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Introduction: Inadequate exposure to real-life operating can impede timely 
acquisition of technical competence among surgical residents, and is a major 
challenge faced in the current training climate. Mental rehearsal (MR)—the 
cognitive rehearsal of a motor task without overt physical movement—has been 
shown to accelerate surgical skills learning. However, the neuroplastic effect of 
MR of a complex bimanual surgical task is unknown. The aim of this study is to 
use functional near-infrared spectroscopy (fNIRS) to assess the impact of MR on 
prefrontal and motor cortical activation during a laparoscopic knot tying task.

Methods: Twelve surgical residents performed a laparoscopic knot tying task 
before and after either mental rehearsal (MR, intervention group) or textbook 
reading (TR, control group). In both groups, fNIRS was used to measure changes 
in oxygenated hemoglobin concentration (HbO2) in the prefrontal (24 channels) 
and motor cortices (22 channels). Technical performance was measured using 
leak volume, objective performance score and task progression score.

Results: MR led to a decrease in HbO2 (reduced activation) in the bilateral 
prefrontal cortex (PFC), and an increase in HbO2 (increased activation) in the 
left middle frontal gyrus, left precentral gyrus, and left postcentral gyrus. No 
discernible changes in activation were observed after TR in either the PFC or 
motor cortex. Moreover, smaller ΔHbO2 responses in the right PFC and greater 
ΔHbO2 responses in the left motor cortex were observed in the MR group 
compared with the TR group. Leak volume was significantly less following MR 
(p  =  0.019), but not after TR (p  =  0.347). Mean objective performance score was 
significantly higher following MR compared with TR (p  =  0.043).

Conclusion: Mental rehearsal may enhance surgical skill acquisition and 
technical proficiency by reducing utilization of attentional resources in the 
prefrontal cortex and improving neural efficiency in motor areas during a 
laparoscopic surgical task.
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Introduction

In a craft-based profession like surgery, technical skills have 
traditionally been acquired through an apprenticeship model of 
training. Trainees spend many hours in the operating room (OR) 
initially observing an experienced surgeon, then performing 
operations under direct supervision, before eventually developing 
operative independence. However, surgical training faces several 
challenges which impede trainees from gaining ‘hands on’ experience 
such as working time restrictions, performance targets imposed on 
healthcare organizations, and the ongoing conflict between service 
provision and training (Galasko, 2005; Bates et al., 2007; Ashmore, 
2019). More recently, the COVID pandemic during which non-urgent 
surgical cases were canceled and surgical trainees were re-deployed to 
work in other departments, has resulted in a significant loss of training 
in emergency and elective operating (Clements et al., 2021).

Hence, there is a need to develop interventions that can shorten 
learning curves and expedite surgical skill acquisition. Mental 
rehearsal (MR) is the cognitive rehearsal of a motor task without overt 
physical movements (Arora et al., 2011), and may enhance surgeons’ 
performance by helping them mentally prepare for a procedure, focus 
their attention on critical steps of an operation, and anticipate potential 
complications (Anton et al., 2017). Indeed, emerging literature has 
demonstrated that mental rehearsal can improve surgical performance 
(Arora et al., 2011; Rao et al., 2015; Cocks et al., 2014; Komesu et al., 
2009; Bathalon et al., 2005; Louridas et al., 2015; Anton et al., 2018; 
Anton et al., 2019), and arguments have been made for its formal 
integration into the surgical curriculum (Evgeniou and Loizou, 2013).

It is now established that skill acquisition and motor learning are 
associated with dynamic changes in brain function. The prefrontal cortex 
(PFC) plays a vital role in executive functions such as working memory, 
decision-making, and attentional control (Diamond, 2013), and changes 
in PFC activation have been shown to accompany expertise development 
and motor learning in surgery (Leff et al., 2007; Leff et al., 2008; Leff 
et al., 2008). Specifically, the PFC is recruited to a greater extent in novice 
compared to expert surgeons in whom such tasks have become 
automated and ingrained (Leff et al., 2007). However, following a period 
of training and practice, the prefrontal response of the ‘trained’ novices 
attenuates as performance improves (Leff et al., 2008; Leff et al., 2008).

The primary motor cortex (M1), the supplementary motor area 
(SMA), and the premotor area (PMA) are responsible for planning and 
execution of voluntary movements (Halsband and Lange, 2006). Data 
from functional magnetic resonance imaging (fMRI) (Morris et al., 
2015), positron emission tomography (PET) (Duty et al., 2012) and 
functional near-infrared spectroscopy (fNIRS) (Nemani et al., 2015) 
experiments during open (Morris et al., 2015) and laparoscopic (Duty 
et al., 2012; Nemani et al., 2015) tasks depict comparative attenuation of 
M1 activations amongst expert surgeons compared to novices, implying 

learning-related movement efficiency is mirrored by efficiencies in 
motor regions in the brain (Grantcharov et al., 2003; Datta et al., 2002). 
This suggests that consolidation of skills is associated with greater neural 
efficiency in motor regions, allowing experts to focus on the finer 
aspects of motor control as the primary task is more ingrained.

Much of the literature describing the neural processes 
underpinning mental rehearsal supports the “functional equivalence 
model” which posits overlapping neural representations in mental 
rehearsal and physical execution (Moran, 2009; Jeannerod, 2001; 
Jeannerod, 1995; Kuhtz-Buschbeck et al., 2003; Gerardin et al., 2000; 
Saiote et al., 2016; Hardwick et al., 2018). An extrapolation of this 
model would hypothesize that the underlying neurophysiological 
mechanisms that underpin practice effects would also be comparable 
(Di Rienzo et al., 2016). To this end, some studies have investigated 
how mental rehearsal facilitates motor learning and skill acquisition 
in terms of its effect on learning-dependant brain changes (Di Rienzo 
et al., 2016; Ladda et al., 2021; Ruffino et al., 2017).

