms

(EAs) have proven to be efficient tools for tackling MOPs

by generating a collection of candidate solutions within a

single execution.

Maximum F(X) = (f1(X), f2(X), ..., fM(X)) (4)

Current MOEAs can be categorized into three main types:

dominance-based, decomposition-based, and index-based

algorithms. For MOEAs belonging to the first category, the basic

idea is to determine the priority of one solution by the dominant

relation between the solution and the others. The typical algorithm

in the first category is NSGA-II (Deb et al., 2002). In NSGA-II,

a fast non-dominated sort method, which are widely adopted

in dominance-based MOEAs, is proposed. Many improved

algorithms have been submitted in recent years. For example,

in CBGA-ES+ (Pradhan et al., 2021) proposes a hybrid selection

strategy combining cluster-based methods and the traditional

non-dominated elitist selection method to select parent solutions.

In Premkumar et al. (2021), a MOSMA, which combines the

Slime Mould Algorithm and the traditional NSGA-II, is proposed

to solve MOPs in industries. In the CMMO (Ming et al., 2023)

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1400077
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnhum.2024.1400077

algorithm, a cooperative evolution strategy, combined with

customized environmental and mating selection, forms the basis

for addressing MOPs. The algorithm utilizes dynamically adjusted

relaxation factors to retain advantageous solutions with diverse

decision spaces. This algorithm exhibits outstanding performance

in solving multi-modal multi-objective problems. In ASDNSGA-II

(Deng et al., 2022), a special congestion degree strategy and a

new adaptive crossover operator are proposed to improve the

performance of NSGA-II when handling multi-modal MOPs.

For MOEAs based on decomposition, the basic idea is to

translate the original MOP into a set of single-objective problems

[as seen approaches like MOEA/D (Zhang and Li, 2007)] or

simple MOPs [as illustrated by MOEA/D-M2M and MOSOS/D

(Liu et al., 2014; Ganesh et al., 2023)] with the help of weight

vectors or reference points. Therefore, many improvements in

this type of MOEAs focus on obtaining more appropriate weight

vectors (reference points). For instance, Ma et al. (2020) propose

an adaptive weight vector adjustment strategy, in which the

weight vectors are periodically modified to enhance the searching

capability of the algorithm. In MOEA/D-CSM (Liu et al., 2021),

a dynamic reference points generation strategy, which considers

the local knowledge in objective space, is proposed to obtain the

reference points that can adapt well to MOPs with irregular Pareto

fronts. In DMO-QPSO (You et al., 2021), a combination of the

quantum-behaved particle swarm optimization (QPSO) algorithm

and the MOEA based on decomposition (MOEA/D) is proposed.

This integration aims to enable QPSO to effectively address MOPs

while leveraging the strengths of QPSO. Additionally, the algorithm

introduces some non-dominated solutions to guide other particles

in the global best guidance group. The results indicate that the

DMO-QPSO algorithm excels in addressing both two-objective and

three-objective problems.

For index-based MOEAs, the additional indexes are adopted to

determine the priority of solutions or guide the selection process

in algorithms. Some representative indexes are hypervolume (HV)

(While et al., 2006; Deist et al., 2023), inverted generation distance

(IGD) (Zhou et al., 2006; Ishibuchi et al., 2019), dominance

move(DoM) (Lopes et al., 2022), and R2 (Ma et al., 2018), and so on.

In recent years, the hybrid index, which combines multiple indexes

to improve search efficiency, has been proposed. For example, a

hybrid index that combines HV and R2 has been adopted (Shang

and Ishibuchi, 2020; Shang et al., 2020). Using HV to assess the

distribution of the obtained Pareto fronts and R2 to measure

the distance between these Pareto fronts and the ideal ones, the

hybrid index facilitates algorithms in attaining a balance between

convergence and population diversity.

2.3 Sparse MOEAs

Studies have revealed that numerous MOPs possess sparse

Pareto optimal solutions, particularly those with large-scale

decision variables (Tian et al., 2021b). SuchMOPs featuring sparsity

are commonly referred to as sparse multi-objective optimization

problems (SMOPs). In other words, most decision variables of the

Pareto optimal solutions in SMOPs are 0. In this case, traditional

MOEAs can not obtain satisfactory results when solving SMOPs.

This is because traditional MOEAs do not study the sparse

distribution of Pareto optimal solutions and thus cannot effectively

generate candidate solutions with sparsity in the evolution process.

In recent years, some variations ofMOEAs have been applied to

solving SMOPs successfully. These algorithms, called sparse multi-

objective evolutionary algorithms (SMOEAs), can be divided into

two categories. In the first type, SMOEAs adopte the dimension

reduction techniques that are commonly used in machine learning.

For example, to reduce the number of sparse large-scale decision

variables, MOEA/PSL (Tian et al., 2021a) leverages a denoising

auto-encoder (DAE) followed by the utilization of a restricted

Boltzmann machine (RBM) for acquiring insight into the sparse

distribution of decision variables. PM-MOEA (Tian et al., 2022)

adopts pattern mining techniques to identify the maximal and

minimal candidate sets of non-zero decision variables from the

population and apply specialized genetic operators to these patterns

to achieve dimensional reduction. SMEA (Tian et al., 2023)

proposes an effective approach for addressing sparse large-scale

multi-objective evolutionary problems. The algorithm optimizes

the binary vectors of each solution to estimate the sparse

distribution of optimal solutions and introduces a rapid clustering

method for significantly reducing the dimensionality of the search

space. This algorithm partitions a substantial number of decision

variables into multiple groups, where all variables within the

same group are collectively represented by a single variable for

optimization. This innovative strategy substantially diminishes the

search space, thereby enhancing the convergence speed.

The search efficiency has been improving for the first type

of SMOEAs since the dimension of search space has been

reduced. However, some dimension reduction techniques may

need high computational cost, and there is no sparsity-related

knowledge as guidance information in the evolution process

of the algorithms. In the second type, SMOEAs combines the

conventional framework of MOEAs (such as NSGA-II) and a

hybrid encoding method of solutions. For example, S-NSGA-II

(Kropp et al., 2023) introduces a novel set of evolutionary operators,

which include Varied Striped Sparse Population Sampling (VSSPS),

Sparse Simulated Binary Crossover (S-SBX), and Sparse Polynomial

Mutation (S-PM), to address SLMOPs. The aforementioned

operators demonstrate remarkable efficacy in solving SLMOPs,

particularly when evaluated using HV. In SparseEA, as introduced

by Tian et al. (2020), a solution is represented by two components:

a real vector for the original decision variables, and a binary

vector, often referred to as a “mask vector,” which governs the

solution’s sparsity. SparseEA2 adds a decision variable grouping

strategy to accelerate the convergence speed of generating sparse

Pareto optimal solutions. However, the decision variable grouping

strategy in SparseEA2 is designed based on the random grouping

method without considering the relation between variables. S-

ECSO (Wang et al., 2022), an enhanced competitive swarm

optimization approach, which adopts the strongly convex sparse

operator(SCSparse), is designed to address SMOPs and exhibits

outstanding performance.

