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Hyperscanning, which enables the recording of brain activity from multiple 
individuals simultaneously, has been increasingly used to investigate the 
neuropsychological processes underpinning social interaction. Previous 
hyperscanning research has primarily focused on interbrain synchrony, 
demonstrating an enhanced alignment of brain waves across individuals during 
social interaction. However, using EEG hyperscanning simulations, we  here 
show that interbrain synchrony has low sensitivity to information alignment 
across people. Surprisingly, interbrain synchrony remains largely unchanged 
despite manipulating whether two individuals are seeing same or different 
things at the same time. Furthermore, we show that hyperscanning recordings 
do contain indices of interpersonal information alignment and that they can 
be  captured using representational analyses. These findings highlight major 
limitations of current hyperscanning research and offer a promising alternative 
for investigating interactive minds.
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1 Introduction

Understanding how social interactions dynamically shape human mind and behavior and 
vice versa is a key question in cognitive neuroscience and psychology (Sebanz et al., 2006; Hari 
et al., 2015). Hyperscanning, which enables the recording of the brain activity of multiple 
individuals at the same time, has been increasingly used to address this question. 
Hyperscanning research revealed enhanced interbrain synchrony between individuals 
interacting socially, which has been argued to reflect resonant minds facilitating cooperation 
and communication (Dumas et al., 2010; Dikker et al., 2017; Pérez et al., 2017; Goldstein et al., 
2018; Reindl et al., 2018). However, here we highlight an important limitation of interbrain 
synchrony measures by showing that these measures indexing the alignment of neural activity 
patterns across individuals have low sensitivity to their Information content. We show that 
representational analyses, the framework of Representational Similarity Analysis (RSA) in 
particular, is a promising alternative to address this issue and better index information 
alignment across individuals in hyperscanning research.
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2 Interbrain synchrony does not 
measure information alignment

Interbrain synchrony has been investigated in hyperscanning 
research using a range of neuroimaging techniques including 
Electroencephalography (EEG), Magnetoencephalography (MEG), 
functional Magnetic Resonance Imaging (fMRI), and functional Near-
InfraRed Spectroscopy (fNIRS). Numerous measures have been used 
to index interbrain synchrony in hyperscanning studies generally 
based on amplitude correlation and phase locking (Czeszumski et al., 
2020). For EEG and MEG, enabling access to neural processing at 
faster time scales, these analyses have also focused on the amplitude 
and phase of neural oscillations, with larger emphases on activity in 
the alpha (8–12 Hz) and beta (13–30 Hz) bands (Dumas et al., 2010; 
Goldstein et  al., 2018). See Czeszumski et  al. (2020) for a 
comprehensive review of hyperscanning and interbrain 
synchrony measures.

While all these methods are relevant to measure synchrony in 
general, the processes captured by interbrain synchrony in the context 
of hyperscanning research remain unclear. The causal nature of this 
phenomenon has been the main source of concerns so far, whether 
interbrain synchrony directly drives synchronised mind and behavior 
or interbrain synchrony is simply caused by synchronised mind and 
behavior (Burgess, 2013; Hari et al., 2013; Hamilton, 2021; Novembre 
and Iannetti, 2021; Holroyd, 2022). If synchronised mind and behavior 
causes interbrain synchrony, then this suggests that there is no direct 
brain-to-brain coupling between individuals, and interbrain 
synchrony is the result of similar sensory and cognitive processes 
driven by shared environment and task. As pointed out by Hamilton 
(2021), a lack of direct brain-to-brain coupling may not be a critical 
issue because interbrain synchrony measures are still of interest for 
hyperscanning research if they provide insight into the alignment of 
sensory information and cognitive processes across individuals while 
socially interacting.

