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A deep neural network and
transfer learning combined
method for cross-task
classification of error-related
potentials

Guihong Ren, Akshay Kumar, Seedahmed S. Mahmoud and

Qiang Fang*

Department of Biomedical Engineering, Shantou University, Shantou, China

Background: Error-related potentials (ErrPs) are electrophysiological responses

that naturally occur when humans perceive wrongdoing or encounter

unexpected events. It o�ers a distinctive means of comprehending the error-

processing mechanisms within the brain. A method for detecting ErrPs with high

accuracy holds significant importance for various ErrPs-based applications, such

as human-in-the-loop Brain-Computer Interface (BCI) systems. Nevertheless,

current methods fail to fulfill the generalization requirements for detecting such

ErrPs due to the high non-stationarity of EEG signals across di�erent tasks and

the limited availability of ErrPs datasets.

Methods: This study introduces a deep learning-based model that integrates

convolutional layers and transformer encoders for the classification of ErrPs.

Subsequently, a model training strategy, grounded in transfer learning, is

proposed for the e�ective training of themodel. The datasets utilized in this study

are available for download from the publicly accessible databases.

Results: In cross-task classification, an average accuracy of about 78% was

achieved, exceeding the baseline. Furthermore, in the leave-one-subject-out,

within-session, and cross-session classification scenarios, the proposed model

outperformed the existing techniques with an average accuracy of 71.81, 78.74,

and 77.01%, respectively.

Conclusions: Our approach contributes to mitigating the challenge posed by

limited datasets in the ErrPs field, achieving this by reducing the requirement for

extensive training data for specific target tasks. This may serve as inspiration for

future studies that concentrate on ErrPs and their applications.

KEYWORDS

error-related potentials, transfer learning, transformer, cross-task classification, brain-

computer interface

1 Introduction

Error-related potentials (ErrPs) are a series of electrophysiological reactions that

occur naturally in response to perceived wrongdoing or unexpected events in humans

(Kumar et al., 2019). Usually, an electroencephalogram (EEG) with distinctive waveform

characteristics and a temporal window can show these reactions. Milekovic et al. (2012)

conducted a study on ErrPs in the context of simulated continuous brain-computer

interface (BCI) control tasks. They found strong error-related neural responses in both
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high-frequency and low-frequency components of human surface

EEG recordings. The study investigated two types of errors:

(i) execution errors resulting from inaccurate decoding of the

participants’ movement intentions, and (ii) outcome errors due to

failure to achieve the intended movement goal. The experiment

involved four participants who took part in four or more

experimental sessions. The findings from this study indicate that

ErrPs are reliable neuro-electrophysiological signals in humans.

Currently, ErrPs are under continuous study in numerous

application-oriented fields (Yasemin et al., 2023). In the field of

neuroscience, ErrPs have been widely used to explore various

neural processes such as cognitive control, learning, decision-

making, and error detection. In cognitive control, Compton et al.

(2013) investigated the hypothesis of a common system of cognitive

and emotional self-regulation with data from 83 subjects. Grammer

et al. (2018) collected data across 6 months from 49 children

aged 4–6 years to study developmental changes in skills related to

cognitive control in children. Regarding learning, Kopp and Wolff

(2000) measured data from 16 university students to verify the

trial-by-trial error correction mechanism specified by the error-

driven learning rules of humans in a certain type of emergency

judgment task. In decision-making, Hewig et al. (2007) studied

the association between error-related negativity, risk-taking, and

decision-making behavior using a computer blackjack gambling

task with 18 university students. Perri et al. (2016) investigated the

process of neural adjustment after error by performing a Go/No-

go task on 108 subjects. In error detection, Spüler and Niethammer

(2015) recorded data from 10 participants to study error detection

in continuous cursor control tasks. In the field of psychology, ErrPs

can inform the development of psychopathology and risk models,

and Hajcak et al. (2019) used them for the programmatic research

of error-related negativity and anxiety. Additionally, ErrPs have

been extensively utilized in the development of control interfaces

that rely on EEG activities (Kumar et al., 2019). Through these

interfaces, individuals can manipulate external devices to perform

specific tasks. For example, Cruz et al. (2017) developed a BCI

speller with dual automatic error correction by combining ErrPs

with P300. Kalaganis et al. (2018a) integrated ErrPs with gaze data

to propose a gaze keyboard with an error detection mechanism.

Ferracuti et al. (2023) developed an intelligent wheelchair with

safe autonomous navigation capabilities by using error-related

signals as additional inputs for wheelchair navigation algorithms.

These interfaces may provide more autonomy and independence

to individuals with mobility disabilities. Furthermore, in the fields

of machine learning and reinforcement learning, ErrPs can be used

as feedback or incentives to help intelligent systems learn and make

decisions (Kim et al., 2017; Xu et al., 2021; Xavier Fidêncio et al.,

2022). By identifying ErrPs, these systems can detect erroneous

behaviors and make timely strategy adjustments to improve

performance (Chavarriaga and Millan, 2010; Salazar-Gomez et al.,

2017).

Despite the fact that research on ErrPs-based applications

keeps growing, a number of challenges still need to be overcome

before these applications can be fully deployed and reach their full

potential. One of the primary challenges is the poor classification

performance of ErrPs. EEG signals have a low signal-to-noise

ratio and are highly non-stationary, making them vulnerable to

a variety of factors such as environmental conditions, individual

differences, session changes, and differences in EEG paradigms.

This increases the difficulty of ErrPs classification, which leads to

the suboptimal performance of existing ErrPs-based applications.

Only by enhancing ErrPs’ classification performance can their full

application potential in numerous fields be realized. Nowadays,

many researchers are experimenting with a variety of classical

machine learning (CML) and deep learning (DL) algorithms for

ErrPs classification (Gao et al., 2022).