In their early work Pascual-Leone et al. (1995) provided evidence 
that mental rehearsal induces similar learning-dependant 
neuroplasticity as physical practice (Pascual-Leone et al., 1995). Using 
transcranial magnetic stimulation, the authors found that mental 
rehearsal led to a similar enlargement of cortical representations of 
hand muscles required for performance of a piano sequence task as 
was observed with physical practice (Pascual-Leone et  al., 1995). 
Support for cortical reorganization can also be found in studies which 
used indirect neuroimaging modalities to measure haemodynamic 
changes in the brain (Lacourse et al., 2004; Nyberg et al., 2006; Jackson 
et al., 2003; Zhang et al., 2011). Specifically, fMRI studies have shown 
that mental rehearsal training improves neural efficiency in motor 
regions by strengthening the cortical representation of the task in 
primary motor areas, while reducing recruitment of secondary regions 
(Lacourse et al., 2004; Nyberg et al., 2006). For example, Lacourse 
et al. (2004) observed increased but more focused activation in the 
contralateral primary motor cortex and decreased activation in the 
supplementary and premotor areas with both mental rehearsal and 
physical training on a button-pressing task (Lacourse et al., 2004). 
Similarly, Nyberg et  al. (2006) demonstrated a contraction in the 
extent of motor activation following both mental rehearsal and 
physical practice of a left-handed finger tapping task (Nyberg 
et al., 2006).

These studies suggest that mental rehearsal training leads to 
cortical reorganization and improved neural efficiency in motor 
regions, comparable to the functional changes elicited through 
physical practice of the same task. However, these studies used simple 
motor task paradigms [e.g., piano sequence (Pascual-Leone et al., 
1995), button pressing (Lacourse et  al., 2004), finger movement 
(Nyberg et al., 2006; Zhang et al., 2011), foot movement (Jackson et al., 
2003; Lafleur et  al., 2002)] rather than complex bimanual skills 
required in surgery. In addition, the neuroimaging modalities utilized 
(e.g., fMRI and PET), would have required subjects to be constrained 
in the complexity of tasks under study. Utilizing an imaging modality 
which allows subjects to be freely mobile (e.g., fNIRS) would allow 
subjects to perform more complex motor tasks. Moreover, the 
duration of mental rehearsal training in most of the studies ranged 
from 5 days to 2 weeks (Pascual-Leone et al., 1995; Lacourse et al., 
2004; Nyberg et al., 2006; Jackson et al., 2003; Zhang et al., 2011; 
Lafleur et al., 2002). Such a prolonged period of training would not 
be feasible in a busy surgical setting. Finally, most of the literature 
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focuses on activation in motor regions. Given the importance of 
executive function on skills learning, understanding how mental 
rehearsal impacts PFC activity in addition to that of motor regions 
would further our understanding of the neural mechanisms of 
performance improvement with mental rehearsal.

The aim of the current study is to use fNIRS to investigate the 
impact of mental rehearsal training on prefrontal and motor cortical 
activation during execution of a complex surgical task (laparoscopic 
knot-tying). In addition to contributing to the scientific understanding 
of cognitive rehearsal and its effect on brain behavior, decerning the 
neural mechanisms by which mental rehearsal improves surgical skill 
acquisition and retention will provide objective evidence upon which 
decisions to formally incorporate it into surgical training curricula can 
be  based. The hypothesis is that performance gains arising from 
mental rehearsal will be underpinned by more focused activation of 
motor regions indicative of greater neural efficiency, along with 
attenuated responses in the prefrontal cortex reflecting skill 
internalization and automaticity.

Materials and methods

Subjects

Following ethical approval and after having obtained informed 
written consent, 12 surgical residents agreed to participate (median 
age = 31.5 years, 4 females) (Table 1). All subjects were screened for 
handedness and neuropsychiatric illness (n = 0) and were asked to 
refrain from alcohol and caffeine intake for 24 h prior to participation.

Task paradigm and experimental design

Participants were asked to perform a laparoscopic suturing (LS) 
task using an intracorporeal technique on a laparoscopic box trainer 
(iSim2, iSurgicals, UK). The task involved inserting a 2–0 Vicryl® 
suture (Ethicon, Somerville, NJ, USA) as close to pre-marked entry 
and exit points on either side of a defect in a Penrose drain. To tie a 
knot laparoscopically, participants were instructed to formulate one 
double throw followed by two single throws of the suture (Figure 1).

A block design experiment was conducted in which all 
participants initially performed the knot-tying task three times 
(baseline), with an inter-trial rest period of 30-s. Subjects were then 
randomized into intervention (mental rehearsal [MR]) or control 
(textbook reading [TR]) groups using a random number generator. 
Following either MR or TR, participants tied another three knots as 
described above (Figure 2).

Control group

Upon completion of the baseline task, participants in the control 
group read extracts from a paper which outlined the technical steps 
of the laparoscopic knot-tying task (Croce and Olmi, 2000). The 
subjects were asked to read the extracts for 90 s and repeated this 
exercise 5 times.

Mental rehearsal group

Each participant in the mental rehearsal group listened to a 90-s 
pre-recorded MR script (Supplementary Text S1). In order to create 
the script, instructional videos identified the key steps in performing 
LS as performed by consultant surgeons. Sensory and kinaesthetic 
sensory cues were identified and included in the script. The script 
contained not only a list of procedural steps for laparoscopic suturing, 
but also a vivid description of associated imagery cues to enhance the 
representation of the task in the subject’s mind and enable them to 
mentally experience the procedure. Having been reviewed by a 
consultant surgeon and three trainees, the participants listened to the 
script five times and were instructed to imagine the steps of the 
procedure and the associated feelings and sensations, whilst refraining 
from any physical movement.

Blinding

One experimenter (RP) was responsible for allocating participants 
to the MR or TR groups and was therefore not blinded to group 
allocation. Those involved in data collection and analysis (HNM, MO, 
and HS) were blinded to group allocation. Furthermore, as 
participants in both groups were required to perform an activity 
during the training period (i.e., mentally rehearse a task or read a 
passage of text), they were unaware as to whether they were allocated 
to the experimental or control group.

