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Objective: Understanding the neural correlates of naturalistic behavior is critical 
for extending and confirming the results obtained from trial-based experiments 
and designing generalizable brain-computer interfaces that can operate outside 
laboratory environments. In this study, we aimed to pinpoint consistent spectro-
spatial features of neural activity in humans that can discriminate between 
naturalistic behavioral states.

Approach: We analyzed data from five participants using electrocorticography 
(ECoG) with broad spatial coverage. Spontaneous and naturalistic behaviors 
such as “Talking” and “Watching TV” were labeled from manually annotated 
videos. Linear discriminant analysis (LDA) was used to classify the two behavioral 
states. The parameters learned from the LDA were then used to determine 
whether the neural signatures driving classification performance are consistent 
across the participants.

Main results: Spectro-spatial feature values were consistently discriminative 
between the two labeled behavioral states across participants. Mainly, θ, α, and 
low and high γ in the postcentral gyrus, precentral gyrus, and temporal lobe 
showed significant classification performance and feature consistency across 
participants. Subject-specific performance exceeded 70%. Combining neural 
activity from multiple cortical regions generally does not improve decoding 
performance, suggesting that information regarding the behavioral state is non-
additive as a function of the cortical region.

Significance: To the best of our knowledge, this is the first attempt to identify 
specific spectro-spatial neural correlates that consistently decode naturalistic 
and active behavioral states. The aim of this work is to serve as an initial starting 
point for developing brain-computer interfaces that can be  generalized in a 
realistic setting and to further our understanding of the neural correlates of 
naturalistic behavior in humans.
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1 Introduction

The development of brain-computer interfaces (BCI) has relied on 
a structured trial-based experimental paradigm, which results in 
specialized algorithms developed to decode specific actions 
predetermined by the experimenter. In a typical trial-based 
experimental design, behavioral complexity and variability are 
minimized to remove noise sources within or outside the brain and 
maximize the signal-to-noise ratio. Although this methodology has 
proven useful for BCI research and development, it suffers from 
multiple drawbacks inherent to task-based experiments. The neural 
activity generated in task-based experiments is not necessarily 
equivalent to the same behavior in a naturalistic setting. Additionally, 
the datasets are limited in size due to the nature of the experiment, 
which constrains the range and variability of the behaviors that the 
experimenter can collect.

Improved recording modalities that can simultaneously collect 
data from thousands of neurons and more efficient data storage 
methods have enabled researchers to collect data at a much larger 
scale (Allen et al., 2019; Stringer et al., 2019; Peterson et al., 2022). 
Studying naturalistic behaviors is also essential for understanding the 
brain outside the laboratory, where there is a need to either confirm 
the results obtained from experimental paradigms or amend them to 
accommodate ecological neural signatures.

Generalizable BCIs that can operate under a vast array of brain 
states and can pinpoint which behavior the participants want to 
perform must first be able to decode the general behavioral or internal 
state of the participant.

BCIs can decode a multitude of activities and behaviors. Motor 
control has been studied extensively (Miller et  al., 2007, 2014). 
Algorithms have been developed to accurately translate hand 
movements and gestures, finger flexion (Aoki et al., 1999; Zanos et al., 
2008; Foodeh et al., 2021; Mirfathollahi et al., 2022, 2023), and walking 
(Tortora et al., 2020). Speech prostheses have also been developed to 
decode word and sentence representations directly from the temporal 
cortex (Kellis et al., 2010; Bouchard et al., 2013; Angrick et al., 2019; 
Anumanchipalli et al., 2019; Moses et al., 2021; Willett et al., 2023). 
Visual and spatial attention-based BCIs have also been developed to 
enhance motor-based BCIs (Ahmadi et al., 2020; Nazari et al., 2021). 
Furthermore, BCI-based experiments can also be used for functional 
brain mapping. Along with externally measured behaviors, internal 
states can also be  correlated with neural activity, such as thirst, 
learning, decision making, and autonomic tone (Peters et al., 2014; 
Williams et al., 2018; Allen et al., 2019; Calhoun et al., 2019). With the 
increase in the spatial and temporal resolution of modern intracranial 
neural implants, the developed algorithms have become increasingly 
accurate in decoding specific behaviors.

An ecological and naturalistic approach to study neural activity is a 
necessary step forward in BCI and systems neuroscience research (Huk 
et al., 2018). Motor movements spontaneously generated by participants 
in the epilepsy motoring unit were successfully decoded using 
intracranial EEG (iEEG) (Wang et al., 2016; Huk et al., 2018; Gabriel 
et  al., 2019; Peterson et  al., 2021a,b). A previous study found that 
naturalistic motor movements have identical neural signatures, 
contralateral increased high γ (70–110 Hz) and decreased β (8–32 Hz) 
activity, as found from traditional experiments (Peterson et al., 2021a,b). 
Coarsely labeled naturalistic behaviors collected over days, such as 
“Watching TV,” “Talking,” or “Using electronics” have also been decoded 

using high γ band and β band activity (Alasfour et al., 2019), albeit with 
a limited number of participants. It has also been found that 
spatiotemporal activity can discriminate between the neural activity 
generated from naturalistic behaviors (Alasfour et al., 2022). Naturalistic 
behaviors can be used to achieve transfer learning between participants, 
furthering the validity of an ecological approach (Peterson et  al., 
2021a,b). In addition to active naturalistic behaviors being decodable, 
internal naturalistic states, such as mood and autonomic state have been 
shown to be decodable with neural activity recorded from intracranial 
EEG (Sani et al., 2018; Alasfour et al., 2021; Bijanzadeh et al., 2022). The 
spectro-spatial components of different affective behaviors are similar to 
results obtained from the task-based method, mainly showing mood-
selective activations of low frequency and high γ clusters across the 
limbic area (Sani et  al., 2018). There has also been advanced in 
developing hardware platforms to facilitate a more ecological approach 
in systems neuroscience and BCI design, where a wearable platform has 
been developed to record intracranial neural activity as well as behavioral 
markers for freely moving human subjects (Topalovic et al., 2023).

This work aims to analyze the spectro-spatial components of active 
naturalistic behavior. Previous studies have shown that active 
spontaneous behaviors can be predicted from neural activity (Alasfour 
et al., 2019), and that multiple signal features can be used for prediction 
(Alasfour et al., 2022). Being able to correctly identify the behavioral 
state of a participant will help push future BCIs toward becoming 
scalable and generalizable. A generalizable BCI should work well across 
multiple behavioral states automatically, where it would sub-select which 
decoding algorithm is necessary for the given state or adjust the 
algorithm’s parameters accordingly. The concept of behavioral context 
switching has been investigated previously (Alasfour et al., 2019). A 
more complex and specific speech generation algorithm can 
be employed once a broadly behavioral state is detected, such as the 
“Talking.” Understanding the neurophysiological spectro-spatial features 
that separate these states can also guide future BCI researchers in 
choosing an appropriate implant location and feature extraction method.