The most popular CML algorithms are linear discriminant

analysis (LDA) and support vector machines (SVM). In their

work, Bhattacharyya et al. (2017) developed a decoder utilizing

LDA, quadratic discriminant analysis, and logistic regression. This

decoder was designed for the single-trial classification of EEG

features in a cohort of 16 participants and subsequently evaluated

on an additional set of 10 independent participants. The study

by Kumar et al. (2021) employed a methodology that combined

xDAWN spatial filtering and SVM to categorize ErrPs. Similarly,

Usama et al. (2022) utilized an LDA classification approach to

distinguish single-trial ErrPs elicited by stroke patients.

Although the methods based on the CML algorithms outlined

above have shown some results in terms of classification

performance when time windows, filters, and electrode channels

are manually chosen, these approaches still have drawbacks.

One major shortcoming is that when using these methods, the

feature extraction and classification stages need to be performed

independently. This independence implies a need for more a priori

knowledge to attain more favorable outcomes (Vallabhaneni et al.,

2021). Therefore, feature extraction methods that rely on manual

selection may not be able to fully capture the complex details in the

ErrPs signal, resulting in poor classifier performance.

DL algorithms can partially address this deficiency since they

operate as data-driven end-to-end algorithms. Over the past few

years, there has been a rapid and widespread development of

DL algorithms, especially in fields such as computer vision (CV)

and natural language processing (NLP). Simultaneously, in certain

Brain-Computer Interface (BCI) paradigms like motor imagery

(MI) and seizure detection, DL algorithms are emerging as potent

tools. Altaheri et al. (2023) conducted a systematic investigation on

the classification of MI EEG data using DL algorithms across the

last decade. The results show that the DL approach can employ a

multi-level neural network model to automatically learn advanced

and complex latent features from the raw MI EEG data, removing

the need for preprocessing and feature extraction in traditional

approaches. Shoeibi et al. (2021) presented an in-depth review

of research on seizure detection using various DL algorithms.

They emphasized that semi-supervised and unsupervised learning

methods can be used to overcome dataset size constraints during

the development of seizure detection models. Owing to the

increasing adoption of DL algorithms in EEG decoding tasks and

their noteworthy performance, researchers have started exploring

their application for classifying ErrPs signals. This exploration is

motivated by the anticipation of improving decoding performance.

Bellary and Conrad (2019) presented a deep CNN architecture

designed for the classification of ErrPs. Following this, Parashiva

and Vinod (2020) introduced an artificial neural network (ANN)

classifier, bifurcated into two stages, for the detection of ErrPs from
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EEG data within a single trial. Subsequently, Kumar et al. (2021)

proposed a double transfer learning strategy utilizing CNNs to

classify ErrPs in stroke survivors. Similarly, Usama et al. (2022)

employed an ANN to classify single-trial ErrPs generated by stroke

patients. Lastly, Gao et al. (2022) presented a CNN architecture

incorporating an attention structure for the classification of ErrPs.

Intuitively, these ErrPs detection methods based on DL

outperform traditional approaches. From a practical application

standpoint, there is a strong demand for a general ErrPs

detection method capable of identifying ErrPs across diverse

tasks and subjects. However, a significant portion of current

methods is tailored for specific tasks, hindering their ability

to meet the robust generalization requirements essential for a

comprehensive ErrPs detection method (Yasemin et al., 2023).

These limitations arise from the constraints imposed by specific

datasets, the inherent individual differences in EEG signals,

and the diversity of task types. In the context of the DL

approaches, it is reasonable to assume that increasing the size

of datasets can contribute to enhancing the robustness of the

detection model and improving the accuracy of ErrPs detection.

However, in comparison to other fields such as image, text, and

speech processing, acquiring data for ErrPs is relatively costly.

Obtaining reliable ErrPs necessitates a highly specialized laboratory

setup and technical support, encompassing well-designed EEG

experimental paradigms, sophisticated EEG acquisition equipment,

and professional data preprocessing technologies. Moreover, the

accessibility of EEG data is often constrained by participants’

privacy concerns. These factors collectively pose significant

challenges to acquiring large-scale datasets, thereby impeding the

effective utilization of DL techniques for ErrPs detection.

To address the aforementioned issues, this paper introduces

an innovative solution. The fundamental idea of the proposed

solution is derived from transfer learning methods applied in the

fields of CV and NLP. Transfer learning is a machine learning

approach whose core idea is to transfer knowledge learned from

one domain’s task to another domain’s task, even if these two

domains have different data distributions (Pan and Yang, 2009;

Zhuang et al., 2020). Specifically, the solution proposed in this

study is to pre-train the proposed deep neural network model using

the existing public dataset as training data, and then use only a

small amount of data from the new EEG task to fine-tune the

pre-trained model to accommodate the ErrPs detection of new

participants in the new EEG task. Through an exhaustive literature

review, this work is highly original. It is worth emphasizing that the

most substantial distinction between this study and other existing

ErrPs detection research is that this study endeavors to introduce

a general method based on the DL model and transfer learning

technique to classify ErrPs derived from various EEG tasks, while

most other studies are only focused on specific EEG tasks. Our

approach can somewhat alleviate the issue of limited datasets in

the ErrPs area by significantly lowering the demand for training

data for target EEG tasks. This may provide some inspiration for

future studies based on ErrPs and their applications. The details of

the proposed method will be expanded in the Methods section.

The remainder of this paper is organized as follows: Section

2 briefly describes the datasets used, the data preprocessing steps,

the proposed method and DL architectures, as well as the model

evaluationmetrics. Section 3 presents the results obtained using the

proposed method. Section 4 presents a comprehensive comparison

between the proposed method and the other existing approaches

and a wide discussion. Finally, the whole work is concluded in

Section 5.

2 Materials and methods

2.1 Datasets

The proposed method underwent evaluation using three

publicly available datasets, for which the data epochs and labels are

either provided or can be extracted. These datasets were selected

based on their availability as publicly accessible ErrPs datasets

and their prevalence in ErrPs classification studies, allowing for

reproducibility and facilitating comparisons with existing methods.