Outcome measures

Brain activation
The ETG-4000 Optical Topography System (Hitachi Medical Co, 

Japan) was used to measure changes in cortical oxygenated 
hemoglobin concentrations (HbO2) as a marker of functional brain 
activation across 24 prefrontal and 22 motor cortical channels. Sources 
and detectors were guided into position based on the international 
10–20 system of probe placement (Jurcak et al., 2007), with a source-
detector distance of 30 mm (Figure  1). Near-infrared light was 
delivered at 695 and 830 nm wavelengths.

TABLE 1 Subject demographics.

Mental 
rehearsal 

group

Textbook 
reading 
group

p-value

Number of subjects 6 6

Mean age (SD) 35.8 (6.7) 31.3 (1.5) 0.163*

Male:Female 5:1 3:3 0.545†

Mean previous LS 

experience (SD)‡

15.5 (17.4) 8.2 (8.1) 0.372*

Median handedness 

score (range)§

66.7 (−25.0–100.0) 100.0 (100.0–100.0) 0.312‖

*Independent samples t-test.
†Fisher’s exact test.
‡Number of times subject has performed a laparoscopic suturing (LS) task.
§Calculated using the Edinburgh Handedness Inventory.
‖Mann–Whitney U-test.
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Subjective workload and heart rate
Subjective workload was quantified using the Surgical Task Load 

Index (SURG-TLX) and STAI-6 questionnaires (Wilson et al., 2011; 
Marteau and Bekker, 1992). A wireless monitor (Bioharness, Zephyr 
Technology, USA) continually recorded heart rate (HR). Change in 
HR from rest to task (ΔHR) was calculated as follows:

 ( ) ( )HR Median HR Task Median HR Rest∆ = −

Technical performance
Technical skill was objectively assessed using three parameters, 

summarized as follows:
Task Progression Score (TPS; arbitrary units, au): Each task episode 

was assigned a score based on task progression, with 1 point awarded 
for each of the following steps: (Galasko, 2005) mounting the needle 
onto the needle holder, (Bates et al., 2007) needle insertion into the 
drain, (Ashmore, 2019) exiting the needle from the drain, (Clements 
et al., 2021) double throw, (Arora et al., 2011) 1st single throw, and 

FIGURE 1

(A) Prefrontal and motor channel locations (gray circles) which are positioned according to the international 10–20 system of probe placement (yellow 
circles). Sources and detectors are separated by an inter-optode distance of 30  mm. (B) Laparoscopic knot-tying task performed on a box trainer 
(iSim2, iSurgicals, UK).

FIGURE 2

Block study design in which participants performed 3 self-paced trials of the laparoscopic knot-tying task (intertrial rest period of 30  s) before being 
randomized to undergo five 90-s sessions of either mental rehearsal or textbook reading. This was followed by a further 3 trials of the task.
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(Anton et al., 2017) 2nd single throw of a laparoscopic reef knot. The 
TPS comprised the total number of points obtained during the task 
(maximum score = 6).

Objective Performance Score (OPS; arbitrary units, au): Adapted 
from the FLS scoring system for LS (Ritter and Scott, 2007), and utilized 
by several previous authors as a valid method of combining raw FLS 
performance measures into a single composite score (Anton et al., 2019; 
Stefanidis et al., 2017; Korndorffer et al., 2005; Stefanidis et al., 2007; 
Prabhu et al., 2010), the OPS was calculated as follows for each knot tied:

 

( )
( ) ( )( )

( )( )

     300
    10  

100   

OPS
Maximum permissible time for task completion s
Time taken for knot completion s x error score mm

x knot failure score au

=
 −
 

− 
 − 

The error score indicates the accuracy of needle placement and is 
calculated as follows:

 

( )
( )

 
     

   
      

Error Score
Distance mm between needle insertion point and
premarked target position Distance mm between
needle exit point and premarked target position

=
 
 + 
  

The knot failure score represents the strength of the tied knot. Knot 
slippage is allocated a score of 1, and knot breakage is given a score of 2.

Leak Volume (LV; ml): Saline was infused through each drain at a 
rate of 150 drops/min controlled via a digital pump. The volume of 
saline leaking from the closed defect over a 1-min period was recorded 
to assess the quality of defect closure.

Mental imagery ability
Mental imagery was assessed using a validated Mental Imagery 

Questionnaire (MIQ) adapted from Cumming et al. (2007) and which 
has been validated for use in surgery (Arora et al., 2010). Subjects 
completed the MIQ before and after receiving the MR or control 
intervention. The MIQ enabled the quality of mental imagery 
experiences to be quantified. The MIQ is an 8-item questionnaire, on 
which each item is scored on a 1–7 Likert scale. The items in the 
questionnaire assessed mental readiness (q1), confidence in 
performing the task (q2 and q3), usefulness of MR in task preparation 
(q4), quality of visual imagery (q5 and q6), kinesthetic imagery (the 
cognitive re-creation of the feeling of movement) (q7), and knowledge 
of the technical aspects of the task (q8) (Supplementary Figure S1).

Data processing and statistical analysis

Statistical analysis was performed using SPSS version 23.0 (IBM 
Corp., Armonk, NY, USA). A threshold p < 0.05 was set as the 
threshold for statistical significance.

Stress, technical skills data and mental imagery 
ability

Within-group (i.e., pre-vs post-intervention) comparisons were 
analyzed using the paired samples t-test for parametric data (i.e., OPS, 
leak volume, SURG-TLX and MIQ) and the Wilcoxon Signed Ranks test 

for non-parametric data (i.e., heart rate, progression score and STAI-6). 
Between-group (i.e., MR vs. TR) comparisons were analyzed using the 
independent samples t-test (parametric data) or the Mann–Whitney U 
test (non-parametric data) to determine significant between-group 
differences in stress, performance and mental imagery ability.