As described in Section 1, the channel selection problems in

BCIs is a typical SMOP. Based on the domain knowledge in the

specific problem, this article proposes a two-stage sparse multi-

objective optimization evolutionary algorithm, namely TS-MOEA.

In TS-MOEA, both the sparsity and domain knowledge are
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FIGURE 3

Channel selection problem.

considered in the design of the fundamental operators. The detailed

description of TS-MOEA is shown below.

3 Method

3.1 Formulation of two-objective channel
selection optimization problem in two
stages

This paper aims to select as few channels as possible with

acceptable task accuracy. So, the number of deleted channels (f1)

and the accuracy of tasks (f2) are the two maximized objectives

that come to mind intuitively. Figure 3 illustrates the modeling

process for the channel selection problem. Firstly, the raw signals

are processed into sample data by computing the PCC values

between each channel. Therefore, the sample data are all presented

in the form of correlation matrices (as described in Section 2.1).

Then, for the channel optimization problem, the threshold matrix

x is considered as the decision variable that needs to be optimized.

By filtering the sample data through the threshold matrix, it is

easy to determine which channel can be deleted (Algorithm 1),

and thus the value of f1 can be obtained, which is the number of

deleted channels. Based on the channels that have been deleted,

the subset of retained channels can be obtained. By using the

data matrix of these selected/retained channels as the input for

the classifier, the classification accuracy for a specific task can be

achieved, denoted as f2. In summary, the channel optimization

problem is modeled as a maximization two-objective problem. As

shown in Figure 3, the threshold matrix x contains the decision

variables that need to be optimized, and x has the same size as the

connectivity matrices of sample data. Where D = {D1,D2, ...,DN}

and N is the number of samples, Di(1 ≤ i ≤ N) is the

correlation matrix for the ith sample. After filtering D by x, one

can obtain the set of the filtered correlation matrices, denoted as

B, for all samples. Specifically, B = {B1,B2, ...,BN} and Bi(1 ≤

i ≤ N) is the filtered correlation matrix for the ith sample.

Then, the channels to be deleted can be determined by analyzing

the filtered correlation matrices, thereby obtaining the number of

selected channels (f1). The detailed procedure of obtaining the

number of deleted channels, i.e., f1, is given in Algorithm 1. As

shown in Algorithm 1, if a channel is irrelevant to most channels,

then this channel is most likely useless for the specific task and

will be deleted (Lines 9, 10). In Line 10 of Algorithm 1, The

value of s determines the difficulty level for channels to meet

the deletion criteria. The correlation matrix after channel deletion

C = {C1,C2, ...,CN} can be obtained based on B. For the kth

sample, if the jth channel can be deleted, then Ck can be acquired

by setting the elements in both the ith row and the kth column

of Bk to 0 (Lines 17, 18). After that, C will be used as the input

of classifiers, and then the accuracy of classification tasks (f2)

can be obtained. The above-mentioned two-objective optimization

problem can be formulated as shown in Equation (5). Please note

that any classifier can be utilized for obtaining classification results.

Since the focus of this paper does not center on the classifier

itself, the classic support vector machine (SVM) is selected here.

The hyperparameters used in SVM are obtained through the grid

search method, in conjunction with 5-fold cross-validation. The

hyperparameter determination process begins with establishing

a range of potential values for each hyperparameter, forming

a parameter grid. After evaluating each set of hyperparameter

combinations by the 5-fold cross-validationmethod, the best values

for the hyperparameters adopted in SVM will be obtained. The

classification accuracy of SVM using the best hyperparameter swill

regarded as f2.

Maximum F(X) = (f1(X), f2(X))

f1(X) = md,md is the number of deleted channels

f2(X) = classifer(C)

(5)

f ∗1 (X) = 0.5 ∗
zero(C)

NC
+ 0.5 ∗

md

m
(6)
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Require: Number of all channels, denoted as m;

Number of samples, represented by N;

Connection matrices of all samples,

expressed as D = {D1, ...,DN };

Threshold matrix, represented as X;
Ensure: f1: Number of the deleted channels;

C = {C1, ...,CN }: Connection matrices of all

samples after channel deletion;
1: For k = 1 :N % For each sample, obtain

the filtered correlation matrix

2: Bk = Dk;

3: For i = 1 :m % For each row in Bk

4: For j = 1 :m % For each column in Bk

5: If Bk (i, j) < x(i, j), then Bk (i, j) = 0;

6: End For

7: End For

8: For j = 1:m % For each row in Bk

9: Calculate the quantity of zero values in

the jth column and label this count as zj.

10: If zj > s (s is the predefined threshold),

then the jth channel is considered to be

optimized for the kth sample;
11: End For

12: End For

13: md = 0;

14: For j = 1 :m % For each channel

15: If jth channel is considered to be

deleted for all samples, then the jth

channel will be deleted and md = md + 1;
16: For k = 1 :N

17: Ck = Bk;

18: Set the elements in the jth row and jth

column of Ck to 0;

19: End For

20: End For

21: f1 = md.

Algorithm 1. The detailed procedure of obtaining the number of deleted

channels.

Maximum F(X) = (f ∗1 (X), f2(X))

f ∗1 (X) = 0.5 ∗
zero(C)

NC
+ 0.5 ∗

md

m

f2(X) = classifer(C)

(7)

However, as shown in Algorithm 1, a channel can only be

deleted if it is unanimously agreed upon by all samples. Particularly,

when s is set to a large value, meeting the deletion criteria

for channels becomes even more challenging. This difficulty

results in MOEAs encountering stagnation when optimizing f1
(number of deleted channels). To address this problem, a novel

objective function f ∗1 is introduced, which offers higher sensitivity

in reflecting the deletion status of channels. As expressed in

Equation (6), zero(C)
NC

signifies the ratio of zero elements in C.