Each of these datasets is accessible for download from the online

databases (Chavarriaga and Millan, 2015; Kalaganis et al., 2018b;

Cruz et al., 2020). These three datasets include two types of ErrPs

datasets, namely the observation-ErrPs dataset and the interaction-

ErrPs dataset. Among them, the observation-ErrPs dataset refers

to the moving cursor dataset in the Brain/Neural Computer

Interaction (BNCI) Horizon 2020 project. The interaction-ErrPs

dataset refers to the Lateral Single Character (LSC) speller and Gaze

speller datasets. Table 1 presents the details of the datasets, which

are further elucidated below.

BNCI moving cursor (Chavarriaga and Millan, 2015): contains

data from six participants [one female, mean age 27.8 ± 2.23]. In

this work, the authors devised a cursor navigation paradigm that

evaluates whether a similar error-related signal is generated when

a human user monitors the performance of an external agent that

he or she cannot control. During the experiment, each participant

was asked to sit in front of a screen displaying a moving cursor and

a target location and to observe the direction in which the cursor

moved. If the moving cursor moved away from the target location,

it would generate a series of error-related signals. Otherwise, they

would generate some correct-related activities as well as other

common signals. Every participant underwent two sessions of such

an experiment. All data in this dataset were recorded using the

Biosemi ActiveTwo system at a sampling rate of 512 Hz. According

to the standard 10/20 international system, the authors used a

total of 64 electrodes to finish this work. For more details of the

experiment, see Chavarriaga and Millan (2010).

LSC speller (Cruz et al., 2020): contains data from seven able-

bodied participants (S1–S6, S9) and one tetraplegic participant

(P1) with medullar injury (C4/C5 level) with a mean age of 30.1.

This dataset was obtained in a P300-based spelling task, which

consists of two sessions and three phases. Among them, the ErrPs

in the first session are used to detect whether the symbols the

speller produces are consistent with the user’s consciousness, and

the second session’s ErrPs are used to verify whether the speller’s

output following system correction is consistent with the user’s

consciousness. The system does not need to correct the errors if

ErrPs are not found in session 1. Therefore, ErrPs in session 2 can

only be identified by the system if ErrPs in session 1 are detected.

Every participant in the dataset has data for two sessions. All data

were recorded using a g.USBamp bioamplifier with 12 electrodes at
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TABLE 1 Properties of datasets.

Datasets ErrPs type Subjects (mean age) EEG channels Sampling rate (Hz) Trial duration (s)

BNCI moving cursor Observation-ErrPs 6 (27.8± 2.23) 64 512 1

LSC speller Interaction-ErrPs 8 (30.1) 12 256 1

Gaze speller Interaction-ErrPs 10 (32± 4) 61 256 0.5

a sampling rate of 256 Hz. For more details of the experiment, see

Cruz et al. (2017).

Gaze speller (Kalaganis et al., 2018b): contains data from 10

participants [four female, mean age 32 ± 4]. This dataset is

derived from a gaze-based keyboard paradigm composed of an

eye-tracking system. At the beginning, participants were required

to gaze at the desired letter. Once he or she completed the 500-

ms continuous fixation interval, the key press was registered, and

the associated visual indication appeared. The electrophysiological

responses following this indication were used to detect typing

errors. Unlike the previous two datasets, there is only one session

of data per participant in this dataset. All data were recorded at

a sampling rate of 256 Hz using the EBNeuro EEG device with

61 electrodes placed according to the standard 10/20 international

system. For more details of the experiment, see Kalaganis et al.

(2018a).

2.2 Data preprocessing

As EEG signals are non-stationary and have a low signal-to-

noise ratio, data pre-processing is essential to the classification of

EEG signals. Due to the difference in the number of electrode

channels, sampling rate, and duration time of epochs, we

preprocessed the three datasets separately to ensure that the data

dimensions, i.e., the number of electrode channels × the number

of sampling points, remained consistent. The specific steps are as

follows.

1. First of all, as in most studies, we bandpass-filtered the BNCI

moving cursor and LSC speller datasets, respectively, restricting

their frequencies to 1–10 Hz using a fourth-order Butterworth

filter (Chavarriaga and Millan, 2010; Cruz et al., 2017; Lopes-

Dias et al., 2019). Since the Gaze speller dataset only contains

preprocessed epoch data, we did not filter this dataset.

2. Then, the epoch corresponding to each event in the BNCI

moving cursor and LSC speller datasets was extracted from the

EEG data using MATLAB. The time window is one duration

long and spans from the start of the event to its end. Each epoch

corresponds to an array of 2D shapes (the number of electrode

channels× the number of sampling points).

3. The next operation was downsampling. Based on the

investigation of Yasemin et al. (2023), all epochs extracted

from the BNCI moving cursor and LSC speller datasets

were downsampled to 64 Hz, which is a common choice for

classification purposes in BCI studies (Ferrez and Millán,

2008; Chavarriaga and Millan, 2010; Omedes et al., 2013;

Iturrate et al., 2015; Iwane et al., 2016; Bevilacqua et al., 2019).

As for the preprocessed Gaze speller dataset, which had a

duration of 0.5 s per epoch, the epochs were downsampled

to 128 Hz to ensure consistent dimensions across the

datasets. After the downsampling operation, the dimension

of epochs in the three datasets became (the number of

electrode channels × 64). Although downsampling may

result in some loss of underlying information, it offers two

distinct advantages: first, it can reduce the data dimension,

thereby reducing the amount of computation in the training

process of the neural network model; and second, the data

dimensions of different datasets can be unified so as to facilitate

subsequent processing.

4. Then, there’s channel selection. All channels and two channels

are the two primary channel selection types that are most

frequently utilized in ErrPs classification research. Although

selecting data from all channels obtains more raw information

than selecting data from two channels, it increases dimension

and is vulnerable to the curse of dimensionality difficulties.

Since the frontocentral medial region of the human brain

has been shown to be active during error monitoring and

processing, many ErrPs-related studies just employ data from

channels in this region for various analyzes (Herrmann

et al., 2004). This might drastically decrease duplicate data

and calculations. Thus, in this study, only the data from

two channels was used in the following analysis. For the

BNCI moving cursor and Gaze speller datasets, the most

commonly used FCz and Cz channels were selected. For the

LSC speller dataset, since there was no data available for the

FCz channel, the Fz channel is used in place of the FCz

channel, just as it was in the study (Yasemin et al., 2023).