However, here we  present results showing that interbrain 
synchrony measures do not effectively index information alignment 
between individuals because these measures are largely content 
agnostic. We  leveraged a publicly available EEG dataset from the 
visual object recognition literature with 48 participants who were 
presented with 400 images from 40 categories (Shatek et al., 2022). All 
recordings were made individually with a 128-channel BrainVision 
actichamp EEG system. We used this dataset to run hyperscanning 
simulations to assess the sensitivity of interbrain synchrony to 
information alignment by comparing interbrain synchrony when two 
individuals see the same things (Same objects) vs. different things 
(Different objects) at the same time (Figures 1, 2).

We ran 10,000 hyperscanning simulations with 24 pseudo pairs 
randomly drawn from the 48 subjects available (Figure 2). Interbrain 
synchrony was computed for a wide range of frequencies as amplitude 
correlation and phase locking across subjects for all possible 
combinations of channels (Czeszumski et  al., 2020). Results were 
averaged across all possible combinations of channels to capture any 
potential changes in interbrain synchrony. With optimal control of the 
timing and content of the presented stimuli, the results from the 
simulations revealed that interbrain synchrony has low sensitivity to 
information alignment across individuals. Amplitude correlation and 
phase locking values remained largely unchanged whether people 
were seeing the same object or not (Figure 2D). t-values after stimulus 

presentation across all frequencies obtained from the 10,000 
simulations show that difference between Same objects and Different 
objects would in most cases be statistically undetectable despite a 
sample size at least similar (i.e., 24 pairs) to those generally used in the 
literature (Figure  2F). Figure  2F depicting t-values on averaged 
amplitude and phase values across frequencies within 180 and 220 ms 
after image presentation – time window yielding highest percentages 
of significant t-values and peak decoding accuracy in object literature 
in general (Grootswagers et al., 2019; Shatek et al., 2022) – shows that 
barely 50% of the simulations reached statistical significance for 
interbrain synchrony (IBS). See legend of Figure  2 and publicly 
available code at https://osf.io/etx64/ for further 
methodological details.

3 Interbrain representational similarity 
analysis to effectively measure 
information alignment

The Representational Similarity Analysis (RSA) framework has 
received significant interest in the field of cognitive neuroscience 
(Kriegeskorte et al., 2008; Haxby et al., 2014), including more recently 
in social neuroscience and the intersubject correlation community 
(Nastase et al., 2019; Popal et al., 2019), but has not been used yet in 
hyperscanning research. This analysis is based on the computation of 
Representational (Dis)similarity Matrices (RDMs) to abstract from 
the patterns of neural activity themselves and characterise their 
informational content, allowing testing how two different systems 
quantitatively relate to each other by comparing their RDMs. RSA 
makes it possible to compare the responses from different systems, 
including responses recorded with different neuroimaging systems, 
neuroimaging and behavioral responses, as well as responses from 
different individuals, as shown here.

We computed Interbrain RSA (IRSA) using the same amplitude 
and phase data as IBS (Figure 2E). RDMs that encode information 
content and abstract from activity patterns were first computed 
separately for each subject and channel by calculating the amplitude 
correlation and phase locking for all pairs of stimuli. This approach 
based on (dis)similar temporal patterns in time-frequency data 
separately for each channel differs from other approaches often used 
with RSA (Kriegeskorte et al., 2008; e.g., Grootswagers et al., 2017; 
Shatek et al., 2022), but allows here to directly compare between IRSA 
and IBS. The results of the simulations show that information 
alignment can be  captured in EEG hyperscanning with better 
sensitivity using IRSA. IRSA values decrease dramatically when 
shuffling the stimuli (Figure 2E), as reflected in differences between 
Same object vs. Different objects being statistically detected more 
consistently than IBS with statistical significance being reached in 
most simulations (Figure 2F). See legend of Figure 2 and publicly 
available code at https://osf.io/etx64/ for further methodological details.