Specifically, zero(C) represents the count of zero elements, and

NC is the total number of elements in C. Let md denote the

number of deleted channels and m denote the total count of

channels. Then,
md
m represents the proportion of deleted channels

to the total channels. In this case, the multi-objective problem

can be formulated as shown in Equation 7. In Equation 7, the

number of deleted channels (f1) from the original Equation (5) is

transformed into f ∗1 , which represents the weighted average sum

of the proportion of zero elements in C and the proportion of

deleted channels to the total. After this transformation, the first

objective function in the two-objective optimization model has

shifted from a discrete integer search space to a continuous real

number search space, which reduces the risk of the algorithm falling

into a locally optimal solution. Therefore, compared to the two-

objective problemmodel in Equation (5), themodel in Equation (7)

is more sensitive to the deletion status of channels, rendering it

less susceptible to stagnation. Hence, this paper introduces a two-

stage framework, as illustrated in Figure 4, employing different

two-objective problem models in the early and late stages of the

proposed algorithm.

3.2 Framework of TS-MOEA

In this paper, a two-stage sparse multi-objective evolutionary

algorithm, named TS-MOEA, is introduced to address channel

selection problems in BCIs. As illustrated in Figure 5, TS-MOEA

adopts a two-stage framework comprising the early and late

stages, each dedicated to distinct optimization problem models.

It also can be observed from Figure 5 that the early and

late stages share most operators. Specifically, in addition to

the sparse initialization operator, the only difference between

the two stages is the mutation of Dec variables. Furthermore,

due to the sparsity of the correlation matrix, TS-MOEA

adopted a hybrid representation of decision variables, which

contains Dec variables (real numbers) and Mask variables

(binary numbers). Algorithm 2 gives the detailed procedure

of TS-MOEA.

In TS-MOEA, the output population obtained in the first

stage becomes the input population for the late stage. To

ensure population diversity in the late stage, TS-MOEA adopts

a transformation condition between the two stages, which takes

into consideration both the total of consumed function evaluations

(FE) and (NDC), as shown in Line 4 of Algorithm 2. NDC

represents the number of different f1 values obtained by POP.

To ensure population diversity in the late stage, TS-MOEA

adopts a transformation condition between the two stages, which

takes into consideration both FE and NDC, as shown in Line

4 of Algorithm 2. Where FE is the current number of function

evaluations consumed by the algorithm and NDC represents the

number of different f1 values obtained by POP. Since f1 is one

of the objective functions optimized by TS-MOEA in the late

stage, a larger NDC implies that the population exhibits better

diversity in the late stage of TS-MOEA. If the number of deleted

channels is equal to m, i.e., all channels are removed, this is

nonsensical. Moreover, since TS-MOEA is designed based on the

correlation matrix between channels, this implicitly presupposes

that the number of retained channels is greater than or equal to 2.

Therefore, the possible values for the number of deleted channels

can be any integer within the range [0,m − 2]. When the NDC
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FIGURE 4

Illustration of two-stage framework.

FIGURE 5

Framework of TS-MOEA.

is m − 2, it indicates that the population generated in the first

stage is sufficiently diverse to serve as the input population for

the next stage. Moreover, if the number of the consumed function

evaluations of the early stage exceeds the preset threshold, i.e.,

µ×MaxFE, the algorithm can also transfer from the early stage to

the late stage. In this case, µ controls the transformation between

the two stages, and its value has been investigated in detail in

Section 4.2.
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Require: N (representing the size of the

population);

G (indicating the arrangement of 62

electrodes following the international

10-20 standard);

m (number of channels, i.e., m = 62 in

this paper);
Ensure: REP (the Pareto-optimal Set)

1: [POP, Score] = Sparse-Initialization(N,G); %

Algorithm 3

2: Obtain REP as the non-dominated solution in POP;

3: NDC = Unique(f1(POP)) ;

4: While FE < µ × MaxFE or NDC < m − 2 % The early

stage

5: Offspring = ∅;

6: Obtain 2N parent individual from POP by

binary tournament selection operator;

7: For each pair of parent in individual(denoted

as p and q):

8: o.Dec ← SBX_Crossover(p.Dec, q.Dec); % Crossover

for Dec variables

9: o.mask← p.mask;

10: if rand() < 0.5 %

Crossover for Mask variables

11: Select two elements from the nonzero

elements in

p.Mask ∩ q.Mask randomly;

12: Set the corresponding value in o.mask

to 0 for the selected element with a

bigger Score value;

13: Else

14: Select two members from the nonzero

elements in

q.Mask ∩ p.Mask randomly and set

the values of the selected members in

o.mask to 1;

15: End If

16: If rand() < 0.5 % Mutation for Mask

variables

17: Randomly select two members from the

nonzero elements in o.Mask;

18: Set the corresponding value in o.mask

to 0 for the selected element with a

bigger Score value;

19: Else

20: Randomly select two members from the

nonzero elements in o.Mask;

21: Set the corresponding value in o.mask

to 1 for the selected element with a

smaller Score value;

22: End If

23: Divide o.Dec into different groups by

ordered grouping and select one group

randomly, then store the selected Dec

variables in SelectList;

% Mutation for Dec variables

(Algorithm 4)

24: o.Dec←Score_Mutation(o.dec, Score, SelectList);

25: Offspring ← Offspring ∪ o;

26: End For

27: POP← Select the best N individuals from POP

and Offspring;

28: REP← Non-dominated solution set in POP and

REP;

29: NDC = Unique(f1(POP));

30: End While

31: While FE < MaxFE % The late stage

32: Offspring = ∅;

33: For the selected parent individuals,

perform the crossover operators for Dec

variables

and perform the crossover and mutation

operators for Mask variables according

to

Lines 8-22;

% Mutation for Dec variables in the late

stage
34: Mutate the Dec variables of by the

polynomial mutation operator;
35: Obtain POP and REP by Lines 27-28.

36: End While

Algorithm 2. Procedure of TS-MOEA.

TS-MOEA introduces a sparse initialization operator to

generate the initial population for channel selection problems

(Line 1 in Algorithm 2). In the sparse initialization operator,

each decision variable will be assigned a Score value, which

is calculated according to the problem-domain knowledge. The

detailed description of the sparse initialization operator is given

in Section 3.3. Both the early and late stages in TS-MOEA

adopt the binary tournament selection operator (Lavinas et al.,

2018) to obtain parent individuals (Line 6). The crossover and

mutation for Dec and Mask variables utilize different strategies.