In this work, we used the AJILE12 dataset, which consists of 12 
participants in the epilepsy monitoring unit that were implanted with 
ECoG electrodes for clinical purposes (Peterson et al., 2022). The 
epilepsy monitoring unit is a specialized medical facility within a 
hospital that is dedicated to treating patients with drug-resistant 
epilepsy. Patients are implanted with intracranial EEG and monitored 
until a seizure occurs to pinpoint the diseased areas of the brain. In 
this work, a video camera recorded the patients’ activities throughout 
their stay. Data were collected across multiple days, and naturalistic 
behaviors were manually annotated from synchronized videos 
captured at the EMU without any experimental procedures. 
We mainly investigated the neural correlates separating two active 
states: “Talking and “Watching TV.” The following steps demonstrate 
that we  can find spectro-spatial features that are discriminative 
between the two behavioral states and are consistent 
across participants.

2 Methods

2.1 Data preprocessing

Neurophysiological recordings were obtained from the publicly 
available AJILE12 dataset (Peterson et al., 2022). Five participants (2 
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males, 3 females) with electrocorticography (ECoG) electrodes 
planted on the cortical surface based on clinical needs were used in 
this study. We selected only participants with at least 1 h of recorded 
neural activity of the behaviors of interest to obtain adequate samples 
when training and testing our classification models. Of the 12 
participants in the dataset, only 5 satisfied this criterion. Recordings 
lasted for an average of four days across participants and only post-
surgical days 3–7 were included. The video was recorded 
synchronously with neural activity. The ECoG activity was recorded 
at a sampling rate of 1 kHz, and the video was recorded at 30 fps. The 
video for each participant was split into 2-min blocks, and each block 
was manually annotated using a coarse behavioral label. The active 
behavioral labels included talking, watching TV, and using a computer 
or phone, whereas the inactive behavioral labels included sleeping and 
awake rest. For most analyses in this study, we used two active labels: 
talking and watching TV. Naturally, when constrained to a hospital 
bed, the subjects’ natural tendency is to mostly engage in these two 
behaviors. These two labels, therefore, have a sufficient number of 
samples, and the analysis of the spatial-spectral features that separate 
them becomes tractable. Information regarding the five participants, 
including the number of electrodes used and the amount of data, is 
summarized in Table 1. Figure 1 shows the locations of the ECoG 
electrodes on the cortical surfaces of the five participants used in this 
study. More information regarding subjects not used in this study is 
found in the AJILE12 dataset (Peterson et al., 2022).

Standard ECoG data preprocessing methods were used for the 
dataset. DC drift was removed by subtracting the median voltage and 
data discontinuities. The data were then bandpass filtered between 1 
and 200 Hz and notch filtered at 60 Hz and its harmonics to remove 
line noise. Furthermore, the data were downsampled to 500 Hz and 
referenced to a common median across the electrode grid (Peterson 
et al., 2022). The ECoG channels were then passed through five IIR 
Butterworth bandpass filters associated with the frequency bands of 
interest. The five frequency bands are θ (4–8 Hz), α (8–12 Hz), β 
(8–32 Hz), low γ (32–55 Hz), and high γ (70–110 Hz). The Hilbert 
transform was then applied to each filtered signal to extract the 
envelope signal, which served as an instantaneous estimate of the 
frequency band amplitude. The envelope signals associated with each 
frequency band were then averaged across 10-s bins. Previous studies 
have used similar temporal resolutions to decode natural behavior and 
mood (Sani et al., 2018; Alasfour et al., 2019) and model the dynamic 
structure of multispectral long-term ECoG data (Yang et al., 2019). An 
artifact-rejection criterion was used to remove high amplitude bursts 
of activity most likely unrelated to neural activations. Any two-minute 
segment where 10% of channels exceeding 3 times the standard 
deviation of the channel across more than 2 s was eliminated from 
further processing.

The spatial locations of the electrodes across the cortical surface 
were determined using the electrode-to-region of interest (ROI) 
projection matrices used in a previous study that analyzed the AJILE12 
dataset from the same authors (Peterson et  al., 2021a,b, 2022). 
Electrode positions were mapped to common regions of interest in the 
automated automatic labeling (AAL) atlas by calculating the value of 
a three-dimensional Gaussian centered at each electrode position at a 
centroid located at each ROI (Peterson et  al., 2021a,b). Each 
participant had a projection matrix, where each index in the matrix 
assessed the distance of electrode i  to a region of interest j. Only 
electrodes local to eight defined regions of interest corresponding to 
cortical areas analyzed by Peterson et al. (2021a,b, 2022) were used. 
The matrix was discarded if the ROI had an electrode density of less 
than 3 for a specific participant. The projection matrices were 
thresholded only to include electrodes close to any of the eight defined 
ROIs, and the ROI label was assigned by choosing the ROI closest to 
each electrode. Figure 1 shows the mapping of the ECoG electrodes 
to the 8 defined ROIs.

2.2 Spectro-spatial classification and 
consistency analysis

Once the data had been spatially localized and frequency bands of 
interest were extracted, we applied a linear discriminant analysis (LDA) 
classifier to determine whether specific spectro-spatial features separate 
two coarsely labeled behaviors: “Talking” vs. “Watching TV.” The LDA 
classifier was applied to each ROI and frequency band for each 
participant. A 7-fold cross-validation scheme was applied to the ECoG 
activity. The data were temporally sequenced, and a one-fold buffer was 
applied between the training and test sets to avoid temporal correlation 
effects. Temporal correlation effects could influence decoding accuracy, 
as decodability could be due to the brain’s state at a specific period of 
time, rather than a function of behavior (Alasfour et al., 2019; Yang 
et al., 2019). The training and testing sets in each fold were downsampled 
to achieve a balanced amount of data between the two classes to avoid 
bias due to sample imbalance. Additionally, the training set and test sets 
were z-scored independently as a normalization step to ensure that 
classification is due to the neural activity difference between the two 
classes and to prevent slow varying trending effects influencing our 
results (Alasfour et al., 2019). Z-scoring would also aid comparisons of 
power differences when comparing across frequency bands since power 
in intracranial neural activity is concentrated in the lower frequency 
bands. The covariance matrices fitted to the training data were set to 
be equal across all classes to avoid overfitting the data to the training set 
and simplify the post-hoc analyses of the learned parameters. Once the 
classification accuracies were generated for each participant, ROI, and 

TABLE 1 Participant specific information.