After completing the channel selection, each epoch’s dimension

became (2, 64).

5. Finally, to facilitate the subsequent feature

extraction, the amplitude value corresponding

to each sampling point was expanded by 1,000

times.

2.3 Model design

2.3.1 Convolutional layer
The convolutional layer is one of the indispensable parts of

the CNN algorithm (Bouvrie, 2006). Its main function is to extract

the features of input data by performing a convolution operation.

The convolutional layer has a special characteristic named local

connectivity, i.e., the convolutional kernel can only perform an

operation with one part of the input feature map each time (Sakib

et al., 2019). Only by increasing the number of convolutional

and pooling layers can the model learn more comprehensive

information (He et al., 2016).
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2.3.2 Pooling layer
The pooling layer can reduce overfitting by applying the

nonlinear transformation to the entire network model and can

lower parameters by removing some redundant information (Sakib

et al., 2019). Average pooling (Liu et al., 2023) is a popular pooling

approach that uses the average value of all the eigenvalues in the

range of the pooling kernel as the characteristic after pooling.

2.3.3 Transformer encoder
A transformer encoder includes a multi-headed self-attention

layer and a feed-forward layer. Behind these layers, there are

some connections that resemble residual neural networks (He

et al., 2016), which are utilized to combine the input vector

and the calculated output vector before being standardized

in a batch. The multi-headed self-attention mechanism in the

transformer encoder can instantly calculate the data for various

points on each sequence and obtain a global, comprehensive

representation without reference to the previous position’s output.

Due to the multi-headed self-attention layer’s ability to run in

parallel on the GPU, model training can be much more effective.

The more specific details about the transformer encoder and

multi-headed self-attention mechanism can be found in the

literature (Vaswani et al., 2017). In recent years, transformer

architecture has demonstrated advantages in handling sequential

data and modeling long-distance interdependence in a variety

of applications (Devlin et al., 2018; Achiam et al., 2023). This

is particularly important for ErrPs detection, as the ErrPs are

essentially time series. However, it is difficult to find published

research on the performance of transformer-based models in ErrPs

classification tasks. Given Transformer’s benefits in processing

sequential tasks, the Transformer-based architecture may help to

improve the performance of ErrPs signal classification.

2.3.4 Proposed architecture
To classify ErrPs, we introduced a neural network model that

combines convolutional layers and transformer encoder layers. The

primary components of the proposed model are the Electrode

Feature Extraction (FE-E) and Time Series Feature Extraction

(FE-T) modules. The overall pipeline of the proposed method

is illustrated in Figure 1, and the key structural parameters are

provided in Table 2.

In the FE-E module, the input data was regarded as a sequence

of electrodes, each of which was similar to a word vector with a

feature dimension equal to the number of sampling points. Firstly,

local features along the temporal dimension are captured using a

convolutional layer. The average pooling layer is then applied in

order to increase the receptive field. After that, a convolutional

layer with 64 convolutional kernels receives the feature map that

was produced. The main purpose of this convolution stage is

to obtain global information regarding each electrode’s temporal

aspect. Each electrode feature’s size is reduced to 1 after these

layers. The global information obtained from the 64 convolutional

kernels is used as the electrode eigenvalues, which means that

each electrode possesses all of the temporal serial information.

Finally, the generated feature map is fed into the transformer

encoder layer, where the self-attentionmechanism produces a high-

level feature representation that includes the correlation between

different electrode signals.

In the FE-T module, the input data was regarded as a sequence

of sampling points, each of which was similar to a word vector

with a feature dimension equal to the number of electrodes.

The first step involves extracting complete characteristics in the

electrode dimension using a convolutional layer. Average pooling

is then utilized to simplify the sequence and minimize the model’s

computation. In order to make the dimension of the feature

map learned by the FE-T module consistent with that of the FE-

E module for subsequent feature fusion, the pooling operation

downsamples the number of sample points to the same number of

electrode channels as the input ErrPs data. Subsequently, a feature

map of dimension (2, 64) is produced by using the data obtained

from 64 convolutional kernels as a feature for every sampling point.

In order to further extract the global features of the time dimension,

the feature map is finally sent into the transformer encoder layer.

In the fields of NLP and CV, the learning capacity of

neural networks increases exponentially with the depth of

the network model in a certain range. However, the deeper

network structure is often faced with the problems of gradient

disappearance and gradient explosion (Bengio et al., 1994; Glorot

and Bengio, 2010), which lead to the deterioration of information

transmission ability. To avoid the difficulties mentioned above,

in both the FE-E and FE-T modules, the output features of

the transformer encoder layer are combined with the input

features of the corresponding transformer encoder layer to

obtain the final features. This design is inspired by residual

connections.

After the feature extraction of the electrode dimension and

the time dimension is completed, the two extracted features are

concatenated to form the channel time fusion feature. Ultimately,

the fusion features are flattened and fed into a classifier with two

fully connected layers for classification. To prevent overfitting, we

added a batch normalization layer after each convolutional layer, a

layer normalization layer after the last layer of the FE-Emodule and

the FE-T module, and a dropout layer after both fully connected

layers of the classifier.

2.4 Proposed training strategy

A representative method in transfer learning, fine-tuning,

is used to train the proposed model. Fine-tuning refers to

performing additional training on a model that has been trained

on a large-scale dataset to adapt to new tasks or datasets

(Tajbakhsh et al., 2016). The advantage of fine-tuning lies in

its capacity to leverage the common features acquired by the

pre-trained model to accelerate the model’s training process for

novel tasks. Additionally, it can enhance the model’s adaptability

with only a small amount of labeled data from the target task.