Specifically, the simulated binary crossover operator (Deb and

Beyer, 2001; Zhassuzak et al., 2024) is adopted for Dec variables

(Line 8), while the Score-based crossover operator, which is

inspired by SparseEA2, is utilized for Mask variables (Lines 10–

15). The mutation forMask variables is implemented by the Score-

based mutation operator as shown in Lines 16–22. To balance

convergence and population diversity, a Score-based mutation

and the conventional polynomial mutation operators are utilized

For Dec variables in the early and late stages of TS-MOEA,

respectively (Lines 24, 34). The description of the proposed

Score-based mutation operator has been given in Section 3.4.

TS-MOEA utilizes the sequential grouping strategy (Zille et al.,

2016) to divide decision variables into groups. Specifically, if

it is required to split d decision variables into k groups, then

the first [d/k] decision variables will be classified into the first

group, the next [d/k] decision variables will be classified into the

second group, and so on. Here, [d/k] denotes the integer closest

to d/k. Since the binary tournament selection, simulated binary

crossover, and polynomial mutation operators are widely adopted

in various MOEAs, their details will not be presented here to

save space.
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FIGURE 6

Illustration of decision vector.

FIGURE 7

Hybrid representation of decision vector.

3.3 Sparse initialization operator

In the proposed TS-MOEA, the threshold matrix x is the

optimization target, as shown in Figure 3. x is employed to filter

the correlation matrix of samples. Since the correlation matrix is

symmetric, x will be rearranged as a decision vector. For instance,

in this paper, the correlation matrix is 62× 62 due to the utilization

of 62 channels. Therefore, the size of the decision vector will be

1 × 1, 891, as shown in Figure 6. Inspired by SparseEA2, this

paper adopted a hybrid representation of decision variables, which

contains real variables (Dec vector) and binary variables (Mask

vector). As illustrated in Figure 7, both the Dec vector and the

Mask vector share the same size as the decision vector. The actual

decision vector is obtained by multiplying corresponding elements

from the Dec andMask vectors.

Algorithm 3 provides a detailed procedure of the proposed

sparse initialization operator. In this operator, the first step is to

calculate the Score value of each variable in the decision vector

(Lines 2–6). The Score values will later be used to determine

whether elements in the Mask vector should be set to 0. Research

has revealed that the relationship between brain regions relates

to their location and length from each other (van den Broek

et al., 1998; Reznik and Allen, 2018). Therefore, the calculation of

Score values in this paper is based on domain-specific knowledge,

which includes the location of channels and the distances between

channels.

The calculation of Score values of the decision variables

are given in Equations (8), (9). As presented in Equation (8),

GChannelk represents the position of channel k, which can

be acquired according to the international 10–20 standard.
∣

∣|GChannelk − GChannell |
∣

∣

2
signifies the Euclidean distance between

GChannelk and GChannell . In Equation (9), Max(DM) and Min(DM)

denote the maximum and minimum distances between channels.

Locationk = 1 denotes that Channelk is located in the left

hemisphere, while Locationk = –1 indicates that Channelk is located

in the right hemisphere, respectively. If Channelk is positioned in

the inter-hemispheric junction area of the brain, as illustrated by

the dotted circles in Figure 2, then Locationk will be set to 0. As

indicated in Equation (9), two channels located in different cerebral

hemispheres have higher Score values compared to channels

situated in the same hemisphere. Additionally, channels that are

farther apart have higher Score values. In Equation (9), R is the

preset channel radius, whose value has been investigated in Section

4.3. ForChannelk andChannell, the larger the Score value, the easier

it is for the corresponding element in Mask to be 0 (Lines 13–17)

and the easier it is for the correlation coefficient of Channelk and

Channell to be 0 after filtering.

DM(k, l) =
∣

∣|GChannelk − GChannell |
∣

∣

2
(8)

Score(k, l)

=















DM(k,l)−R
2(Max(DM)+R)

if Locationk = Locationl
DM(k,l)

2(Max(DM)+R)
if Locationk 6= Locationl and DM(k, l) < R

DM(k,l)+R
2(Max(DM)+R)

if Locationk 6= Locationl and DM(k, l) ≥ R

(9)
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Require: N (Population size);

D (Dimension of decision vectors);

m (Number of channels);

G (Position of channels according to

the international 10-20 standard);
Ensure: POP (Initial population);

S (Score vector);
1: Calculate the value of distance matrix DM

according to G by Equation (8);

2: For k = 1 :m

3: For l = 1 :m

4: Calculate Score(k, l) by Equation (9);

5: End For

6: End For

7: Convert the score matrix to score vector, denoted

as S, as shown in Figure 6;

8: Generate N Dec vectors, and each element in Dec is

randomly generated within [0, 1];

9: Generate N Mask vectors, and each element in Dec

is set to 1;

10: For i= 1 to N

11: For j = 1 to rand × D

12: Select two decision variables, namely m

and n, randomly;

13: If Sm(j) ≤ Sn(j) then

14: Set the nth element in the Mask vector of

the ith individual to 0;

15: else

16: Set the mth element in the Mask vector

of the ith individual to 0;

17: End If

18: End For

19: End For

20: Obtain POP, where the ith solution in POP is

acquired by multiplying the ith Dec vector and the

ith Mask vector, as illustrated in Figure 7.

Algorithm 3. Sparse initialization operator.

3.4 Score-based mutation operator

As explained in Section 3.2, the output population from the

early stage in TS-MOEA serves as the input population for the

late stage. Hence, the quality of the population acquired in the

early stage significantly impacts the ultimate performance of the

proposed TS-MOEA. To effectively leverage the problem-domain

knowledge to steer the search process of TS-MOEA, a Score-

based mutation operator, which utilizes the Score values of decision

variables, is introduced for Dec vectors in the early stage of TS-

MOEA. Algorithm 4 presents the detailed procedure of the Score-

based mutation operator.

For o.Dec (the Dec vector of individual o), if scj is large, i.e.,

the corresponding two channels are close to each other, then o.Decj
will have a greater probability to be a large value after mutation

(Lines 4, 8 in Algorithm 4). In this case, the two channels that are

related to Decj tend to be regarded as uncorrelated after filtering

(Line 5 in Algorithm 4). In Algorithm 4, α controls the magnitude

of mutation and is set to 0.1 empirically.

Require: S = [sc1, sc2, ..., scD] (Score vector);

o.Dec (Dec vector of individual o)

SelectList (Index of the elements that are

selected to be mutated in o.Dec);
Ensure: o.Dec

1: For j ∈ SelectList

2: Generate numbers r, r1, r2, each number is randomly

selected within [0, 1];

3: If r < 0.5+ scj

4: 1 = α · r1

5: Else

6: 1 = −α · r2

7: End If

8: o.Decj ← o.Decj +1

9: End For

Algorithm 4. Score-based mutation operator.