4 IBS vs. IRSA: statistical comparison

Statistical analyses on the 10,000 simulations indicated that t-values 
testing differences between Same vs. Different objects in the 180–220 ms 
selected time window, as depicted in Figure 2F, were significantly higher 
for IRSA than IBS for both amplitude, t(19998) = 117.22, p < 0.0001, 
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d = 1.66, BF10 > 1,000, and phase, t(19998) = 109.31, p < 0.0001, d = 1.55, 
BF10  > 1,000, showing that IRSA has higher sensitivity to content 
shuffling than IBS. These effects held beyond the selected time window 
as indicated by significantly higher t-values for IRSA than IBS for both 
amplitude, t(19998) = 139.21, p < 0.0001, d = 1.97, BF10 > 1,000, and 
phase, t(19998) = 95.87, p  < 0.0001, d  = 1.36, BF10  > 1,000, when 
conducting these analyses on a larger time interval from 0 to 500 ms 
after stimulus presentation. Large effect sizes observed here demonstrate 
a critical advantage of IRSA over IBS to index information alignment 
from amplitude and phase data in hyperscanning research.

5 Perspectives and challenges

Using hyperscanning simulations with well-controlled visual 
stimuli, our work shows that content-related information in 

hyperscanning research is not effectively captured by interbrain 
synchrony measures. This contrasts with previous research that 
found reliable decrease in interbrain synchrony when shuffling data 
across trials and/or pairs (Zamm et al., 2021, 2024; Reindl et al., 
2022), which our results suggest might most likely be due to breaking 
the alignment of the timing of sensory and cognitive processes 
occurring in shared tasks and environments rather than the 
alignment of their information content. Shuffling information 
content while keeping timing constant in our simulations only 
marginally decreased interbrain synchrony whereas changes in 
timing resulting in large variations in neural signals would have a 
strong influence (Burgess, 2013; Holroyd, 2022). Examining and 
controlling for timing (dis)alignment of sensory, cognitive, and 
motor responses when shuffling across pairs and/or trials will 
be essential in future research to better understand the processes 
reflected by interbrain synchrony.

FIGURE 1

(A) Same vs. different mental representations across two subjects induced by the presentation of same vs. different objects at the same time. (B) Stimuli 
presented to subjects individually in Shatek et al. (2022), including 40 different categories of objects, each with 10 different images presented 10 times, 
while EEG used here to run hyperscanning simulations was recorded. The 10 images are shown for the categories Bee and Bench, and 2 out of the 10 
images for each of the remaining 38 categories are shown in the ‘Other’ column. (C) EEG evoked responses for two representative subjects (at channel 
POz) for the 40 categories of objects averaged across all images and repetitions highlighting the low magnitude of variations related to image content.
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FIGURE 2

(A) 10,000 hyperscanning simulations based on individual 128-channel EEG recordings from Shatek et al. (2022), each simulation including 24 pseudo 
pairs randomly drawn from the 48 subjects available. (B) EEG data were average referenced, bandpass filtered between 0.1 and 100  Hz, and 
downsampled to 250  Hz. Amplitude and phase were then estimated for each channel and all 40 objects (averaged across all stimuli and repetitions 
within categories) from 6 to 46  Hz every 10  ms using a 500  ms sliding Hanning window yielding a 2  Hz frequency resolution (Oostenveld et al., 2011). 
(C) Objects presented to the two subjects of each pair were either kept the same (Same objects) or made different by shuffling their order (Different 
objects). (D) Interbrain synchrony (IBS) was computed at each 10  ms time step and frequency bin as the amplitude (Pearson) correlation and phase 
locking (relative phase mean vector length) between the two subjects of the pairs for all combinations of channels within a 510  ms sliding window 
from 0.2 to 1  s before/after stimulus onset. The resulting 128  ×  128 channel interbrain connectivity matrices for each object were then averaged to 
obtain a single amplitude correlation and phase locking value at each time step and frequency bin for Same objects and Different objects. Interbrain 
connectivity matrices are from a representative pseudo pair (at 10  Hz and 200  ms after stimulus onset) and time-frequency maps correspond to the 
grand average of all pseudo pairs and simulations. (E) For Interbrain Representational Similarity Analysis (IRSA), amplitude correlation and phase locking 