Participant Sex Age Good electrodes Minutes talking Minutes watching TV Minutes using electronics

1 M 44 85 493 605 291

2 M 20 80 331 338 68

4 F 19 67 696 312 181

5 F 31 104 340 480 212

8 F 33 82 216 156 29

All five participants have at least 2 h of data for two behavioral states suitable for subsequent analysis.
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frequency band combination, we pooled all the participant classification 
accuracies to arrive at a participant-wide performance for each ROI and 
frequency band combination. Participant-wide accuracy was compared 
to chance performance while correcting for finite data, as described by 
Combrisson and Jerbi (2015), using a two-sided Student’s t-test. 
Significant results were determined using the Benjamini-Hochberg 
multiple comparison correction to control the false discovery rate 
(Benjamini and Hochberg, 1995). The FDR correction procedure was 
implemented as follows: for a total of N hypotheses, each with 
corresponding p values Pi (I ⊑ N), which are sorted in ascending order 
to identify Pk (k being the largest i for which Pi ≤ (i/N) * α), all 
hypotheses with p values less than or equal to Pk would be rejected.

An ANOVA test was also performed to determine whether there 
were group-level effects of the ROI, specific frequency band, and their 
interaction on the classification performance. To ensure that a single 
participant’s decoding performance did not dominate the 
measurements, we  generated and inspected participant-specific 
matrices in which the rows were ROIs, the columns were the frequency 
bands, and the.

value was the participant-specific classification accuracy. If one 
participant drove the subject-wide decoding results, only that 
participant’s matrix would have values where the decoding accuracy 
was significantly greater than chance. There were sufficient data for 
four of the five participants to consider a third-class label, adding 
“Using Electronics” as an additional label. The decoding accuracy was 
determined for each of the five 5 frequency bands using all available 
electrodes from the eight 8 ROIs as features.

Decodability and classification performance alone does not give 
us a complete understanding of the neurophysiological features that 
are driving performance. In order to pinpoint how the neural activity 
was leading to above chance classification, we leveraged the tractability 

of the LDA classifier, and investigated the learned features. Because 
we  used an LDA classifier with equal covariance matrices across 
classes, the only feature that drove the decoding performance is the 
difference between the class-specific means. For all the models trained 
on each fold, we extracted the fitted means for the two classes and 
calculated their difference. As five participants were analyzed using a 
7-fold cross-validation scheme, we  obtained 35 data points. This 
would provide a clear understanding of whether the classification is 
due to Class A having a higher or lower mean than Class B. The mean 
difference values were compared to zero using a two-sided Student’s 
t-test, and a multiple comparison correction was applied as described 
above. Finally, we pinpointed the ROI/frequency band combinations 
that drive classification performance and are consistent across patients 
in what drives their separability by labeling them as significant if they 
pass the Student’s t-test for both the classification performance and 
mean difference analysis described above. For both analyses, a 
Student’s t-test was applied to each spectro-spatial feature to determine 
whether the classifier performance exceeded the finite chance level or 
if the mean difference in the training LDA parameters differed from 
zero. We used FDR correction for each statistical test with α = 0.01 
(Benjamini and Hochberg, 1995). We also investigated the consistency 
of the difference of neural activity between the two classes across 
participants. Similarly, to when investigating the consistency of 
classification accuracy, we generated participant-specific matrices for 
the differences in neural activity.

Finally, to assess whether the information within the ROIs and 
frequency bands was additive, we  ranked the classification 
performance of each ROI for each participant separately. Subsequently, 
we  assessed the performance of the classifier by starting with the 
highest-performing ROI and iteratively adding additional ROIs. This 
was performed using a 7-fold cross-validation scheme with both 

FIGURE 1

ECoG electrode positions. Eight ROI were chosen for this study using the AAL cortical atlas. Electrode positions were mapped to these regions using 
electrode-to-ROI projection matrices as described in Peterson et al. (2021a,b). Each ECoG electrode is color-coded according to what ROI it is 
mapped to.
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validation and test sets. This analysis was performed for each of the 
five frequency bands for each participant. This analysis aimed to 
determine whether additional information from other ROIs would 
increase the performance of the classifier, indicating whether the 
relevant neural activity was additive across the cortex.

3 Results

3.1 Classification accuracy and consistency 
of spectro-spatial features

Figure 2 shows the LDA classifier performance for each spectro-
spatial feature (ROI and frequency band combination, for a total of 40 
features). The number of data points for each element of the bar graph 
consists of the number of training folds multiplied by the number of 
participants, for a total of 35 data points. Looking at Figure 2, we observe 
that the highest classification performance is 69% for the high γ band in 
the inferior temporal lobe. The postcentral gyrus, supramarginal gyrus, 
and superior, middle, and inferior temporal lobes have 3 or more 
frequency bands where the LDA classification performance is 
significantly above chance. All 5 frequency bands in the inferior 
temporal lobe resulted in a decoding accuracy that was significantly 
higher than by chance. Both the middle temporal and inferior temporal 
lobe are the only ROIs where the β band performs above chance level. 
The inferior parietal and frontal middle lobes only perform above 
chance when high γ or θ bands are used, respectively. We also applied a 
two-way ANOVA test to determine whether the ROI and frequency 

band had a group-level effect on the classification accuracy. Both the 
ROI and frequency band contributed significantly to decodability, with 
a p-value of 0 for both variables. The interaction between the ROI and 
frequency band does not show a significant effect with a p-value of 0.46. 
In a post-hoc analysis of the group-level contribution to performance, 
we note that the high γ band has the highest classification performance 
across all ROIs, with an average of 63%. The β band, across all ROIs, 
performs the worst with an average classification accuracy of 56%, 
which is barely above the finite chance level. In a group-level analysis of 
ROIs, the inferior temporal lobe has the highest average classification 
accuracy across all frequency bands at 66%, and is statistically higher 
than all the other ROIs. The lowest performing ROI being the frontal 
middle lobe, with an average decoding performance of 54%. This shows 
that the specificity of spectro-temporal activity in iEEG recordings is 
essential for discriminating between naturalistic behavioral states. 
Finally, to verify that coarse behavioral decoding is valid in a multiclass 
classification paradigm, the three-class decoding performance, when 
adding “Using Electronics,” as a third class label is shown in Figure 3. 
Note that for all 4 participants, the decoding accuracy was above the 
finite chance level. However, there was high variability between 
participants. For example, Participant 2 had a much higher decoding 
performance than Participant 4.