4 Results

4.1 EEG data and parameter settings

The unprocessed EEG signals were gathered from a group of

9 participants aged between 21 and 30 during a fatigue detection

task. Throughout the data collection phase, participants underwent

a wake-sleep-wake cycle post-lunch, a period when many people

typically experience fatigue symptoms. For experiment integrity,

all volunteers were required to wake up before 8:30 a.m. and

abstain from alcohol and drugs. During the fatigue detection task,

participants lay on a bed with closed eyes, responding to auditory

cues via their headsets by promptly opening their eyes. Volunteers

were considered alert if they respondedwithin 2 seconds; otherwise,

they were classified as fatigued. Further details regarding the

processing of the acquired EEG signals are elaborated in Section 2.1.

This paper utilizes the Hypervolume (HV) metric, as described

by While et al. (2006). To evaluate the efficiency of the proposed

algorithm. HV measures an algorithm’s convergence and diversity

by calculating the hypercube’s volume, which is formed by the

non-dominated solutions obtained by the evaluated algorithm and

a predetermined reference point. The reference point is typically

chosen to be worse than the function values of each solution in

the current evaluated solution set. Therefore, a greater HV value

signifies better performance of the assessed algorithm. Since the

optimization problem in this paper is a two-objective problem

that requires maximization, the reference point z is generated

according to the following Equation (10). Where P represents the

Pareto-optimal-set obtained by the evaluated algorithm.

z = (z1, z2)

z1 = min
x∈P

f1(x)− 0.1

z2 = min
x∈P

f2(x)− 0.1
(10)

As depicted in Figure 6, when conducting channel selection

for a BCI system comprising 62 channels, the number of the

decision variables is 1,891. Consequently, the channel selection
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TABLE 1 Algorithm configuration parameters.

Algorithm Parameter setting References

SparseEA2 The crossover probability is 1, while the mutation probability is 1/D; Zhang et al., 2021

Both crossover and mutation have a distribution index of 20.

SLMEA The crossover probability is 1, while the mutation probability is 1/D; Tian et al., 2023

Both crossover and mutation have a distribution index of 20.

S-ECSO Inertia weight w is 0.7968; µinitial is set to 0.35; Wang et al., 2022

The learning factors C1 and C2 are both assigned the value of 1.4962.

CMMO The crossover probability is 1, while the mutation probability is 1/D; Ming et al., 2023

Both crossover and mutation have a distribution index of 20; µ, τ and θ are set to 0.1.

S-NSGA-II The crossover probability is 1, while the mutation probability is 1/D; Kropp et al., 2023

Both crossover and mutation have a distribution index of 20.

The crossover probability is 1, while the mutation probability is 1/D;

TS-MOEA Both crossover and mutation have a distribution index of 20.

R, µ and s are set to 0.1, 0.2 and 40, respectively.

problem addressed in this paper qualifies as a large-scale MOP.

Moreover, owing to the sparsity of the correlation matrix of

channels, the channel selection problem discussed in this paper also

falls within the category of sparse large-scale MOPs. To assess the

effectiveness of the proposed algorithm, TS-MOEA is compared

with several advanced large-scale MOEAs, containing SpaseEA2

(Zhang et al., 2021), SLMEA (Tian et al., 2023), S-ECSO (Wang

et al., 2022), CMMO (Ming et al., 2023), and S-NSGA-II (Kropp

et al., 2023). Among these comparison algorithms, SparseEA2 is an

effective sparse multi-objective optimization algorithm, whereas S-

NSGA-II and S-ECSO are specialized for large-scale multi-objective

optimization tasks. CMMO, a newly introduced algorithm,

excels in finding an optimal equilibrium between diversity and

convergence for multi-objective optimization problems. SLMEA is

specialized for super-large-scale sparse multi-objective problems.

For fair comparisons, all algorithms adopt the maximum number

of function evaluations (MaxFE) of 20000 and the population size

(N) of 200. The detailed settings of algorithms are given in Table 1,

and D is the number of decision variables.

4.2 Statistical results and analysis

Table 2 provides the statistical results of all six algorithms

over 30 independent runs, measured in terms of HV. In this

table, the best average HV values are highlighted in bold. Symbols

“+,” “–,” and “≈” indicate that, according to the Wilcoxon rank-

sum test (Yaman et al., 2021) at a 5% significance level, the

performance of the compared algorithm is significantly better

than, worse than, or similar to that of the proposed TS-MOEA,

respectively.

Table 2 presents the statistical HV values obtained by TS-

MOEA and other MOEAs. The numbers in bold are the best

results achieved by algorithms and bold numbers in other tables

also indicate the best results. The primary distinction between

TS-MOEA and the comparative algorithms lies in TS-MOEA’s

utilization of a two-stage framework. Within this framework, the

early stage is focused on discovering a diverse and well-distributed

population. This is achieved by employing a two-objective problem

model that is highly sensitive to the deletion status of channels. The

late stage in TS-MOEAdirectly uses the number of deleted channels

as an optimization objective, thereby striking a balance between

the number of deleted channels and task accuracy. Furthermore,

domain-specific knowledge is utilized to guide the evolutionary

process in TS-MOEA. It can be observed from Table 2 that TS-

MOEA outperforms other algorithms in terms of HV for all 9

subjects, which indicates the effectiveness of the proposed two-stage

framework.

Among the five comparative algorithms, there are algorithms

that are specifically designed for sparse large-scale optimization

problems. However, these algorithms still perform worse than

the proposed algorithm for the channel selection problem.

This is mainly because none of these comparative algorithms

utilize knowledge related to the problem domain. The statistical

results indicate that incorporating domain-specific knowledge

into algorithms can effectively enhance their performance when

solving specific problems. Figure 8 displays the Pareto fronts

generated by all algorithms for Subject 2. In Figure 8, it is

evident that compared to other algorithms, TS-MOEA obtains

the best Pareto front, which also verifies the efficiency of the

proposed algorithm.

Table 3 gives the average classification accuracies achieved

by SVM using all channels and partial channels selected by

TS-MOEA for all subjects. Since TS-MOEA provides a set of

Pareto optimal solutions, which includes a variety of different

electrode selection schemes. To save space, Table 3 displays

several representative channel selection schemes along with their

corresponding classification accuracies. As can be seen from

Table 3, the classification accuracy decreases as the number

of selected channels decreases. However, in some cases where

only a subset of channels is chosen (such as selecting 60 or

52 channels), the classification accuracy is either better than

or slightly lower than when all channels are selected. This

indicates that the proposed TS-MOEA can effectively reduce the
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TABLE 2 Average HV values achieved by TS-MOEA and other comparative MOEAs.