Functional neuroimaging data
Functional neuroimaging data was pre-processed using a bespoke 

MATLAB-based toolbox (HOMER2) (Huppert et al., 2009). Data 
quality checks were performed with the standard functionality using 
the function ‘hmrenPruneChannels,’ with a standard deviation of 
0–45 dB and a signal to noise ratio threshold of 2 a.u. Channels which 
exhibited very low optical intensities (<1) were excluded. High 
frequency noise and electrocardiographic effects were minimized 
using a low-pass filter (0.5 Hz). Across the population group (552 
channels), 16 channels were excluded due to poor optical signals (data 
rejection rate of 2.9%). Raw mean intensity values were converted to 
changes in optical density relative to the mean of each channel across 
the whole task period. Motion artifacts were visually inspected and 
detected using the motion detection function 
‘hmrMotionArtifactbyChannel’ for the channel-wise signal 
(tMotion = 0.5 s, tMask = 0.9 s) (Huppert et al., 2009). Channel-wise 
motion detection and spline correction were performed using a 
combination of the spline interpolation method and the Savitzky–
Golay filter, implemented using the ‘hmrMotionArtifactSpline’ 
function in the HOMER package (Scholkmann et al., 2010; Yücel 
et al., 2014). A frame size of 5 and filter order (p) of 0.99 was used for 
this purpose (Scholkmann et al., 2010; Yücel et al., 2014). Channel 
data were de-trended to correct for baseline fluctuations and averaged 
across blocks to increase the signal-to-noise ratio. Relative changes in 
light intensities were converted into changes in HbO2 concentration 
using the modified Beer–Lambert Law with a path length factor of 6.0 
(Scholkmann and Wolf, 2013; Cope et  al., 1988). Average 
haemodynamic responses were estimated around the task onset (60 s 
after onset) using the ‘hmrDeconvHRF_DriftSS’ function with a short 
separation of 0 mm (as there was no short separation channels) and 
the ordinary least squares method (Ye et al., 2009).

Identification of channel activation

For each group, pre- and post-intervention channel activation was 
confirmed by comparing the average baseline rest HbO2 data sampled 
over 10 s before task onset (HbO2Rest) with average task HbO2 data 
sampled over 110 s starting 10 s after task onset (HbO2Task) using the 
Wilcoxon Signed Ranks test. Channels displaying a statistically 
significant (p < 0.05) increase in HbO2 were considered activated.

Comparisons of activation responses

For each channel and each hemoglobin species, a variable ΔHbO2 
was computed as follows:

 2 2 2HbO HbO Task HbO Rest∆ = −

For each group, HbO2 in each channel was compared pre- and 
post-intervention using the Wilcoxon Signed Ranks test. Similarly, 
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ΔHbO2 in each channel was compared between groups in both pre- 
and post-intervention suturing sessions using the Mann–
Whitney U test.

Results

Within-group comparisons

Subjective workload and heart rate
There was no significant difference between pre- and post-

intervention STAI-6 scores or ΔHR in either group (Table 2).

Technical performance
Following MR, there was a significant decrease in LV (mean ± SD: 

5.31 ± 0.97 vs. 3.48 ± 1.09, p = 0.019), a non-significant increase in OPS 
(mean ± SD: 25.82 ± 51.60 vs. 53.10 ± 68.60, p = 0.516), but no 
significant change in TPS (p = 0.317) (Table  2 and Figure  3). In 
contrast, TR was not associated with any significant change in OPS 
(p = 0.221), LV (p = 0.347), or TPS (p = 0.593) (Table 2 and Figure 3).

Mental imagery ability
There was a non-significant increase in MIQ score following MR 

(mean ± SD: 36.83 ± 5.78 vs. 41.50 ± 4.59, p = 0.097), but no change in 
MIQ score following TR (mean ± SD: 29.00 ± 6.45 vs. 29.50 ± 8.50, 
p = 0.788) (Table 2).

Prefrontal cortex activation
Prior to MR, laparoscopic knot tying was associated with an 

increase in HbO2 concentration in the bilateral PFC, with significant 
activation responses seen in the right middle frontal gyrus (channel 
15). Following MR, significant deactivation responses were observed 
in the right superior frontal gyrus (channel 22). Following MR there 
was a trend toward smaller magnitude ΔHbO2 responses in the 
majority of prefrontal channels, however these changes did not reach 
statistical significance (Figures 4A,B).

Before TR, significant activation was seen in the right superior 
frontal gyrus (channel 20) during laparoscopic suturing. After TR, 
significant activation was seen in the left middle frontal gyrus (channel 

1), left superior frontal gyrus (channel 12), and the right superior 
frontal gyrus (channel 20). Following TR greater ΔHbO2 responses 
were observed in the left prefrontal cortex, particularly in the left 
inferior frontal gyrus (channel 9) (Figures 5A,B).

Motor cortex activation
After MR, an increase in HbO2 concentration was observed in 

channels located in the left motor cortex, with significant activation 
seen in the left middle frontal gyrus (channel 25), the left precentral 
gyrus (channel 32), and the left postcentral gyrus (channel 41) 
(Figures 6A,B). Furthermore, greater ΔHbO2 activation responses 
were identified in the left postcentral gyrus (channel 40) following MR 
(Figures 6C,D).

Before TR, significant deactivation responses were observed in the 
left paracentral lobule (channel 35) and the right precentral gyrus 
(channel 39). After TR, significant activation and deactivation 
responses were seen in the left precentral gyrus (channels 26 and 33) 
(Figures 7A,B). Overall, no significant change in ΔHbO2 was identified 
in any motor cortex channels after TR (Figure 7C).

Between-group comparisons

Subjective workload and heart rate
There was no significant between-group difference in STAI-6 

score or ΔHR in either the pre-intervention or post-intervention 
phase (Table 3). Furthermore, there was no difference between groups 
in overall SURG-TLX score (mean SURG-TLX score ± SD MR vs. TR: 
133.17 ± 25.13 vs. 145.00 ± 58.22, p = 0.657).