Figure 4 shows the subject-specific classification accuracies for each 
ROI and the frequency band combinations displayed as matrices. One 
of the issues in examining subject-wide classification scores and making 
neurophysiological inferences is that one participant could be the main 
driver of group-level performance that is statistically greater than 
chance. In Figure  4, we  observe that all the participants have 

FIGURE 2

Bar plot showing the classification accuracy of each ROI/frequency band combination using LDA. The dashed black line represents finite chance 
performance. The black asterisk denotes performance that is statistically above chance using the Student’s t-test and accounting for multiple 
comparison testing (p ≤ 0.01). Error bars denote the 95% confidence interval.
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classification accuracies that are significantly above chance for multiple 
ROI/frequency band combinations. Note that for Participants 2 and 3, 
columns displayed a red x marker because no electrodes were present 
in that ROI. Subject 2 was the highest-performing participant, where 
multiple ROI/frequency band features had a classification accuracy 
exceeding 75%. Most notably, for Participant 2, low-and high gamma 
bands in the inferior temporal lobe exceeded 80% decoding accuracy.

In order to generalize the classification results shown in Figures 2, 
4, consistent spectro-spatial features across participants must be found. 
Therefore, both decodability and consistency must be  present to 
determine the neurophysiological significance of each spectro-spatial 
feature. Even if a feature is decodable, this does not mean that its 
discriminability is consistent across different folds. For example, in one 
cross-validation fold, the decodability between two classes could 
be because the mean of class a is greater than that of class b, whereas in 
another fold, it is the opposite. Therefore, for this analysis, we only 
considered spectro-spatial features that rejected the null hypothesis 
using the Student’s t-test for both the classification performance and 
mean difference analyses. Figure  5 shows that consistent 
neurophysiological characteristics exist in the iEEG signals that specify 
the behavioral context in which a participant is engaged. The y-axis 
displays the difference in the fitted LDA classifier means between the 
two classes. A positive number indicates that the mean activity for 
“Talking” is greater than “Watching TV” and vice versa. On a macro 
level, we note that the low and high γ band is greater when a participant 
is engaged in talking versus watching TV. Further, θ and α band activity 
are lower when a participant is talking vs. watching TV. The greatest 
difference can be seen in the precentral and postcentral lobes, with 
consistent differences seen in θ, α, low γ, and high γ. When a participant 
engages in dialog, we do not see higher activation in the γ band in the 
supramarginal gyrus, inferior parietal and superior temporal lobe. 
Rather, the increased activity on θ and α is still present in these ROIs. 
Additionally, the middle temporal lobe displayed consistent increased 

activation in 4 out of 5 frequency bands of interest when the 
participants watched TV instead of talking. Figure  6 shows the 
participant-specific differences in neural activity when comparing the 
two classes. Each element in the matrix is the average across the LDA 
parameters in each training fold. A total of 9 out of 40 (22.5%) of ROI/
frequency band combinations show no change in sign differences 
across participants, highlighting the consistency of the learned features. 
For example, we  note that high gamma activity in the precentral, 
frontal middle and post central lobes all show the same directionality 
across the participants. In addition, alpha band is completely consistent 
across participants in the precentral, inferior parietal and supramarginal 
lobes. One must also note that the results generated in Figure 5 is the 
average across all training folds and across all participants, while the 
results in Figure 6 is the average for each participant, therefore, subject 
specific differences would be expected since a neural activity difference 
in a single training fold could heavily influence the averaged value. 
Finally, our results in Figure  6 show that the difference in neural 
activity seen in Figure 5 is not driven by a single subject.

3.2 Additive performance of ROI on 
classification

Once the decoding performance has been shown to be ROI and 
frequency band dependent across participants, the next step is to see 
if performance is additive when combining different spectro-spatial 
features. Figure 7 shows the participant-specific performance for each 
frequency band as we  continued to add electrodes from the 
top-performing ROIs for each participant. The main trend is that the 
performance is not additive, indicating that adding the top-performing 
ROIs does not contribute additional information that would improve 
the decoding performance. The only instance with notable additive 
information is for Participant 4 when analyzing the low γ band. 

FIGURE 3

Bar plot showing the three-class classification accuracy for each participant and frequency bands using all of the electrodes. The dotted black line 
represents the finite chance level. All 4 participants exhibit above chance classification accuracies, with Participant 2 having the highest performance of 
more than 70% for all frequency bands.

https://doi.org/10.3389/fnhum.2024.1388267
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Alasfour and Gilja 10.3389/fnhum.2024.1388267

Frontiers in Human Neuroscience 07 frontiersin.org

Further, we observed that for individual participants, performance 
usually exceeded group-level performance (Figure 2). Using a simple 
classifier such as LDA, we would achieve a performance of greater 
than 70% for all participants, with maximum classification accuracy 
being around 80% for Participant 4 when analyzing low and high γ 
bands. Additionally, subject-specific variability exists in the spectro-
spatial features that provide the highest performance. For example, 
Figure 7 shows that Participant 5’s decoding performance is highest 
when using the θ band, while Participant 3’s decoding performance is 
highest when using the α band.

4 Discussion

This study shows specific spectro-spatial features that can 
discriminate between two naturalistic behavioral states: “Talking” 
and “Watching TV.” Even in an unstructured setting, where a 
participant is not instructed to perform any specific task, we can 
pinpoint the frequency band activity across different cortical 
locations that can differentiate between naturalistic behaviors. Neural 

activity generated from behaviors studied outside the classical task-
based experimental paradigm is generally noisy, since they can 
be influenced by a multitude of factors such as internal states (Peters 
et al., 2014; Williams et al., 2018; Allen et al., 2019; Calhoun et al., 
2019) and time of day (Alasfour et al., 2019). In addition, the behavior 
annotation is manually labeled across 2-min segments, which results 
in noisy labels as well. Therefore, the first step in moving away from 
the task-based lab protocol and toward an ecological approach to 
neuroscience is to determine whether naturalistic activity is separable 
using only neural activity, as has been shown in previous studies 
(Alasfour et al., 2019; Gabriel et al., 2019; Peterson et al., 2021a,b). 
The coarsely labeled naturalistic behaviors that we studied here have 
been shown to be consistent, indicating that the separability is due to 
the properties of the signal preserved across the training folds and 
participants. For example, in Figure  5, we  can see that, in the 
precentral and postcentral lobes, θ band activity is generally greater 
while a participant is watching TV, than when engaging in dialog. The 
high and low γ bands show the opposite effect, as their activity is 
greater when engaging in dialog than when watching TV. Engaging 
in dialog involves a participant moving their mouth and/or hands, 