In this study, the BNCI moving cursor dataset was used as

the dataset of the target task, and the LSC speller and Gaze

speller datasets were used as the datasets of the two source tasks,

respectively. Model training consists of two parts: pre-training

and fine-tuning. The important settings related to training will be

introduced next.
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FIGURE 1

The diagram of proposed model. The data after preprocessing was input into the FE-E and FE-T module respectively with a shape of number of

electrodes × number of sampling points. Then, the two feature maps produced from these two feature extraction modules were concatenated

together to obtain the fusion features. Following that, a Flatten layer was used to flatten the feature matrix before inputting it into the Dense layer.

Finally, the probability of each class was calculated by the SoftMax activation function to make a final decision on classification. To avoid overfitting

and boost generalizability, a Batch Normalization (BN) layer was introduced after each convolutional layer in the proposed model. (A) Proposed

model. (B) Transformer encoder layer. (C) Multi-head attention.

TABLE 2 The key parameters of the proposed model.

Module Layer Filters Kernel size Padding Stride Head Input Output

FE-E 1 Conv2d 64 (1, 33) Valid 1 - [B, 1, 2, 64] [B, 64, 2, 32]

FE-E 2 AvgPool2d - (1, 4) - - - [B, 64, 2, 32] [B, 64, 2, 8]

FE-E 3 Conv2d 64 (1, 8) Valid 1 - [B, 64, 2, 8] [B, 64, 2, 1]

FE-E 4 TransformerEncoderLayer - - - - 4 [B, 2, 64] [B, 2, 64]

FE-T 1 Conv2d 64 (2, 33) Valid 1 - [B, 1, 2, 64] [B, 64, 1, 32]

FE-T 2 AvgPool2d - (1, 16) - - - [B, 64, 1, 32] [B, 64, 1, 2]

FE-T 3 TransformerEncoderLayer - - - - 4 [B, 2, 64] [B, 2, 64]

FC 1 Linear 64 - - - - [B, 256] [B, 64]

FC 2 Linear 2 - - - - [B, 64] [B, 2]
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TABLE 3 Number of epochs.

Datasets Error events Correct events Total

BNCI moving cursor 1,322 5,115 6,437

LSC speller 713 3,087 3,800

Gaze speller 511 4,420 4,931

Total 2,546 12,622 15,168

Pre-training: The LSC speller and Gaze speller datasets were

used to pre-train the proposed model, respectively.

Table 3 displays the number of epochs extracted from each

dataset. It is obvious that the number of epochs corresponding

to erroneous events is much lower than the number of epochs

corresponding to correct events. Numerous studies on deep

learning have shown that neural network classifiers have a tendency

to classify test samples into categories with more data when

the data sample categories are imbalanced. A variation of the

Synthetic Minority Over-sampling Technique (SMOTE), known as

SVMSMOTE, was used to address this issue. In comparison to the

commonly used SMOTE algorithm, the SVMSMOTE technique

aims to leverage the SVM algorithm to identify the decision

boundaries between minority and majority class samples. It then

applies the SMOTE algorithm to synthesize a larger number of

new minority class samples closer to the boundaries, thereby

improving the decision-making ability of the classification model

in the boundary region. Additional technical information for

SVMSMOTE can be found in the literature (Nguyen et al., 2011). In

this study, the Python extension pack imbalanced-learn was used to

implement this technique.

The stratified-Kfold cross-validation (Kohavi et al., 1995) was

used to train and validate our pre-trained model because of the

restricted quantity of data available. This method can maintain

the distribution of the training and validation datasets consistent

with the original dataset after splitting. The K-value was set to

5. To prevent leakage of the validation set into the training set,

oversampling was done at each cross-validation iteration rather

than uniformly after the preprocessed data were loaded.

Stochastic gradient descent (SGD; Ruder, 2016) was the

optimizer used in the pre-training phase, and the momentum was

set to 0.9. The cosine learning rate decay (Loshchilov and Hutter,

2016) was utilized to dynamically lower the learning rate, which

was initialized at 0.0001. Since the goal of this study is classification,

the loss of model training was calculated using the cross-entropy

function. In addition, to reduce the impact of label errors, the label

smoothing (Müller et al., 2019) technique was used. The batch

size and epochs of the model pretraining were set to 32 and 200,

respectively. The entire process was conducted on an NVIDIA

GeForce RTX 3080 with 10 GB of RAM, utilizing the Pytorch

(Paszke et al., 2019) framework for code implementation.

Fine-tuning: Six fine-tuned models would be obtained by using

the data from each participant in the BNCI moving cursor dataset

to fine-tune the model that performed best in the stratified-Kfold

cross-validation during the pre-training stage.

In the fine-tuning phase, the Adam optimizer (Kingma and Ba,

2014) was adopted. Ten times smaller than the pre-training stage,

0.00001, was the starting learning rate. Similarly, cosine rate decay

TABLE 4 The number of epochs per participant in the BNCI moving

cursor dataset.

Participant 1 2 3 4 5 6 Total

Error events 235 242 188 211 241 205 1,322

Correct events 809 838 848 841 882 897 5,115

Total 1,044 1,080 1,036 1,052 1,123 1,102 6,437

(Loshchilov and Hutter, 2016) was used to dynamically reduce the

learning rate. Furthermore, this phase’s training epoch was set at

100. The training tools and other parameters are the same as they

were during the pre-training stage. Each participant’s data was used

to independently test each fine-tuned model. For each fine-tuned

model, the participant data involved in the fine-tuning process is

not involved in the test.

2.5 Experiments

Before executing the proposed training strategy, we first

performed leave-one-subject-out classification and one-train-one-

test classification on the target task, the BNCI moving cursor. The

number of epochs per participant in the BNCI moving cursor

dataset is shown in Table 4.

Leave-one-subject-out classification is a pattern that does not

rely on the prior knowledge of a new individual. During the same

experimental session, data from one participant was chosen at a

time to serve as the test set, while the remaining participants’

data served as the training set. Afterward, stratified 5-fold cross-

validation was used to randomly divide the training and validation

sets from the training set. The remaining parameters were

consistent with the pre-training phase of the proposed training

strategy. The purpose of leave-one-subject-out classification is to

verify the feature extraction ability of the proposed model on the

target task so as to facilitate a wider comparison with the existing

methods.