Subject SparseEA2 SLMEA S-ECSO CMMO S-NSGA-II TS-MOEA

1 2.79E+01 - 4.46E+00 - 1.36E+01 - 8.86E+00 - 5.13E+00 - 6.16E+02

2 2.42E+01 - 1.25E+01 - 1.81E+01 - 2.15E+01 - 1.16E+02 - 6.63E+02

3 4.51E+01 - 7.01E+00 - 1.99E+01- 1.26E+01 - 1.17E+02 - 7.41E+02

4 2.11E+01 - 4.63E - 01 - 9.35E+00 - 6.58E+01 - 1.04E+02 - 4.29E+02

5 2.93E+01 - 3.02E+01 - 2.42E+01 - 2.03E+01 - 3.13E+01 - 7.33E+02

6 2.21E+01 - 1.30E+01 - 9.70E+00 - 7.36E+00 - 1.32E+01 - 6.28E+02

7 2.02E+01 - 9.73E+00 - 1.13E+01 - 6.21E+00 - 1.68E+01 - 7.27E+02

8 2.73E - 01 - 9.99E+00 - 5.20E+01 - 1.44E+00 - 1.13E+02 - 3.81E+02

9 2.08E+01 - 1.28E+01 - 1.13E+01 - 5.13E+00 - 1.06E+02 - 5.37E+02

+/-/≈ 0/9/0 0/9/0 0/9/0 0/9/0 0/9/0

FIGURE 8

Pareto frontiers generated by all algorithms for Subject 2. (A–F) give the Pareto fronts generated by SparseEA2, SLMEA, S-ECSO, CMMO, S-NSGA-II,

and TS-MOEA, respectively.

number of channels used in BCIs while maintaining acceptable

classification accuracy.

For further comparison of the proposed TS-MOEA with

other state-of-the-art MOEAs, including SparseEA2, SLMEA, S-

ECSO, CMMO, and S-NSGA-II, Table 4 presents the average

classification accuracies achieved for all subjects based on the

varying number of channels selected by the algorithm. It can

be observed from Table 4, SLMEA, S-ECSO, CMMO fail to

provide classification accuracies in most cases. This is due to

the poor diversity of these three algorithms (which can also be

observed in Figures 8B–D), which results in their inability to

obtain the Pareto-optimal solutions for the corresponding number

of selected channels. SparseEA2 and S-NSGA-II are capable of

obtaining well-distributed Pareto optimal solution sets, similar

to the proposed TS-MOEA. However, in terms of classification

accuracy, TS-MOEA achieves the best results. Therefore, the

statistical results in Table 4 validate that the proposed algorithm

indeed strikes a good balance between classification accuracy and
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the number of selected channels compared to the algorithms

under comparison.

Figure 9 demonstrates the convergence of six comparative

algorithms on 9 subjects. It can be observed from Figure 9 that

TS-MOEA exhibits faster convergence compared to the other

algorithms. This is mainly because the problem model adopted in

the early stages of TS-MOEA can effectively prevents stagnation in

the search process. Additionally, the sparse initialization and Score-

basedmutation operators can also accelerate the convergence speed

of TS-MOEA.

In summary, there are two reasons for the superior

performance of the proposed algorithm. First, TS-MOEA adopts a

two-stage framework with different optimization model for each

stage, which maintains population diversity and avoids premature

maturity of the algorithm. It can be observed from Figure 8 that

TS-MOEA has obtained a Pareto front with a better distribution.

Second, in TS-MOEA, operators related to the problem domain

are used to improve the effectiveness of the searching process.

Specifically, when assigning scores to each decision variable,

the position of the channels and the distance between them are

considered. As shown in Figure 9, TS-MOEA demonstrates the

best convergence, which also indicates the effectiveness of the

domain-related operators used in TS-MOEA.

Figure 10 presents the average execution time of all algorithms

tested on Subject 1. It can be found from Figure 10 that S-NSGA-II

has the least running time, followed by E-ECSO and the proposed

TABLE 3 Average classification accuracies achieved by SVM using all

channels and partial channels selected by TS-MOEA.

SVM using channels selected by
TS-MOEA

SVM using
all channels

Number of
selected
channels

Accuracy
rate

60 98.62% 98.53%

52 95.18%

42 88.02%

32 80.55%

22 70.27%

12 57.09%

2 53.23%

TS-MOEA. SparseEA2 has the highest average running time. This

is because the strategy used in SparseEA2 to obtain the Score

values of decision variables incurs a increased computational cost,

especially when there are a significant amount of decision variables.

In S-NSGA-II, operators designed for efficient handling of large-

scale sparse multi-objective optimization problems are introduced.

These operators enable S-NSGA-II to achieve high efficiency when

dealing with channel selection problems with a significant amount

of decision variables. For S-ECSO, the algorithm employs a three-

party competition mechanism to guide its evolutionary process.

Compared to commonly used genetic operators such as crossover

and mutation, the three-party competition mechanism is simpler

and consumes less computational cost.

4.3 Statistical results and analysis on the
DEAP dataset

The DEAP (Koelstra et al., 2011) dataset was collected from

a group of 32 participants, specifically for human emotion

recognition. The dataset consisted of 32 channels of EEG signals

and 8 channels of peripheral physiological signals (PPS.) The

signals were sampled at a rate of 512 Hz. During the data

collection process, the participants watched 40 1-min music

videos while their physiological signals were recorded. The data

set for each trial consisted of a 3-second pre-trial time and

a 60-second video viewing trial time. At the end of the trial,

participants self-assessed themselves based on arousal, sense of

worthiness, dominance, and likability, using discrete 9-point scales

for each dimension. In this section, the arousal dimension from

the DEAP dataset has been utilized as a categorical label for

binary classification to validate the effectiveness of the proposed

algorithm.

Table 5 demonstrates the average classification accuracy of

the proposed algorithm on DEAP. As can be seen from

Table 5, when using 30, 22, 17, and 12 channels, the average

classification accuracy is close to the classification accuracy using

all channels, which further demonstrates the effectiveness of the

proposed algorithm. At the same time, the results also show

that channel selection is not simply a matter of reducing the

number of channels to improve the classification performance,

and that it is necessary to find the optimal combination of

channels.

TABLE 4 Average classification accuracies obtained by all algorithms.