FIGURE 4

Participant-specific classification matrices. For each matrix, the rows represent the 5 different frequency bands of interest, and the columns represent 
the 8 studied ROIs. The color represents classification accuracy of a specific spectro-spatial feature. We observe that participant specific decoding 
accuracy is above chance for multiple spectro-spatial features for all subjects; thus, the group-level classification performance seen in Figure 2 is not 
driven by a single participant.
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and since high-γ band activity can be used as a proxy for local spiking 
activity (Mukamel et  al., 2005; Manning et  al., 2009; Ray and 
Maunsell, 2011; Miller et al., 2014), this indicates higher activation in 
the motor and premotor cortices. Moving away from the motor and 
premotor areas, decodability was consistent across multiple frequency 
bands in the superior, middle, and inferior temporal lobes. The 
inferior temporal lobe in particular, contributed to the highest 
classification accuracy of around 70% for high gamma band, as well 
as above significantly above chance performance for all other 
frequency bands. It has been shown in previous work that the 
temporal lobe is spatially segregated when it comes to the different 
aspects of speech, such as listening, production, and articulation 
(Rampinini et al., 2017). Therefore, specific neural circuitry in the 
inferior temporal cortex could be  responsible for ability to 
discriminate actively engaging in dialog as opposed to passively 
watching TV. It would lead us to conclude that with in this study, all 
analyzed ROIs, except the inferior parietal lobe, had at least one 
frequency band that could separate the two naturalistic behaviors and 
consistent signal characteristics across participants. A previous study 
showed that cortex-wide activity is correlated with spontaneous 
behaviors in mice (Stringer et al., 2019). Our results confirm that 
separability can be achieved across neural activity that spans multiple 
regions of the brain and across all frequency bands. Our results also 
indicate that information in this cortex-wide activity is nonadditive 
when it comes to decoding naturalistic behavior. Our results show 
that adding the top-performing ROIs generally did not improve the 

performance of the LDA classifier. Our results suggest that detecting 
coarsely labeled behavioral states depends on synchronous cortex-
wide activation, as information is likely shared between different 
ROIs as a function of the behavioral state.

Subject-specific classification performance regularly exceeds 
80% when using a simple LDA classifier. We  selected an LDA 
classifier for this purpose because the interpretability of the 
parameters is straightforward. In an LDA classifier, where the 
covariance matrices are set to be  equal across classes, the only 
learned parameter is the fitted means. Performance can most likely 
be  increased by using more complex models and deep learning 
methods (Pandarinath et al., 2018). Not only do our results infer 
important neurophysiological conclusions, but they would also help 
guide future BCIs to become generalizable in a naturalistic setting. 
Current BCIs focus on decoding a specific task, such as moving an 
arm or talking. However, to integrate multiple decoding algorithms 
and operate under multiple scenarios, one must first detect the 
behavioral state of the participant.

A behavioral context switch (Alasfour et  al., 2019) can 
be  implemented using the results obtained in this study to switch 
between different decoding algorithms, depending on the behavioral 
context. Some practical applications include when a context switch 
detects that a person is watching TV, it can implement one of the many 
studied cursor-movement decoding algorithms so that the participant 
can switch channels. A speech-decoding algorithm can be applied if 
the context switch detects that the participant is engaging in dialog. 

FIGURE 5

Bar plot showing the differences of fitted means in the LDA classifier. The red asterisk denotes ROI and frequency band combinations where the 
difference of the mean fitted by the LDA classifier for “Talking” vs. “Watching TV” is statistically different from zero. A two-sided Student t-test was used 
along with multiple comparison testing (p ≤ 0.01). Additionally, ROI and frequency band combinations are labeled as significant if their classification 
accuracies are statistically above chance as seen in Figure 2. Error bars denote the 95% confidence interval.
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Additionally, detecting idle states is vital so that the BCI is not 
activated when the participant is relaxing or asleep, thus preserving 
battery life.

Our analysis was based on manually annotated coarse behavioral 
states. Although we achieved above chance decodability for all the 
participants analyzed, this is not an optimal labeling strategy for 
training models implemented in practical BCIs. Significant advances 
have been achieved in the detection of patient poses using naturalistic 
videos (Chen et al., 2018; Peterson et al., 2021a,b) for concurrent 
analyses of neural signals. These techniques help track movement, 
which would be  ideal for creating models correlating naturalistic 
movements to neural activity. However, advanced computer vision 
techniques are required to segment videos and identify different 
behavioral states semantically. This could aid not only in the 
automation of labeling, which would lead to more accessible data 
collection, but also in identifying exactly when a participant starts or 
ends a specific behavior. The temporal resolution in this dataset is in 
the order of minutes, but with the ability to increase the temporal 

resolution, one can precisely pinpoint the neural correlates that 
identify a behavioral switch. A more detailed analysis of neural data 
can be achieved with a computer vision approach that would increase 
the temporal resolution.

Recently, there has been a boom in the application of deep 
learning methods for decoding neural data, such as spiking 
(Pandarinath et al., 2018) and LFP signals (Angrick et al., 2019; 
Makin et al., 2020). Deep learning networks are usually seen as 
black boxes representing nonlinearities, and the presence of 
multiple layers in the deep learning model makes the interpretability 
nontrivial. However, recent advances have been made in interpreting 
the parameters to derive neurophysiological conclusions (Peterson 
et  al., 2021a,b; Stuart et  al., 2022) and, in our work, we applied 
simple linear models to pinpoint exactly why we  can decode 
coarsely labeled behavioral states. When using LDA with equal 
covariance, the only parameter that is learned is the mean value of 
the fitted Gaussians. Therefore, we  can determine why we  can 
separate the two classes. Although a finely tuned deep learning 