One-train-one-test classification refers to a pattern in which a

randomly initialized model is trained on the data of one participant

in the target task and then tested separately on the data of the

remaining participants. All parameters of the model training are

consistent with the fine-tuning phase of the proposed training

strategy. The results obtained from this mode can be used to

evaluate the performance that the proposed model can achieve

when it is trained without the help of pre-training, providing

a performance benchmark for experiments using the complete

training strategy. If the proposed model training strategy achieves

better results than this classification mode, then the transfer

learning-based training strategy is effective.

After completing the above two experiments, the proposed

training strategy was executed.

2.6 Performance metric

The performance metric is a quantitative indicator of the

strengths and weaknesses of the model. Due to the main goal of
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TABLE 5 The accuracy of the leave-one-subject-out classification on the

BNCI moving cursor task (%).

Participant 1 2 3 4 5 6 Average

Session 1 78.32 66.60 70.68 79.51 79.12 65.47 73.28

Session 2 86.49 65.33 60.78 66.91 72.40 70.15 70.34

TABLE 6 The results of one-train-one-test classification on the BNCI

moving cursor task (%).

Training set
Testing set

1 2 3 4 5 6

1 - 78.93 81.13 73.47 79.02 72.03

2 73.33 - 78.24 76.57 75.83 70.19

3 73.26 79.73 - 80.41 81.76 72.97

4 75.48 78.14 79.94 - 76.52 68.44

5 79.34 78.18 80.41 76.40 - 70.35

6 73.14 76.59 72.41 71.05 72.05 -

Average 74.91 78.31 78.43 75.58 77.04 70.80

this study being to improve the accuracy of ErrPs classification in

the background of a small dataset, accuracy and area under curve

(AUC) were selected as performance metrics.

3 Results

For the leave-one-subject-out classification on the BNCI

moving cursor task, average accuracy rates of 73.28 and 70.34%

were obtained in sessions 1 and 2, respectively. The performance

of all six participants is shown in Table 5. The results recorded

in the table are the classification accuracy of each participant

using the best model of 5-fold cross-validation. For session 1, the

classification accuracies of all participants have surpassed 65%, four

of six participants have >70% accuracy, and two participants have

accuracy over 79%. For session 2, the highest classification accuracy

obtained was 86.49%, and the lowest classification accuracy was

60.78%.

Table 6 shows the results of the one-train-one-test classification

on the BNCI moving cursor dataset. The first row of the table

specifies each training set, and the first column specifies each test

set. Each column of the table represents the results of testing

the remaining participants separately with the optimal model

that was selected by 5-fold cross-validation using the training set

specified in the column. Each row represents the results of the

test on each model by a given participant. Of the six models, five

had an average testing accuracy of >74.9%, and three of them

exceeded 77%. Overall, for the one-train-one-test classification

on the BNCI moving cursor task, a total average accuracy of

75.84% was achieved, which is the average of all one-train-one-test

classifications.

Table 7 presents the outcomes of cross-task classification,

wherein the model was pre-trained on the LSC speller dataset

and subsequently fine-tuned on the BNCI moving cursor dataset.

The first row of the table denotes each fine-tuned dataset, while

TABLE 7 The results of cross-task classification which pre-trained on the

LSC speller task and fine-tuned on the BNCI moving cursor task (%).

Fine-tuned set
Testing set

1 2 3 4 5 6

1 - 80.36 81.80 77.01 81.51 77.30

2 75.00 - 77.04 79.63 78.33 74.44

3 76.74 81.95 - 81.95 80.69 79.05

4 75.57 80.13 80.13 - 77.57 77.19

5 80.32 80.68 79.88 78.27 - 76.49

6 76.32 78.31 77.68 77.40 74.86 -

Average 76.79 80.29 79.31 78.85 78.59 76.89

Non-pretrained 74.91 78.31 78.43 75.58 77.04 70.80

TABLE 8 The results of cross-task classification that pre-trained on the

Gaze speller task and fine-tuned on the BNCI moving cursor task (%).

Fine-tuned set
Testing set

1 2 3 4 5 6

1 - 80.17 80.75 77.11 82.18 72.22

2 75.83 - 77.96 78.98 77.50 65.93

3 83.59 80.69 - 81.76 81.95 67.57

4 77.57 79.47 80.23 - 77.47 62.93

5 83.97 80.68 81.66 78.54 - 64.02

6 80.04 79.49 79.22 78.68 77.95 -

Average 80.20 80.10 79.96 79.01 79.41 66.53

Non-pretrained 74.91 78.31 78.43 75.58 77.04 70.80

the first column specifies each testing set. Each column in the

table represents the results of testing the remaining participants

individually using the model fine-tuned from the optimal pre-

trained model selected through 5-fold cross-validation. Similar to

Table 6, each row represents the test outcomes of each model by a

specific participant. As observed in the table, all sixmodels achieved

an average testing accuracy exceeding 76%, with four of them

surpassing 78%. The overall average accuracy of 78.45% represents

the average performance across all classifications in this context.

The last row of Table 7 presents the average results of the six models

obtained using the baseline classification pattern, one-train-one-

test classification. It is evident that the average test accuracy of each

model, achieved by fine-tuning the pre-trained model on the target

dataset, outperforms that of the one-train-one-test classification.

Notably, when participant 6’s data was utilized for model training,

the corresponding model exhibited the highest increase in average

accuracy, with a significant improvement of 6.09%. Overall, the

model’s total average classification accuracy after the pre-training

stage was 2.61% higher compared to the baseline classification.