Technical performance
In the pre-intervention session, there were no significant between-

group differences in OPS (p = 0.426), LV (p = 0.956), or TPS (p = 0.140) 
(Table 3 and Figure 3). However, in the post-intervention session, OPS 
was significantly higher in the MR group compared with the TR group 
(mean ± SD: 53.10 ± 68.60 vs. −61.32 ± 99.89, p = 0.043). No significant 
between-group differences were observed in the post-intervention 
session with respect to LV (p = 0.109) or TPS (p = 0.293) (Table 3 and 
Figure 3).

TABLE 2 Within group comparisons of stress, mental imagery ability and performance.

Textbook reading Mental rehearsal

Pre-
intervention

Post-
intervention

p-value Pre-
intervention

Post-
intervention

p-value

STAI-6 score (IQR) 41.7 (37.5) 36.7 (17.5) 0.144* 28.3 (14.2) 26.7 (10.0) 0.500*

∆HR (IQR) 2.0 (10.8) 0.8 (8.3) 0.192 1.0 (15.8) −0.5 (13.5) 0.083

Mean LV ± SD 5.28 ± 0.47 4.82 ± 1.50 0.347† 5.31 ± 0.97 3.48 ± 1.09 0.019†

Mean OPS ± SD −18.72 ± 120.97 −61.32 ± 99.89 0.221† 25.82 ± 51.60 53.10 ± 68.60 0.516†

Median TPS (IQR) 6.0 (0.5) 5.8 (0.7) 0.593* 6.0 (0.0) 6.0 (0.2) 0.317*

MIQ score ± SD 29.00 ± 6.45 29.50 ± 8.50 0.788† 36.83 ± 5.78 41.50 ± 4.59 0.097†

STAI-6, 6-item state–trait anxiety inventory; ∆HR, change in median heart rate from rest to task (beats per minute); LV, leak volume; OPS, objective performance score; TPS, task progression 
score; MIQ, mental imagery questionnaire; IQR, interquartile range; SD, standard deviation.
*Wilcoxon signed ranks test.
†Paired samples t-test.
Statistically significant results are in bold.
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FIGURE 3

Within-group comparison of task performance. (A) Leak volume (B) objective performance score and (C) task progression score before and after 
mental rehearsal or textbook reading. Error bars represent 1 standard deviation. Au, arbitrary units; *p  <  0.05.
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Mental imagery ability
In the pre-intervention session, there was no significant difference 

in MIQ scores between the groups (p = 0.051). However, in the post-
intervention phase, MIQ scores were significantly higher in the MR 
group compared with the TR group (41.50 ± 4.59 vs. 29.50 ± 8.50, 
p = 0.012) (Table 3).

Prefrontal and motor cortex activation
In the pre-intervention session, apart from a smaller ΔHbO2 

response in the right superior frontal gyrus (channel 20) and a greater 
response in the right precentral gyrus (channel 39) in the mental 
rehearsal group, there were no significant between-group differences 
in the magnitude of the activation response in any prefrontal or motor 
cortical channels (Figure 8).

In the post-intervention session significantly smaller ΔHbO2 
responses were observed in the MR group in several channels in the 
right superior frontal gyrus of the prefrontal cortex (channels 20 and 
22) compared with the TR group (Figures 9A,C). In the motor cortex, 
greater ΔHbO2 responses were observed in channels located in the left 

motor cortex in the MR group compared with the TR (e.g., channels 
41 and 25) (Figures 9B,D).

Discussion

This comparative study sought to delineate the effects of mental 
rehearsal on cortical haemodynamic responses (using fNIRS) and 
technical ability of surgical trainees performing a laparoscopic 
suturing task. In line with our hypothesis, mental rehearsal led to 
attenuated prefrontal responses, greater neural efficiency within the 
motor cortex, and improvements in technical performance compared 
with textbook reading.

Mental rehearsal and surgical performance

In this study, mental rehearsal was found to significantly improve 
performance on a laparoscopic suturing task. This is congruent with 

FIGURE 4

(A) Comparison of ΔHbO2 between pre- and post-mental rehearsal. Red channels indicate those in which ΔHbO2 is greater after mental rehearsal, and 
blue channels represent those in which ΔHbO2 is smaller after mental rehearsal. Channels in which there is a statistically significant difference in 
ΔHbO2 (p  <  0.05) are circled black. (B) Group-averaged time course data from illustrative prefrontal cortical channels demonstrating task-induced 
change in HbO2 concentration pre- and post-mental rehearsal (MR). Task onset occurred at the 0-s time point.
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findings from other studies which have also demonstrate enhanced 
surgical performance following mental rehearsal training (Arora et al., 
2011; Cocks et al., 2014; Komesu et al., 2009; Bathalon et al., 2005; 
Sanders et al., 2008; Immenroth et al., 2007). For example, in study by 
Sanders et al. (2008) novice surgeons were randomized to receive 
either further mental rehearsal or engage in textbook reading after 
which they were asked to open and close a wound on a live 
anesthetised rabbit (Sanders et  al., 2008). The authors found that 
mental rehearsal was associated with improved technical performance 
and appeared to facilitate skills transfer from practice to actual surgery 
better than textbook reading (Sanders et  al., 2008). Others have 
investigated the effects of mental rehearsal on more advanced 
procedures. For example, Immenroth et  al. (2007) randomized 
surgical trainees into ‘no training,’ ‘practical training,’ or ‘mental 
rehearsal’ groups (Immenroth et al., 2007). Assessment of technical 
performance on a simulated laparoscopic cholecystectomy after the 
assigned intervention showed significant performance gains in the 
mental rehearsal group, but not in the no training or practical training 
groups (Immenroth et al., 2007). Similarly, a randomized controlled 
trial by Arora et al. (2011) demonstrated that surgical novices who 
received mental rehearsal training in addition to physical practice 
obtained significantly higher Objective Structured Assessment of 

Technical Skills (OSATS) scores on a simulated laparoscopic 
cholecystectomy task compared with those who undertook physical 
practice alone (Arora et  al., 2011). Improvements in technical 
performance with mental rehearsal have also been observed during 
cystoscopy (Komesu et al., 2009), crycothyroidotomy (Bathalon et al., 
2005) and endovascular surgery (Patel et al., 2012).