FIGURE 6

Participant-specific neural activity difference matrices. For each matrix, the rows represent the 5 different frequency bands of interest, and the columns 
represent the 8 studied ROIs. The color represents difference of neural activity of a specific spectro-spatial feature between the two classes. The sign 
of the neural activity difference of 9 out of 40 ROI/frequency band combination (22.5%) does not change across participants This result supplements 
our analysis of Figure 5 since the differences in neural activity seen are not driven by a single participant.
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model would outperform our decoding performance in this study, 
we aimed to serve two primary functions in the neuroengineering 
pipeline. First, it can aid future researchers in the feature 
engineering step, as understanding which spatiospectral features are 
discriminatory is critical in any neuroengineering task. Second, 
we determined that multiple regions of the cortex spatially provide 
information regarding naturalistic behavioral states; therefore, 
strategies for implant design need to consider the cortex-wide 
involvement of naturalistic behavior. Our results indicate that 
recording neural activity from multiple ROIs can marginally 
improve performance for a subset of patients, and that the 
relationship between decoding performance and the amount of 
coverage is not straightforward. Our results raise additional 
important questions regarding implant design. When investigating 
high γ activity in the inferior temporal lobe, the decoding 
performance was generally high, whereas the mean difference was 
virtually zero. This means that although this ROI and frequency 
band combination is highly informative, the neural signal behavior 
is inconsistent across cross-validation folds and participants. This 
could motivate the use of a higher-density electrode coverage on 
specific ROIs to determine whether intra-participant signal 
consistency and decodability can be achieved.

The next step in tackling naturalistic behaviors is to determine 
whether one can recover a dynamic structure in the data. A 
hallmark finding in neuroengineering is the presence of latent 
dynamics within neural activity, which are mainly observed in 
motor-related tasks (Pandarinath et al., 2018). Previous studies have 
shown that discriminable spatiotemporal dynamics exist in 
naturalistic behavior (Alasfour et al., 2022) and that a dynamical 
model can be fitted to ECoG data recorded in an unconstrained 
setting (Yang et al., 2019). Therefore, a natural extension of this 
work is to determine whether a latent dynamic structure drives 
naturalistic behavior to gain insight into the neurophysiological 
underpinnings of naturalistic behavior. Understanding the latent 
structure of naturalistic neural activities can drive the algorithmic 
design of generalizable BCIs.

5 Conclusion

The trial-based experimental protocol has been the gold 
standard for elucidating the neurophysiological correlates of 
behavior and driving the algorithmic design of BCIs. In this study, 
we  confirmed the ability to decode coarsely labeled naturalistic 

FIGURE 7

Performance of the LDA classifier after incrementally adding more ROIs. The top-performing ROIs for each frequency band are determined using a 
validation set. We independently computed the LDA classifier’s performance starting from the top-performing ROI for each frequency band and 
participant. We note that generally, performance does not increase as a function of added ROIs.
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behaviors in a larger set of participants using ECoG from a previous 
study. Spectro-spatial features obtained from ECoG neural activity 
collected from multiple cortical regions are shown to successfully 
separate two behavioral states: “Talking” and “Watching TV.” 
We used a linear covariance LDA model to find these features and 
show that they both contain information that decodes behavioral 
states and are consistent in their signal characteristics across 5 
participants. Although multiple ROIs can be  used to decode 
naturalistic behavior independently, the information contained is 
generally non-additive, indicating a cortex-wide brain state shift 
correlated with behavior. To our knowledge, this is the first attempt 
to elucidate the neurophysiological nature of naturalistic and 
spontaneous behaviors.

Data availability statement

Data used in this study is publicly available and can be 
downloaded from https://dandiarchive.org/dandiset/000055 
(Peterson et al., 2022).

Ethics statement

The studies involving humans were approved by University of 
Washington Institutional Review Board. The studies were conducted 
in accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study.

Author contributions

AA: Conceptualization, Data curation, Methodology, Writing – 
original draft, Writing – review & editing, Formal analysis. VG: 
Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

VG holds shares in Neuralink Corp. and is Chief Scientific Officer 
and an options holder at Paradromics, Inc.

The remaining author declares that the research was conducted 
in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ahmadi, A., Davoudi, S., Behroozi, M., and Daliri, M. R. (2020). Decoding covert 

visual attention based on phase transfer entropy. Physiol. Behav. 222:112932. doi: 
10.1016/j.physbeh.2020.112932

Alasfour, A., Gabriel, P., Jiang, X., Shamie, I., Melloni, L., Thesen, T., et al. (2019). 
Coarse behavioral context decoding. J. Neural Eng. 16:016021. doi: 10.1088/1741-2552/
aaee9c

Alasfour, A., Gabriel, P., Jiang, X., Shamie, I., Melloni, L., Thesen, T., et al. (2022). 
Spatiotemporal dynamics of human high gamma dis-criminate naturalistic behavioral 
states. PLoS Comput. Biol. 18:e1010401. doi: 10.1371/journal.pcbi.1010401

Alasfour, A., Jiang, X., Gonzalez-Martinez, J., Gilja, V., and Halgren, E. (2021). High 
γ activity in cortex and hippocampus is correlated with autonomic tone during sleep. 
eNeuro 8, 1–16. doi: 10.1523/ENEURO.0194-21.2021

Allen, W. E., Chen, M. Z., Pichamoorthy, N., Tien, R. H., Pachitariu, M., Luo, L., et al. 
(2019). Thirst regulates motivated behavior through modulation of brainwide neural 
population dynamics. Science 364:253. doi: 10.1126/science.aav3932

Angrick, M., Herff, C., Mugler, E., Tate, M. C., Slutzky, M. W., Krusienski, D. J., et al. 
(2019). Publisher: IOP publishing. Speech synthesis from ECoG using densely connected 
3d convolutional neural networks. J. Neural Eng. 16:036019. doi: 10.1088/1741-2552/ab0c59

Anumanchipalli, G. K., Chartier, J., and Chang, E. F. (2019). Speech synthesis from neural 
decoding of spoken sentences. Nature 568, 493–498. doi: 10.1038/s41586-019-1119-1

Aoki, F., Fetz, E. E., Shupe, L., Lettich, E., and Ojemann, G. A. (1999). Increased 
gamma-range activity in human sensorimotor cortex during performance of visuomotor 
tasks. Clin. Neurophysiol. 110, 524–537. doi: 10.1016/s1388-2457(98)00064-9

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. J. R. Stat. Soc. S. B. 57, 289–300. doi: 
10.1111/j.2517-6161.1995.tb02031.x

Bijanzadeh, M., Khambhati, A. N., Desai, M., Wallace, D. L., Shafi, A., Dawes, H. E., 
et al. (2022). Decoding naturalistic affective behaviour from Spectro-spatial features in 
multiday human iEEG. Nat. Hum. Behav. 6, 823–836. doi: 10.1038/s41562-022-01310-0