(Continued)
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More generally, these results support the hypothesis that 
interbrain synchrony is caused by synchronised mind and behavior 
rather than the opposite, interbrain synchrony causing 
synchronised mind and behavior. Showing that interbrain 
synchrony does not uniquely capture sensory and cognitive 
processes supporting social interactions, our results suggest that 
interbrain synchrony cannot be a causal mechanism (underpinned 
by direct brain-to-brain coupling), and importantly, might be at 
best a poor proxy of synchronised sensory and cognitive processes 
supporting social interactions (Hamilton, 2021; Novembre and 
Iannetti, 2021). To be an effective top-down mechanism enabling 
the myriads of social behaviors observed every day, interbrain 
synchrony would not only require reflecting reliable timing 
information but also content information, which is not supported 
by our hyperscanning simulations.

The lack of unique and direct relationship between 
interbrain synchrony and synchronised sensory and cognitive 
processes during social interactions might explain part 
of the discrepancies in hyperscanning literature, including 
interbrain synchrony not being observed in some studies despite 
participants interacting and synchronising with each other (Liu 
et al., 2018; Czeszumski et al., 2020; Newman et al., 2024). While 
further research with a wider range of sensory and cognitive 
processes and neuroimaging techniques will be  needed to 
expand our work beyond EEG visual evoked responses, the 
limitations of interbrain synchrony revealed here add to the 
growing concerns having been expressed in the field (Burgess, 
2013; Hari et al., 2013; Hamilton, 2021; Novembre and Iannetti, 
2021; Holroyd, 2022).

Our results highlight representational analyses as a powerful 
alternative to synchrony measures to better index information 
alignment between individuals. Enabling information content to 
be compared across individuals, even while obtained from different 
(neuroimaging) systems, these analyses will have critical advantages 
for future hyperscanning research. While implementing 
representational analyses is relatively straightforward when having 
time-locked trials with many different stimuli, moving into the 
representational space in more naturistic tasks as often used in 
hyperscanning research will be  more challenging. Advancing 
representational analyses methods for non-time locked data will 
be needed to reach full capacity of hyperscanning and enable a step 
change in understanding the sensory and cognitive processes 
supporting real-time social interactions.
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were first calculated between all pairs of objects within a 510  ms sliding window from 0.2 to 1  s before/after stimulus onset to obtain dissimilarity 
matrices. Amplitude dissimilarity was calculated as 1 – Pearson correlation and phase dissimilarity was calculated as 1 – phase locking (relative phase 
mean vector length). We then computed the (Spearman) correlation between dissimilarity matrices across the two subjects for all combinations of 
channels. The resulting 128  ×  128 channel interbrain connectivity matrices were averaged to obtain a single correlation value at each time step and 
frequency bin for Same objects and Different objects. The figure shows example dissimilarity matrices and interbrain connectivity matrices from a 
representative pseudo pair (at 10  Hz and 200  ms after stimulus onset, channel POz for the dissimilarity matrices). Time-frequency maps correspond to 
the grand average of all pseudo pairs and simulations. (F) Time-frequency maps (averaged across all possible combinations of channels) represent the 
percentage of significant t-values from the 10,000 simulations for Same objects vs. Different objects (t-values >1.714, critical t-value for one-tailed 
t-tests with 24 observations, alpha  =  0.05) for amplitude and phase data as a function of IBS and IRSA, with brighter colours indicating that large 
proportions of simulations yielded significant differences. The right panels represent the mean t-values within 180–220  ms (time interval showing 
highest percentages of significant t-values in line with peak decoding accuracy in object literature) from the 10,000 simulations for Same objects vs. 
Different objects after averaging correlation and phase locking data across all frequency bins. The blue horizontal line indicates the critical t-value. 
These plots show that the same vs. different objects differences were observed only in around 50% of simulations using IBS, but in more than 80% of 
simulations when using IRSA.

FIGURE 2 (Continued)
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