Interestingly, certain studies fail to show performance benefit of 
mental rehearsal during a range of surgical procedures such as 
laparoscopic suturing and knot-tying (Donnon et al., 2005; Jungmann 
et al., 2011), pattern cutting (Mulla et al., 2012), carotid endarterectomy 
(Wetzel et  al., 2011), and hysterectomy (Geoffrion et  al., 2012). 
However, these studies have several limitations which may explain the 
apparent ineffectiveness of MR training interventions. Firstly, none of 
the studies used any form of ‘manipulation checks’ such as imagery 
diary exercises or post-intervention interviews that explore 
participants imagery experience and ensure that subjects are 
compliant with the mental imagery script (Sevdalis et  al., 2013). 
Indeed, Geoffrion et al. (2012) admit that subjects in the textbook 
reading arm of the study may have unknowingly mentally rehearsed 
the procedure as they were reading the relevant textbook chapters 
(Geoffrion et al., 2012). Secondly, it appears that subjects’ imagery 
ability was not assessed in any of these studies. This is an important 

FIGURE 5

(A) Comparison of ΔHbO2 between pre- and post-textbook reading. Red channels indicate those in which ΔHbO2 is greater after textbook reading, 
and blue channels represent those in which ΔHbO2 is smaller after textbook reading. Channels in which there is a statistically significant difference in 
ΔHbO2 (p  <  0.05) are circled black. (B) Group-averaged time course data from illustrative prefrontal cortical channels demonstrating task-induced 
change in HbO2 concentration pre- and post-textbook reading (TR). Task onset occurred at the 0-s time point.
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consideration in order to control for differences in imagery ability 
between control and intervention groups (Sevdalis et al., 2013), and 
can be  achieved by using, for example, the mental imagery 
questionnaire (MIQ) which can determine individuals’ ability to 
generate and control images in their mind (Arora et  al., 2011). 
Without manipulation checks or assessment of imagery ability, the 
internal validity of the results of any mental rehearsal study may 
be called into question. Finally, there was a prolonged time interval 
between mental rehearsal and task execution in some of the studies. 
Evidence suggests that mental rehearsal is most effective when carried 
out no more than 24 h prior to physical task performance (Sapien and 
Rogers, 2012). However, in some studies the time lag between mental 
rehearsal and physical task performance was up to 1 week (Donnon 

et  al., 2005; Mulla et  al., 2012), whereas in others the timing was 
unclear (Jungmann et al., 2011; Wetzel et al., 2011), thereby mitigating 
any positive effect mental rehearsal may have had on task execution. 
These potential methodological shortcomings were addressed in the 
current study. For example, MIQ scores in the mental rehearsal and 
textbook reading groups were found to be equal at baseline, and the 
intervention was received immediately prior to physical task execution.

Mental rehearsal and stress

There was no difference between groups in terms of subjective 
workload or stress in the current study. This finding is mirrored in other 

FIGURE 6

Task-induced changes in HbO2 concentration in the motor cortex in (A) pre-mental rehearsal and (B) post-mental rehearsal. Red channels indicate 
those in which there was an increase in HbO2 from baseline, and blue channels represent those in which there was a decrease in HbO2. Channels in 
which there was a statistically significant change in HbO2 concentration (p  <  0.05) are circled black. (C) Comparison of ΔHbO2 between pre- and post-
mental rehearsal. Red channels indicate those in which ΔHbO2 is greater after mental rehearsal, and blue channels represent those in which ΔHbO2 is 
smaller after mental rehearsal. Channels in which there is a statistically significant difference in ΔHbO2 (p  <  0.05) are circled black. (D) Group-averaged 
time course data from illustrative left motor cortical channels demonstrating task-induced change in HbO2 concentration pre- and post-mental 
rehearsal (MR). Task onset occurred at the 0-s time point.
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studies which also failed to show that mental rehearsal attenuates stress in 
surgeons. For example, Wetzel et al. (2011) demonstrated no difference in 
objective or subjective stress between mental rehearsal and control groups 
when using a simulated carotid endarterectomy model. Instead, subjects 
in the mental rehearsal group were found to be using more stress-coping 
strategies (Wetzel et al., 2011). Similarly, mental rehearsal had no effect on 
self-reported stress among novice surgeons during a basic surgical skills 
task (Sanders et al., 2008). The lack of effect of MR on workload and stress 
observed in the current study would suggest that gains in technical 
performance observed with MR may be due to its direct impact on 
surgeons’ learning curves and the underlying neural processes rather than 
an indirect consequence of reducing cognitive workload.

Mental rehearsal and prefrontal cortical 
activity

In the current study, mental rehearsal led to attenuated responses 
in the prefrontal cortex as well as improved technical performance 

during laparoscopic suturing, whereas no such changes in activation 
were observed with textbook reading.

There is wealth of neuroimaging literature highlighting the 
importance of the prefrontal cortex for novel skill acquisition in 
surgery (Leff et al., 2007; Leff et al., 2008; Leff et al., 2008; Nemani 
et al., 2015; Leff et al., 2008; Ohuchida et al., 2009; Shetty et al., 2016; 
Khoe et  al., 2020). For example, Leff et  al. (2008) used fNIRS to 
investigate the neurocognitive mechanisms of task-related expertise 
in 62 surgeons of varying experience performing five trials of a 
bimanual open knot-tying task. Technical skill was assessed objectively 
using time on task, number of movements and instrument pathlength. 
Whist experienced subjects demonstrated stable technical 
performance and minimal fluctuation in PFC activity across all five 
trials, novice surgeons showed significant performance improvement 
and prefrontal attenuation suggesting that practice-related acquisition 
of a novel task is associated with a decrease in prefrontal demands 
(Leff et al., 2008). Similar results have been observed with laparoscopic 
procedures. Khoe et al. (2020) used fNIRS to examine the variation in 
PFC activation before and after a laparoscopic training workshop. 