Number of selected channels SparseEA2 SLMEA S-ECSO CMMO S-NSGA-II TS-MOEA

60 91.50% 97.48% - - 60.36% 98.62%

52 76.78% - - - 58.22% 95.18%

42 60.37% - - - 56.47% 88.02%

32 56.92% - - - 56.47% 80.55%

22 56.47% - - - 52.19% 70.27%

12 55.40% - - - 51.43% 57.09%

2 45.98% - - - 51.43% 53.23%
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FIGURE 9

Convergence of 6 algorithm on 9 subjects. (A–I) demonstrate the convergence of all algorithms for Subject 1–Subject 9, respectively.

5 Discussion

5.1 Investigate of the zero assignment
parameter s

As shown in Line 10 of Algorithm 1, s is modulates the difficulty

level in deleting channels. Specifically, for the kth sample, if the

correlation coefficients between the jth channel and more than s

other channels are 0 in the filtered correlation matrix, then the jth

channel can be deleted. In this case, Setting s to a large value makes

it challenging to meet the channel deletion criteria, potentially

leading the algorithm into stagnation. Conversely, a small s might

result in erroneous deletion of channels.

In this section, Subjects 1, 5, 6, 7, and 9 are chosen to analyze

the impact of different s values on the effectiveness of the proposed

TS-MOEA. s takes values within the range of [35, 55] with a step

size of 5. The average HV values across 30 independent runs for

different s on the selected five subjects can be found in Table 6.

It can be observed that s = 40 achieves the highest average

HV values. Taking the number of selected channels as 2, 12,

22, 32, 42, 52, and 60 as examples, Table 7 provides the average

classification accuracies of TS-MOEA for different values of s. As

shown in Table 7, when s = 40, the algorithm achieves the optimal

classification accuracy for most of the lead selection schemes.

Hence, in this paper, s takes the value of 40.

5.2 Investigate of the transition control
parameter µ

It can be observed in Algorithm 2 that the parameter µ

governs the transition from the early stage to the late stage

in TS-MOEA. As described in Line 4 of Algorithm 2, the
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FIGURE 10

Average running times for all algorithms on Subject 1.

TABLE 5 Average classification accuracies on DEAP achieved by SVM

using all channels and partial channels selected by TS-MOEA.

SVM using channels selected by
TS-MOEA

SVM using
all channels

Number of
selected
channels

Accuracy
rate

30 72.08% 73.18%

27 69.38%

22 71.88%

17 71.63%

12 71.25%

7 66.09%

2 60.01%

algorithm will shift from the early stage to the late stage if the

number of function evaluations consumed by the early stage

exceeds the predefined t, µ × MaxFE, or if the obtained Pareto-

optimal solutions satisfy the diversity requirement. Therefore,

if µ is set too large, the algorithm may exhaust a significant

number of function evaluations in the early stage, potentially

leading to unnecessary computational waste. Conversely, If µ

is too small, the early stage might fail to produce solutions

with a good distribution. Consequently, the late stage may not

achieve satisfactory optimization results, given that the solutions

obtained in the early stage serve as initial solutions in the late

stage.

In this section, the influence of different µ on TS-MOEA’s

performance is investigated using five selected subjects: Subjects 1,

5, 6, 7, and 9. µ is within the interval [0, 1] using an increment of

0.2. When µ = 0, TS-MOEA exclusively executes the early stage,

while µ = 1 means that only the late stage is executed. Table 8

provides the average HV values obtained from 30 independent runs

for different µ values across the selected five volunteers. Statistical

results indicate that the performance of TS-MOEA that operates in

only one stage (µ = 0 and µ = 1) is inferior to that of the algorithm

utilizing both stages concurrently (µ = 1/5, µ = 2/5, µ = 3/5, and

µ = 4/5). As shown in Table 8, µ = 1/5 achieves the best results

for 2 out of 5 subjects. However, µ = 1/5 also obtains the optimal

mean values across all selected subjects. Table 9 gives the average

classification accuracies of different µ for all subjects and µ = 1/5

achieves the best performance for most cases. Therefore, µ is set to

1/5 in this paper.

5.3 Investigation of the distance radius R

In TS-MOEA, the distance radius R is adopted to calculate

the scores of decision variables as depicted in Equation (9). If

the distance between two channels is less than R, the score value

assigned to these channels will be small, leading to a corresponding

small value in the decision variable. Consequently, the correlation

coefficient between the aforementioned channels is less likely to

become 0 after filtering (Algorithm 4). If R is set to a small value, the

probability of considering two channels as unrelated becomes low.

In this case, the algorithm might retain channels that are useless to

the specific task.

In this study, the distance radius R varies from 0.2 to 2 with

increments of 0.2, as the maximum distance between two channels

is 2. Figure 11 displays the average HV values obtained by TS-

MOEA with different R across all subjects by 30 independent runs.

It is evident from Figure 11 that the best performance is achieved

when R = 1.0. Table 10 gives the average classification accuracies
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TABLE 6 Average HV values for di�erent s.

Subject

s
35 40 45 50 55

Subject 1 6.62E+02 6.62E+02 5.25E+02 4.05E+02 6.39E+02

Subject 5 6.02E+02 6.56E+02 6.02E+02 3.37E+02 3.94E+02

Subject 6 6.28E+02 6.95E+02 6.26E+02 5.05E+02 4.86E+02

Subject 7 5.70E+02 6.39E+02 5.94E+02 4.61E+02 5.28E+02

Subject 9 4.47E+02 4.45E+02 4.82E+02 3.27E+02 3.74E+02

Mean 5.82E+02 6.14E+02 5.66E+02 4.07E+02 3.69E+02

TABLE 7 Average classification accuracies of di�erent s for all subjects.

Number of selected channels s

35 40 45 50 55

60 98.40% 99.20% 98.14% 98.78% 99.18%

52 98.40% 98.50% 97.53% 97.56% 97.32%

42 96.70% 97.30% 95.61% 95.90% 97.87%

32 95.59% 95.73% 95.12% 93.85% 95.67%

22 91.92% 88.63% 84.88% 90.18% 93.07%

12 77.89% 79.13% 77.00% 77.10% 78.46%

2 77.27% 78.13% 77.00% 76.98% 77.23%

TABLE 8 Average HV values for di�erent µ.