Bouchard, K. E., Mesgarani, N., Johnson, K., and Chang, E. F. (2013). Publisher: nature 
publishing group. Functional organization of human sensorimotor cortex for speech 
articulation. Nature 495, 327–332. doi: 10.1038/nature11911

Calhoun, A. J., Pillow, J. W., and Murthy, M. (2019). Publisher: nature research. 
Unsupervised identification of the internal states that shape natural behavior. Nat. 
Neurosci. 22, 2040–2049. doi: 10.1038/s41593-019-0533-x

Chen, K., Gabriel, P., Alasfour, A., Gong, C., Doyle, W. K., Devinsky, O., et al. (2018). 
Patient-specific pose estimation in clinical environments. IEEE J. Transl. Eng. Health 
Med. 6:2101111. doi: 10.1109/JTEHM.2018.2875464

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance: the caveat of 
theoretical chance levels in brain signal classification and statistical assessment of 
decoding accuracy. J. Neurosci. Methods 250, 126–136. doi: 10.1016/j.jneumeth. 
2015.01.010

Foodeh, R., Shalchyan, V., and Daliri, M. R. (2021). GMMPLS: a novel automatic 
state-based algorithm for continuous decoding in BMIs. IEEE Access 9, 148756–148770. 
doi: 10.1109/ACCESS.2021.3123098

Gabriel, P. G., Chen, K. J., Alasfour, A., Pailla, T., Doyle, W. K., Devinsky, O., et al. 
(2019). Neural correlates of unstructured motor behaviors. J. Neural Eng. 16:066026. doi: 
10.1088/1741-2552/ab355c

Gabriel, P., Doyle, W. K., Devinsky, O., Friedman, D., Thesen, T., and Gilja, V. (2016). 
Neural correlates to automatic behavior estimations from RGB-d video in epilepsy unit. 
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc 16, 3402–3405. doi: 10.1109/EMBC.2016. 
7591458

Huk, A., Bonnen, K., and He, B. J. (2018). Publisher: Society for Neuroscience. Beyond 
trial-based paradigms: continuous behavior, ongoing neural activity, and natural stimuli. 
J. Neurosci. 38, 7551–7558. doi: 10.1523/JNEUROSCI.1920-17.2018

Kellis, S., Miller, K., Thomson, K., Brown, R., House, P., and Greger, B. (2010). 
Decoding spoken words using local field potentials recorded from the cortical surface. 
J. Neural Eng. 7:056007. doi: 10.1088/1741-2560/7/5/056007

Makin, J. G., Moses, D. A., and Chang, E. F. (2020). Machine translation of cortical 
activity to text with an encoder-decoder framework. Nat. Neurosci. 23, 575–582. doi: 
10.1038/s41593-020-0608-8

Manning, J. R., Jacobs, J., Fried, I., and Kahana, M. J. (2009). Broadband shifts in local 
field potential power spectra are correlated with single-neuron spiking in humans. J. 
Neurosci. 29:620. doi: 10.1523/JNEUROSCI.2041-09.2009

https://doi.org/10.3389/fnhum.2024.1388267
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://dandiarchive.org/dandiset/000055
https://doi.org/10.1016/j.physbeh.2020.112932
https://doi.org/10.1088/1741-2552/aaee9c
https://doi.org/10.1088/1741-2552/aaee9c
https://doi.org/10.1371/journal.pcbi.1010401
https://doi.org/10.1523/ENEURO.0194-21.2021
https://doi.org/10.1126/science.aav3932
https://doi.org/10.1088/1741-2552/ab0c59
https://doi.org/10.1038/s41586-019-1119-1
https://doi.org/10.1016/s1388-2457(98)00064-9
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1038/s41562-022-01310-0
https://doi.org/10.1038/nature11911
https://doi.org/10.1038/s41593-019-0533-x
https://doi.org/10.1109/JTEHM.2018.2875464
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1109/ACCESS.2021.3123098
https://doi.org/10.1088/1741-2552/ab355c
https://doi.org/10.1109/EMBC.2016.7591458
https://doi.org/10.1109/EMBC.2016.7591458
https://doi.org/10.1523/JNEUROSCI.1920-17.2018
https://doi.org/10.1088/1741-2560/7/5/056007
https://doi.org/10.1038/s41593-020-0608-8
https://doi.org/10.1523/JNEUROSCI.2041-09.2009


Alasfour and Gilja 10.3389/fnhum.2024.1388267

Frontiers in Human Neuroscience 12 frontiersin.org

Miller, K. J., Honey, C. J., Hermes, D., Rao, R. P., denNijs, M., and Ojemann, J. G. 
(2014). Broadband changes in the cortical surface potential track activation of 
functionally diverse neuronal populations. New Horiz. Neural Oscillations. 85, 711–720. 
doi: 10.1016/j.neuroimage.2013.08.070

Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P., Anderson, N. R., Moran, D. W., 
et al. (2007). Spectral changes in cortical surface potentials during motor movement. J. 
Neurosci. 27, 2424–2432. doi: 10.1523/JNEUROSCI.3886-06.2007

Mirfathollahi, A., Ghodrati, M. T., Shalchyan, V., and Daliri, M. R. (2022). 
Decoding locomotion speed and slope from local field potentials of rat motor cortex. 
Comput. Methods Prog. Biomed. 223:106961. doi: 10.1016/j.cmpb.2022.106961

Mirfathollahi, A., Ghodrati, M. T., Shalchyan, V., Zarrindast, M. R., and Daliri, M. R. 
(2023). Decoding hand kinetics and kinematics using somatosensory cortex activity in 
active and passive movement. iScience 26:107808. doi: 10.1016/j.isci.2023.107808

Moses, D. A., Metzger, S. L., Liu, J. R., Anumanchipalli, G. K., Makin, J. G., Sun, P. F., 
et al. (2021). Neuroprosthesis for decoding speech in a Para-lyzed person with anarthria. 
New Eng. J. Med 385, 217–227. doi: 10.1056/NEJMoa2027540

Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). 
Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. 
Science 309, 951–954. doi: 10.1126/science.1110913

Nazari, M. R., Nasrabadi, A. M., and Daliri, M. R. (2021). Single-trial decoding of 
motion direction during visual attention from local field potential signals. IEEE Access 
9, 66450–66461. doi: 10.1109/ACCESS.2021.3076865

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., and Kao, J. C. 
(2018). Inferring single-trial neural population dynamics using sequential auto-
encoders. Nat. Methods 15, 805–815. doi: 10.1038/s41592-018-0109-9