Table 8 displays the outcomes of cross-task classification,

where the model was pre-trained on the Gaze speller dataset

and fine-tuned on the BNCI moving cursor dataset. Similar to

Table 7, each column in the table represents the test results for

each participant using the model fine-tuned from the optimal

pre-trained model selected through 5-fold cross-validation. Each
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row represents the test outcomes for each model by a specific

participant. Among the six models, five achieved an average testing

accuracy exceeding 79%, with two surpassing 80%. Similar to the

cross-task classification pre-trained on the LSC speller task, a total

average accuracy of 77.54% was attained in this scenario. The

last row of Table 8 also presents the average results of the six

models obtained using the baseline classification pattern, one-train-

one-test classification. It is clear that, except when participant 6’s

data was used for model training, the average test accuracy of

each model, achieved through fine-tuning the pre-trained model

on the target dataset, exceeds that of the baseline classification.

When participant 1’s data was utilized for model training, the

corresponding model exhibited the highest increase in average

accuracy, with a significant improvement of 5.29%. Compared to

the baseline classification, the overall average classification accuracy

of the model after the pre-training phase was 1.7% higher.

4 Discussion

In order to address the restricted performance of CML and DL

approaches resulting from the size of the ErrPs datasets, this study

attempts to provide a general approach for ErrPs classification. To

achieve this goal, a DL model combining transformer encoders

and convolutional layers was proposed to extract and classify ErrPs

features. Furthermore, to train the proposed deep neural network

model, a training strategy based on transfer learning’s fine-tuning

technology was provided. Three publicly accessible ErrPs datasets

from various EEG tasks are employed to assess the suggested

approach.

In the Results section, we first demonstrate the accuracies

of leave-one-subject-out classification on the BNCI moving

cursor dataset. To highlight the feature extraction capability of

the proposed model, we investigated other methods for ErrPs

classification on the BNCI moving cursor dataset. In the leave-

one-subject-out classification, Kumar et al. (2018) used the LDA

algorithm to classify error events and correct events. Parashiva

and Vinod (2020) employed a two-stage trained ANN algorithm

to classify ErrPs.

Since most ErrPs datasets contain two sessions of data per

participant, many of the existing ErrPs classification methods are

specific to within-session classification in a single task or cross-

session classification in a single task. Within-session classification

in a single task means that model training, model validation, and

model testing are all executed on the same session in a single task

dataset. For instance, if the dataset includes two sessions, the whole

train-test pipeline will execute on sessions 1 and 2, respectively. For

cross-session classification in a single task, the specific step is to

choose one session data of each participant to be the training set

and another session data to be the testing set.

For the within-session classification scenario on the BNCI

moving cursor dataset, Torres et al. (2018) designed two CNN-

based DL models to classify ErrPs. One of the models only selects

data from FCz and Cz channels as input, while another model

uses data from all channels as input to the model. Parashiva and

Vinod (2021) proposed two electrode ranking methods, the cosine

similarity measure and the euclidian distance measure, combined

with the LDA algorithm for ErrPs classification. For the cross-

session classification scenario on the BNCI moving cursor dataset,

Chavarriaga and Millan (2010) used a Gaussian classifier to classify

ErrPs. Kumar et al. (2018) used the LDA algorithm to classify ErrPs.

Based on the above investigation, we implemented the

classification models used in these studies and conducted

experiments in three different classification scenarios for

comprehensive comparison. In order to ensure that the dimensions

of the input data are unified, for the CNN-based model proposed

by Torres et al. (2018), only the model that selects two channel data

as input was reproduced.

Table 9 shows the comparison of the proposed method with

existing methods on the BNCI moving cursor dataset in the

leave-one-subject-out classification scenario. The table lists the

average detection rate of erroneous events, the average detection

rate of correct events, the average classification accuracy, and the

average AUC value for a more thorough comparison. As can be

seen, compared to the current methods, for session 1, the model

proposed in this paper improved the average classification accuracy

by 1.53–10.24% and the average AUC value by 4.36–9.83%. For

session 2, the proposed model increased the average classification

accuracy by 1.71–13.35% and the average AUC value by 1.26–

9.28%.

Table 10 shows the comparison of within-session classification

using different methods on the BNCI moving cursor dataset. It is

obvious that in this classification scenario, the performance of the

ANN algorithm in the two sessions is very poor compared to other

algorithms. The average classification accuracy in the two sessions

is only 60.51 and 64.22%, respectively, and the average AUC value

is 63.86 and 65.47%. The CNN-based model performed better on

both sessions. Average classification accuracy rates of 78.82 and

78.13% and average AUC values of 82.13 and 84% were achieved,

respectively. The model proposed in this paper is slightly better

than the comparison methods, with average classification accuracy

of 79.17 and 78.31% and average AUC values of 82.94 and 84.23%

obtained on sessions 1 and 2, respectively.

The results of cross-session classification of the BNCI moving

cursor dataset using different methods are shown in Table 11. The

Session 1 part of the table represents the results obtained by training

the model using data from session 2 and testing it on data from

session 1, and vice versa. Similar to within-session classification,

the ANN algorithm performs poorly in this classification scenario.

For session 1, the proposed model has a minimum improvement of

2.06% average classification accuracy and 4.41% average AUC value

compared with the existing methods. For session 2, the proposed

model improved the average classification accuracy by a minimum

of 0.33% and the average AUC value by at least 2.99%.

Based on the above comparisons, there is no doubt that the

proposed model shows better feature extraction ability for ErrPs.

However, the experiments discussed above and the comparative

experiments were performed only on a single ErrPs dataset. In

practical application scenarios, it is challenging to obtain enough

training data at one time due to the complexity of ErrPs acquisition

processes and the restriction of access rights to ErrPs datasets.

Therefore, it is important to use only a small number of samples

of the target task to participate in model training to detect the new

data generated by new participants in the target task, which is more

in line with the needs of practical application.
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TABLE 9 The results of leave-one-subject-out classification using di�erent methods (%).