Subject

µ
0 1/5 2/5 3/5 4/5 1

Subject 1 7.85E+02 6.21E+02 5.95E+02 6.34E+02 5.87E+02 2.12E+01

Subject 5 1.61E+01 6.57E+02 6.22E+02 6.40E+02 5.82E+02 1.51E+01

Subject 6 1.64E+01 5.30E+02 5.69E+02 5.39E+02 5.24E+02 1.88E+01

Subject 7 3.70E+02 5.49E+02 5.60E+02 5.84E+02 5.40E+02 1.69E+01

Subject 9 1.22E+01 5.61E+02 4.20E+02 4.77E+02 4.38E+02 1.18E+01

Mean 2.40E+02 5.83E+02 5.53E+02 5.75E+02 5.34E+02 1.68E+01

of different R for all subjects and R = 1.0 achieves the best

performance for most cases. Therefore, the distance radius R is set

to 1.0 in this paper.

5.4 Investigation of the selected channels

This section discusses the channels selected by the proposed

TS-MOEA, using the fatigue detection task in Section 4.2 as an

example. Figure 12 illustrates the scenarios with selected numbers

of channels at 52, 42, 32, 22, 12, and 2 for all subjects, and

Table 3 shows the corresponding average classification accuracies

for the six cases. As shown in Figure 12 and Table 3, the average

classification accuracy gradually decreases as the number of deleted

channels increases. It can be observed that the channels selected

from Figures 12A–D essentially include the frontal (Fpz, F3, Fz, F6),

frontotemporal (FT7, Fc6, FT8), and central (C5, C6, T8) regions.

Specific activity patterns in the frontotemporal region may be

associated with dreams and cognitive activity during sleep. Activity

in the central regions may be associated with motor inhibition and

somatosensory information processing during sleep, and activity

patterns in these regions may reflect changes in muscle relaxation

and sensory information transfer during sleep. From Figures 12D–

F, the aforementioned ten channels were deleted, and there is a

noticeable decline in classification accuracy, which can be seen in

Table 3. Therefore, the removal of channels from regions closely

related to the fatigue detection task will result in a sharp decline

in classification accuracy. From this, it can be understood that

incorporating prior knowledge of regions of interest (ROIs) related

to specific tasks into the lead selection algorithm may be beneficial.

For instance, in the context of fatigue detection tasks as discussed in

Section 4.2, prioritizing the retention of channels from the frontal,

frontotemporal, and central regions can help the channel selection
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TABLE 9 Average classification accuracies of di�erent µ for all subjects.

Number of selected
channels

µ

0 1/5 2/5 3/5 4/5 1

60 91.98% 92.75% 91.66% 92.32% 90.98% 90.66%

52 90.82% 90.47% 90.50% 90.86% 89.20% 90.50%

42 89.28% 89.14% 88.25% 88.92% 87.97% 88.25%

32 86.57% 88.57% 87.62% 86.94% 86.05% 87.42%

22 85.46% 86.14% 85.55% 86.57% 85.42% 85.55%

12 83.23% 84.36% 83.47% 83.71% 84.02% 83.47%

2 70.15% 76.85% 75.59% 76.29% 74.47% 75.59%

FIGURE 11

Average HV values of di�erent R.

algorithm strike a balance between the number of leads chosen and

the classification accuracy.

6 Conclusions

This paper introduces a two-stage sparse multi-objective

evolutionary algorithm (TS-MOEA) to solve channel selection

problems within BCIs. In TS-MOEA, a two-stage framework with

two different two-objective problem models has been adopted.

Specifically, a two-objective problem which is sensitive to channel

deletion is used in the early stage of TS-MOEA to prevent the

algorithm from stalling. In the late stage of TS-MOEA, a two-

objective problem model that can directly indicate the number

of deleted channels is utilized. To strike a balance between

convergence and population diversity in TS-MOEA, a transition

condition has been devised. This condition takes into account

both the number of consumed function evaluations and the

distribution of the current population to control the transition

between the early and late stages of the proposed algorithm.

Moreover, due to the sparsity of the correlation matrix of channels,

a sparse initialization operator is introduced to generate the initial

population. Furthermore, a Score-based mutation operator has

been integrated to enhance the search efficiency of the early stage

in TS-MOEA. The experimental results of TS-MOEA and five other

advancedMOEAs have demonstrated the efficiency of the proposed

algorithm. However, as shown in Figure 8, Tables 3, 5, TS-MOEA

provides a set of Pareto-optimal solutions, each offering a different

channel selection scheme. Therefore, TS-MOEA does not directly

yield a single optimal electrode selection scheme; in practical

applications, the user must make a decision on which channel

selection scheme to choose from the Pareto-optimal solution set.

Additionally, although TS-MOEA takes into account knowledge

relevant to the problem, such as channel positions and the distance

matrix between channels, it does not consider the impact of regions

of interest (ROI) on the performance of the algorithm.

As shown in Section 3.2, TS-MOEA incorporates the problem-

domain knowledge, specifically the locations and distance matrix
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TABLE 10 Average classification accuracies of di�erent R for all subjects.

Number of selected
channels

R

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

60 91.57% 92.55% 91.79% 92.18% 92.58% 91.35% 92.07% 92.79% 92.05%

52 90.13% 90.85% 90.86% 90.85% 91.82% 90.91% 91.61% 91.40% 91.13%

42 89.57% 90.05% 89.75% 89.94% 90.63% 89.37% 90.36% 90.42% 89.15%

32 87.94% 88.26% 88.67% 87.86% 88.50% 88.19% 87.67% 88.17% 86.70%

22 86.40% 85.40% 84.95% 84.68% 86.04% 84.63% 84.20% 84.63% 84.90%

12 82.52% 80.66% 82.08% 79.98% 82.36% 80.97% 81.17% 81.13% 79.64%

2 71.80% 63.43% 73.88% 65.57% 74.40% 63.45% 63.40% 63.06% 65.93%

FIGURE 12

The selected channels for all subjects by TS-MOEA, (A–F) illustrate the scenarios with selected numbers of channels at 52, 42, 32, 22, 12, and 2,

respectively (where the gray circles represent channels that have been deleted, and the white circles represent channels that have been selected).

of channels, to enhance the algorithm’s performance. However,

the biological connections between brain regions, which could

better capture and exploit correlations between different channels,

were not considered. Therefore, how to combine the biological

connections between brain regions in the design of critical

operators to improve the search capabilities of the algorithm is one

of the future works of this paper. Furthermore, as the number of

commands increases, the number of brain wave patterns (or other

physiological signals) that the BCI system needs to distinguish

becomes larger, which increases the complexity of the classification

task. Therefore, how to maintain or improve classification accuracy

when the number of commands increases will be one of the future

works of this paper.
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