Peters, A. J., Chen, S. X., and Komiyama, T. (2014). Emergence of reproducible 
spatiotemporal activity during motor learning. Nature 510, 263–267,

Peterson, S. M., Singh, S. H., Dichter, B., Scheid, M., Rao, R. P. N., and Brunton, B. W. 
(2022). Publisher: nature publishing group. AJILE12: long-term naturalistic human 
intracranial neural recordings and pose. Sci. Data. 9:184. doi: 10.1038/s41597-022-01280-y

Peterson, S. M., Singh, S. H., Wang, N. X. R., Rao, R. P. N., and Brunton, B. W. (2021a). 
Behavioral and neural variability of naturalistic arm movements. eNeuro 8, 1–15. doi: 
10.1523/ENEURO.0007-21.2021

Peterson, S. M., Steine-Hanson, Z., Davis, N., Rao, R. P. N., and Brunton, B. W. 
(2021b). Generalized neural decoders for transfer learning across participants 
and recording modalities. J. Neural Eng. 18, 823–836. doi: 10.1088/1741-2552/abda0b

Rampinini, A. C., Handjaras, G., Leo, A., Cecchetti, L., Ricciardi, E., Marotta, G., et al. 
(2017). Functional and spatial segregation within the inferior frontal and superior 
temporal cortices during listening, articulation imagery, and production of vowels. Sci. 
Rep. 7:17029. doi: 10.1038/s41598-017-17314-0

Rao, R. P., and Brunton, B. W. (2016). Unsupervised decoding of long-term, 
naturalistic human neural recordings with automated video and audio annotations. 
Front. Hum. Neurosci. 10:APR2016,

Ray, S., and Maunsell, J. H. R. (2011). Different origins of gamma rhythm and high-
gamma activity in macaque visual cortex. PLoS Biol. 9:e1000610. doi: 10.1371/journal.
pbio.1000610

Sani, O. G., Yang, Y., Lee, M. B., Dawes, H. E., Chang, E. F., and Shanechi, M. M. 
(2018). Mood variations decoded from multi-site intracranial human brain activity. Nat. 
Biotechnol. 36, 954–961. doi: 10.1038/nbt.4200

Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M., and 
Harris, K. D. (2019). Spontaneous behaviors drive multidimensional, brainwide activity. 
Science 364:255. doi: 10.1126/science.aav7893

Stuart, M., Lesaja, S., Shih, J. J., Schultz, T., Manic, M., and Krusienski, D. J. (2022). 
An interpretable deep learning model for speech activity detection using 
Electrocorticographic signals. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2783–2792. doi: 
10.1109/TNSRE.2022.3207624

Topalovic, U., Barclay, S., Ling, C., Alzuhair, A., Yu, W., Hokhikyan, V., et al. (2023). 
A wearable platform for closed-loop stimulation and recording of single-neuron and 
local field potential activity in freely moving humans. Nat. Neurosci. 26, 517–527. doi: 
10.1038/s41593-023-01260-4

Tortora, S., Ghidoni, S., Chisari, C., Micera, S., and Artoni, F. (2020). Deep learning-
based BCI for gait decoding from EEG with LSTM recurrent neural network. J. Neural 
Eng. 17:046011. doi: 10.1088/1741-2552/ab9842

Wang, N. X. R., Olson, J. D., Ojemann, J. G., Rao, R. P. N., and Brunton, B. W. (2016). 
Unsupervised decoding of long-term, naturalistic human neural recordings with automated 
video and audio annotations. Front. Hum. Neurosci. 10, 1–13. doi: 10.3389/fnhum.2016.00165

Willett, F. R., Kunz, E. M., Fan, C., Avansino, D. T., Wilson, G. H., Choi, E. Y., et al. (2023). 
A high-performance speech neuroprosthesis. Nature. Nature Publishing Group. 620, 
1031–1036. doi: 10.1038/s41586-023-06377-x

Williams, A. H., Kim, T. H., Wang, F., Vyas, S., Ryu, S. I., Shenoy, K. V., et al. (2018). 
Publisher: cell press. Unsupervised discovery of demixed, low-dimensional neural 
dynamics across multiple timescales through tensor component analysis. Neuron 98, 
1099–1115.e8. doi: 10.1016/j.neuron.2018.05.015

Yang, Y., Sani, O. G., Chang, E. F., and Shanechi, M. M. (2019). Dynamic network 
modeling and dimensionality reduction for human ECoG activity. J. Neural Eng. 
16:056014. doi: 10.1088/1741-2552/ab2214

Zanos, S., Miller, K. J., and Ojemann, J. G. (2008). Electrocorticographic spectral 
changes associated with ipsilateral individual finger and whole hand movement annual 
international conference of the IEEE engineering in medicine and biology society. IEEE 
Eng Med BiolSoc Annu Int Conf 2008, 5939–5942,

https://doi.org/10.3389/fnhum.2024.1388267
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.neuroimage.2013.08.070
https://doi.org/10.1523/JNEUROSCI.3886-06.2007
https://doi.org/10.1016/j.cmpb.2022.106961
https://doi.org/10.1016/j.isci.2023.107808
https://doi.org/10.1056/NEJMoa2027540
https://doi.org/10.1126/science.1110913
https://doi.org/10.1109/ACCESS.2021.3076865
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41597-022-01280-y
https://doi.org/10.1523/ENEURO.0007-21.2021
https://doi.org/10.1088/1741-2552/abda0b
https://doi.org/10.1038/s41598-017-17314-0
https://doi.org/10.1371/journal.pbio.1000610
https://doi.org/10.1371/journal.pbio.1000610
https://doi.org/10.1038/nbt.4200
https://doi.org/10.1126/science.aav7893
https://doi.org/10.1109/TNSRE.2022.3207624
https://doi.org/10.1038/s41593-023-01260-4
https://doi.org/10.1088/1741-2552/ab9842
https://doi.org/10.3389/fnhum.2016.00165
https://doi.org/10.1038/s41586-023-06377-x
https://doi.org/10.1016/j.neuron.2018.05.015
https://doi.org/10.1088/1741-2552/ab2214

	Consistent spectro-spatial features of human ECoG successfully decode naturalistic behavioral states
	1 Introduction
	2 Methods
	2.1 Data preprocessing
	2.2 Spectro-spatial classification and consistency analysis

	3 Results
	3.1 Classification accuracy and consistency of spectro-spatial features
	3.2 Additive performance of ROI on classification

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