FIGURE 7

Task-induced changes in HbO2 concentration in the motor cortex in (A) pre-textbook reading and (B) post-textbook reading. Red channels indicate 
those in which there was an increase in HbO2 from baseline, and blue channels represent those in which there was a decrease in HbO2. Channels in 
which there was a statistically significant change in HbO2 concentration (p  <  0.05) are circled black. (C) Comparison of ΔHbO2 between pre- and post-
textbook reading. Red channels indicate those in which ΔHbO2 is greater after textbook reading, and blue channels represent those in which ΔHbO2 is 
smaller after textbook reading. Channels in which there is a statistically significant difference in ΔHbO2 (p  <  0.05) are circled black.

TABLE 3 Between group comparisons of stress, mental imagery ability and performance.

Pre-intervention Post-intervention

Textbook 
reading

Mental 
rehearsal

p-value Textbook 
reading

Mental 
rehearsal

p-value

STAI-6 score (IQR) 41.67 (37.50) 28.33 (14.17) 0.394* 36.67 (17.50) 26.67 (10.00) 0.240*

∆HR (IQR) 2.0 (10.8) 1.0 (15.8) 0.707 0.8 (8.3) −0.5 (13.5) 0.862

Mean LV ± SD 5.28 ± 0.47 5.31 ± 0.97 0.956† 4.82 ± 1.50 3.48 ± 1.09 0.109†

Mean OPS ± SD −18.72 ± 120.97 25.82 ± 51.60 0.426† −61.32 ± 99.89 53.10 ± 68.60 0.043†

Median TPS (IQR) 6.0 (0.5) 6.0 (0.0) 0.140* 5.8 (0.7) 6.0 (0.2) 0.293*

MIQ score ± SD 29.00 ± 6.45 36.83 ± 5.78 0.051† 29.50 ± 8.50 41.50 ± 4.59 0.012†

STAI-6, 6-item state–trait anxiety inventory; ∆HR, change in median heart rate from rest to task (beats per minute); LV, leak volume; OPS, objective performance score; TPS, task progression 
score; MIQ, mental imagery questionnaire; IQR, interquartile range; SD, standard deviation.
*Mann–Whitney U test.
†Independent samples t-test.
Statistically significant results are in bold.
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Novice medical students were randomized into trained and untrained 
groups. All subjects were shown a basic tutorial video, following which 
the trained group received additional one-on-one training. Activation 
responses in the left PFC among the trained group were significantly 
less than those observed in the untrained group (Khoe et al., 2020). 
Similarly, Nemani et  al. (2018) sought to objectively differentiate 
surgical skill by assessing patterns of cortical activation during a 
laparoscopic pattern cutting exercise. Attending surgeons 
demonstrated decreased PFC activity compared with surgical residents 
when performing the task on a physical trainer (Nemani et al., 2018).

These studies suggest that in the early phases of motor learning 
when performance is unrefined and attention-demanding, there is 
greater recruitment of prefrontal regions (Geoffrion et al., 2012). 
However, as expertise develops and skills become more automated 

less demands are placed on executive centers and prefrontal activity 
diminishes (Leff et  al., 2007; Leff et  al., 2011). Therefore, the 
attenuated prefrontal responses that accompanied technical skill 
improvement in the mental rehearsal group in the current study, 
may suggest that MR accelerates skill acquisition and expertise 
development in surgeons at both a motor and cognitive level. Given 
that mental rehearsal has been shown to activate similar areas of the 
brain as physical task execution (Moran, 2009; Jeannerod, 2001; 
Jeannerod, 1995; Kuhtz-Buschbeck et  al., 2003; Gerardin et  al., 
2000; Saiote et  al., 2016; Hardwick et  al., 2018), it could 
be hypothesized that MR helps encode a skill on a cognitive level, 
strengthens central representations of the skill, and facilitates 
automaticity the same way that physical practice would be expected 
to do (Sevdalis et al., 2013).

FIGURE 8

Comparison of ΔHbO2 between mental rehearsal and textbook reading in the (A) prefrontal and (B) motor cortex during the pre-intervention session. 
Red channels indicate those in which ΔHbO2 is greater in the mental rehearsal group compared with the textbook reading group, and blue channels 
represent those in which ΔHbO2 is smaller in the mental rehearsal group compared with the textbook reading group. Channels in which there is a 
statistically significant difference in ΔHbO2 (p  <  0.05) are circled black.
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Mental rehearsal and motor cortical activity

In addition to attenuated prefrontal responses, mental rehearsal 
led to a spatially more localized increase in activation in the left motor 
cortex compared with textbook reading—indicative of greater neural 
efficiency. Given that all subjects in this study were right hand 
dominant, left lateralisation of motor activity in the mental rehearsal 
group is likely to genuinely reflect more efficient motor representation 
during task execution.

There is evidence to suggest that similar neuroplastic changes 
occur during skills learning. For example, Nemani et al. (2018) used 
fNIRS to capture cortical haemodynamic responses over the PFC, 
SMA and M1 to classify surgical expertise during a laparoscopic 
pattern cutting task. Novice surgeons were shown to have significantly 
greater activation in the PFC and less activation in the left medial M1 
and SMA compared with expert surgeons (Nemani et al., 2018). These 

findings have been confirmed by longitudinal studies which have 
delineated changes in motor cortical activity as expertise develops 
over time (Floyer-Lea and Matthews, 2005; Karni et al., 1995; Ma et al., 
2010). Floyer-Lea and Matthews (2005) sought to identify changes in 
cortical activation that occur with short term (fast) learning during 
which performance improves rapidly, and long term (slow) learning 
during which performance gains are incremental. Using fMRI, the 
authors showed that during short-term learning of an isometric force 
task, activity in the PFC and primary motor cortex decreased, whereas 
with long term learning (3 weeks), increased activity was observed in 
the primary motor cortex (Floyer-Lea and Matthews, 2005). In line 
with these findings, Karni et al. (1995) trained subjects in a motor 
sequence task for 3 weeks and found a progressive increase in 
activation of the primary motor cortex. These findings suggest that 
over time, there is an enlargement of the motor cortical representation 
a learned skill, which may underlie long-term skill retention and 

FIGURE 9 (Continued)
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enable finer motor control (Ungerleider et  al., 2002; Dayan and 
Cohen, 2011).