Method
Session 1 Session 2

Error rate Correct rate Accuracy AUC Error rate Correct rate Accuracy AUC

LDA 56.36 66.78 64.34 66.23 62.64 63.58 63.51 68.83

Gaussian 52.91 77.21 71.75 70.41 70.69 53.58 56.99 68.71

ANN 56.70 65.08 63.04 65.64 52.47 68.21 65.11 64.43

ConvNet: FCz, Cz 54.17 74.59 69.94 71.11 60.15 70.93 68.63 72.45

Proposed method 56.91 77.84 73.28 75.47 64.56 71.41 70.34 73.71

TABLE 10 The results of within-session classification using di�erent methods (%).

Method
Session 1 Session 2

Error rate Correct rate Accuracy AUC Error rate Correct rate Accuracy AUC

LDA 65.88 74.88 72.95 76.91 68.23 73.39 72.33 79.49

Gaussian 64.62 80.06 76.82 79.99 66.77 79.43 77.06 81.39

ANN 54.99 62.00 60.51 63.86 53.33 66.70 64.22 65.47

ConvNet: FCz, Cz 66.37 82.18 78.82 82.13 68.64 80.43 78.13 84.00

Proposed method 69.35 81.82 79.17 82.94 70.09 80.17 78.31 84.23

TABLE 11 The results of cross-session classification using di�erent methods (%).

Method
Session 1 Session 2

Error rate Correct rate Accuracy AUC Error rate Correct rate Accuracy AUC

LDA 61.74 74.56 72.03 74.30 62.70 72.06 70.06 73.07

Gaussian 57.30 80.13 75.73 75.67 62.88 79.36 75.90 77.10

ANN 53.55 58.62 57.64 58.71 50.63 67.45 64.03 64.27

ConvNet: FCz, Cz 57.08 79.51 74.96 74.74 61.86 77.79 74.52 76.35

Proposed method 62.18 81.87 77.79 80.08 63.38 79.71 76.23 80.09

One-train-one-test classification and leave-one-subject-out

classification are both classification patterns that do not rely

on prior knowledge of new participants. The test results

obtained from new participants can effectively reflect the model’s

generalization ability across participants. The crucial distinction

between these two classification modes is that the leave-one-

subject-out classification uses five of six participants to participate

in the model training stage, leaving only one participant as

the test set, while the one-train-one-test classification uses only

one participant’s data as the training set and then tests each

of the remaining participants separately. The one-train-one-test

classification could significantly reduce the number of target EEG

task samples used in model training, which aligns well with

scenarios where there is a scarcity of training data specific to the

target task, as often encountered in practical applications. In order

to improve the classification performance of the model in this

scenario, we carried out the exploration of cross-task, cross-subject

classification using the proposed training strategy. The core idea

is to use the existing ErrPs dataset to assist in the classification

of ErrPs in the new EEG task. The cross-task classification results

presented in Tables 7, 8 validate the effectiveness of the proposed

training strategy.

It can be noted that the overall test performance of participant

6 in these classification modes was significantly lower than that

of the rest of the participants. To explore the reasons, we plotted

the ErrPs pictures of all participants in the BNCI moving cursor

dataset, shown in Figure 2. The closer the color in the graph

is to dark blue, the more negative the amplitude value of the

event at the current sampling point, and the greater the absolute

value. Correspondingly, the event’s amplitude value at the present

sampling point is larger the closer the color is to dark red.

As shown in Figure 2, the amplitude values of error events

for participants 1–5 in the BNCI moving cursor dataset show

approximately the same trend. This trend refers to the significant

negative deflection of the waveforms of all erroneous events over

a highly coincident time frame (in Figure 2, where the high

positive amplitude shifts to the low negative amplitude). This

negative wave is followed by a significant positive deflection

that changes from negative (blue) to positive (red). When it

comes to the occurrence of positive and negative deflection,

the timing differences between those participants are relatively

insignificant. However, the ErrPs plot of the 6th participant was

significantly different from that of the first five participants.

Similar to the error events, we can observe that the amplitude

Frontiers inHumanNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1394107
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Ren et al. 10.3389/fnhum.2024.1394107

FIGURE 2

ErrPs plots of all participants in the BNCI moving cursor dataset. The time window spans the period from the start of the event to its end. The value

on the horizontal axis represents the number of sampling points of the extracted epoch, and the vertical axis represents each epoch, arranged from

top to bottom according to the chronological order of the events.

variation range and trend of the correct events for participants

2–5 in the BNCI moving cursor dataset are close. However,

the first participant’s is slightly different from them, and the

sixth participant’s is significantly different, with a wider range of

amplitude values.

The above information indicates that the waveform,

amplitude, crest, and other main characteristics of the error

event and the correct event of the 6th participant are quite

different from the rest of the participants. This may be the

result of low signal quality from improper experimental

operation or the poor physiological state of the individual

during the EEG experiment. This is probably the main

reason why the model did not perform well with the sixth

participant.

5 Conclusion

In this investigation, a new approach based on DL and transfer

learning for classifying ErrPs was proposed. The method consists

of a feature extraction network combining convolutional layers

and transformer encoders and a model training strategy based on

fine-tuning technology. The proposed method was evaluated on

three publicly available datasets. Among them, the LSC Speller

and Gaze Scaler datasets are used as the source task datasets,

and the BNCI moving cursor dataset is used as the target

task dataset. The results exceeded our baseline, achieving an

average accuracy of about 78%. In addition, the performance of

the proposed model in the leave-one-subject-out, within-session,

and cross-session classification scenarios significantly exceeds that

of the existing methods on the target task dataset, reaching

an average accuracy of 71.81, 78.74, and 77.01%, respectively.

These outcomes demonstrate the effectiveness of the proposed

model in capturing the electrode and time features of ErrPs.

Simultaneously, they also reflect the efficacy of the proposed

training strategy in utilizing existing ErrPs datasets to assist in

ErrPs classification for new EEG tasks. This aligns with our initial

intention of trying to carry out cross-task knowledge transfer

for ErrPs, mitigating the issue of limited datasets in the ErrPs

field to a certain extent. Overall, this study provides a fresh idea
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for deep learning techniques’ performance bottleneck stemming

from the scale constraints of ErrPs datasets, and it may serve as

a source of inspiration for other studies focused on ErrPs and

its uses.
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