Neural efficiency refers to patterns of more spatial localized or less 
intense brain activity when performing a motor skill (Neubauer and 
Fink, 2009). Many studies have shown that brain activation in expert 
athletes is more spatially localized compared with non-experts. For 
example, Chang et al. (2011) compared the activation maps of elite 
archers and non-archers during mental rehearsal using fMRI. In 
non-archers, a wide area of activation was observed and included 
premotor, SMA, inferior frontal region, basal ganglia and cerebellum. 
In contrast, activation was localized to only the SMA in expert archers 
(Chang et  al., 2011). Similarly, Milton et  al. (2007) used fMRI to 
compare brain activation during the pre-shot routine of novice and 
expert golfers and found a more focused and efficient organization of 
task-related neural networks among expert golfers. In contrast, 
novices exhibited a broader area of activation implying a difficulty in 
filtering out task-irrelevant information (Milton et al., 2007).

In sum, motor skill learning is associated with a redistribution of 
cortical activity from anterior to posterior regions (Neubauer and 
Fink, 2009; Kelly and Garavan, 2005). Specifically, as expertise 
develops prefrontal cortical activity attenuates, interpreted as less 
consumption of attentional resources as a skill is internalized and 
becomes automated (Leff et al., 2011). Concurrently, an increase in 
activity in motor regions is observed suggesting greater recruitment 
of additional motor units into a local network that represents that 
acquired skill (Ungerleider et al., 2002). Furthermore, this increase in 
activity in motor regions is more spatially localized to task-relevant 

cortical regions suggesting a greater degree of neural efficiency as 
learning progresses. In the current study, mental rehearsal led to 
similar neuroplastic changes in prefrontal (decreased activity) and 
motor regions (increased and spatially more localized activity), which 
suggests that mental rehearsal facilitates skill acquisition by 
accelerating the neuroplastic changes that accompany skills learning.

Limitations

There are several limitations to the current study which need to 
be acknowledged. Firstly, the number of participants was relatively low 
which increases the risk of type 1 and/or type 2 errors. However, a 
sample size estimation was not feasible as there have been no previous 
studies comparing mental rehearsal and textbook reading in a surgical 
setting in order to perform a pre-hoc power calculation. Indeed, 
studies investigating the effect of mental rehearsal on cortical activation 
in other domains have not incorporated sample size calculations and 
the cohort size in our study is comparable to these studies (Nyberg 
et al., 2006; Moriya and Sakatani, 2017). Furthermore, the current 
work is a hypothesis-generating study, data from which could be used 
for a sample size calculation for a larger confirmatory study.

Secondly, there may be a selection bias in the recruitment of study 
participants. Although all general surgical residents within a 
postgraduate training region were invited to participate, it is possible 
that only residents who felt confident in their laparoscopic knot-tying 
ability agreed to enroll. The subspecialty interest of participants was 

FIGURE 9

Comparison of ΔHbO2 between mental rehearsal and textbook reading in the (A) prefrontal and (B) motor cortex during the post-intervention session. 
Red channels indicate those in which ΔHbO2 is greater in the mental rehearsal group compared with the textbook reading group, and blue channels 
represent those in which ΔHbO2 is smaller in the mental rehearsal group compared with the textbook reading group. Channels in which there is a 
statistically significant difference in ΔHbO2 (p  <  0.05) are circled black. Group-averaged time course data from illustrative (C) prefrontal and (D) left 
motor cortical channels demonstrating task-induced change in HbO2 concentration post-mental rehearsal (MR) and post-textbook reading (TR). Task 
onset occurred at the 0-s time point.
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not recorded, and there may have been a disproportionate number of 
residents with a specialist interest in surgical disciplines in which 
laparoscopic skills are a fundamental part of training (e.g., upper 
gastrointestinal surgery). Therefore, the neuroergonomic and 
performance benefits of mental rehearsal may not be representative of 
the wider surgical community. Furthermore, generalisability of the 
study findings to other surgical procedures cannot be  assumed. 
Empirical data is required to ascertain whether mental rehearsal can 
have similar effects on performance and brain behavior during other 
types of surgical skill.

Thirdly, whilst mental imagery ability was found to be comparable 
between the two groups at baseline, manipulation checks to determine 
whether subjects are adhering to the MR script were not carried out. 
Future studies can address this shortcoming by conducting post-
intervention interviews or collecting qualitative data from 
imagery diaries.

Fourthly, short separation channel data was not collected which 
would have provided an indication as to whether the measured cortical 
activations were contaminated by superficial haemodynamic signals. 
However, analysis of heart rate data demonstrated that there was no 
significant change in the systemic physiological response within or 
between groups which would suggest that the observed cortical 
haemodynamic signals reflect genuine underlying activation responses.

Finally, we  did not investigate whether the effects of mental 
rehearsal on cortical activation are retained in the long-term. This 
would be the focus of future work to provide supportive evidence for 
incorporating mental skills training in the surgical curriculum. 
Nonetheless, the short-term neuroergonomic benefits of mental 
rehearsal which this study investigates are equally important to 
appreciate since, in the real-world setting, surgeons usually mentally 
visualize the critical steps of the procedure, often with the aid of 
pre-operative imaging, just prior to starting an operation.

Conclusion

Mental rehearsal is associated with neuroplastic changes that 
accompany skills learning and expertise development, as well 
improved technical performance during a laparoscopic surgical task. 
Specifically, it is associated with attenuated prefrontal activation and 
greater neural efficiency in motor regions, suggesting reduced 
attentional demands, greater task automaticity and encodement of 
motor skill at a cognitive level. The current study findings suggest that 
mental rehearsal may be used as an adjunct to traditional training 
strategies to enhance skill acquisition among trainee surgeons.
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