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Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach

to modulating brain activity and holds the potential for broad accessibility. This

work discusses the mechanisms of the four distinct approaches to modulating

brain activity non-invasively: electrical currents, magnetic fields, light, and

ultrasound. We examine the dual stochastic and deterministic nature of brain

activity and its implications for NIBS, highlighting the challenges posed by inter-

individual variability, nebulous dose-response relationships, potential biases and

neuroanatomical heterogeneity. Looking forward, we propose five areas of

opportunity for future research: closed-loop stimulation, consistent stimulation

of the intended target region, reducing bias, multimodal approaches, and

strategies to address low sample sizes.
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1 Introduction

The human brain, comprising approximately 80 billion neurons and a similar number
of glial cells (Herculano-Houzel, 2009), is a highly complex organ. The brain consumes 20%
of the body’s metabolic budget while constituting only 2% of its mass (Sokoloff, 1960). The
outsized cardiovascular intake of the brain sustains its many parallel processes, estimated at
(0.18–6.4)×1014 traversed edges per second (Katja, 2015). Neuromodulatory interventions
aim to deliver targeted perturbations of these neural processes, identifying the optimal
targets and methods poses a significant challenge. Additionally, neuromodulation must
take into account the cerebrospinal fluid, sulci and gyri, meninges, skull, and scalp in which
the brain is ensconced. Yet the ability to modulate brain activity without surgery, both in
the cortex and in deep brain structures, has been demonstrated through a broad spectrum
of approaches (Polanía et al., 2018).

Non-invasive brain stimulation (NIBS) is a promising approach for improving brain
health and quality of life. Moreover, when appropriately configured it presents minimal
risks and costs when compared to invasive brain stimulation (Najib and Horvath, 2014;
Bikson et al., 2016; Cassano et al., 2022; Qin et al., 2023). Greater patient acceptability
facilitates the translation of NIBS to a broader range of applications. For instance, patients
with moderate Parkinson’s disease consider invasive deep-brain stimulation to be a last
resort (Sperens et al., 2017). In a survey of the general public, ultrasound and magnetic
stimulation were preferred over pharmaceuticals and implants as an intervention for
mental health (Atkinson-Clement et al., 2024).
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Applications of NIBS include personalized, intermittent theta-
burst transcranial magnetic stimulation (TMS) which has been
approved by the Federal Drug Administration (Tarr, 2023) and
boasts a 79% remission rate for patients with treatment-resistant
depression (Cole et al., 2022). Transcranial electrical stimulation
(tES) is being trialed by the National Health Service in the United
Kingdom for the treatment of depression (Medtech innovation
briefing, 2023). The treatment of drug addiction has promise
in preliminary trials using low-intensity focused ultrasound
stimulation (LIFUS) (Mahoney et al., 2023). NIBS has also been
used for the reduction of chronic pain (Che et al., 2021) and
the enhancement of attention (Brosnan et al., 2018) and memory
(Grover et al., 2022) in the aging brain.

NIBS shows promise as a therapeutic intervention for various
neurological and psychiatric conditions for both its wide-ranging
neuromodulatory capabilities and the accessibility of large-scale
manufacturing. The manufacturing of NIBS devices relies largely
on the existing electronics manufacturing industry, as a result, it
has the potential to scale quickly. This could potentially facilitate
adoption curves akin to those seen for blood oxygen sensors
or consumer electronics products within the respective patient
groups. At this scale and speed, NIBS could have a substantial,
translational impact. However, the realization of NIBS’s potential
is contingent upon surmounting several significant barriers. In
this work, we introduce different approaches to NIBS and their
mechanisms of action, describe major challenges facing the field,
and explore opportunities to overcome them.

2 Approaches to non-invasive brain
stimulation

The four primary approaches to non-invasive brain stimulation
are transcranial electrical stimulation (tES), transcranial magnetic
stimulation (TMS), transcranial photobiomodulation (tPBM) and
transcranial ultrasound stimulation (TUS). Figure 1 provides an
overview of their respective characteristics.

Transcranial electrical stimulation (tES) passes a current
(typically 1-4mA) through active and return electrodes (Thair
et al., 2017). Stimulation is typically delivered via two electrodes,
although more electrodes can enhance stimulation focality (Datta
et al., 2009). Transcranial direct current stimulation (tDCS), a
type of tES, modulates neuronal excitability without reaching the
threshold necessary to trigger neuronal depolarizations (Bikson
et al., 2004). This alteration of membrane potentials has been
shown to occur through several mechanisms, including decreased
γ -aminobutyric acid (GABA) concentrations (Stagg et al., 2011)
and increased glutamate and glutamine concentrations (Hunter
et al., 2015) with effects modulated by sodium channels (Nitsche
et al., 2003; Alagapan et al., 2016; Reed and Cohen Kadosh, 2018).

tES also comes in other forms, such as Transcranial Alternating
Current Stimulation (tACS) which utilizes sinusoidal currents
thought to entrain brain oscillations (Antal et al., 2008; Kanai
et al., 2008). Additionally, Transcranial Random Noise Stimulation
(tRNS) is the random sampling of currents from a bell-shaped
curve (Terney et al., 2008). The mechanisms for tRNS are unclear,
but they may involve stochastic resonance (Stacey and Durand,
2000). In contrast to tDCS, aftereffects of tRNS are not NDMA

receptor-dependent and can be suppressed by benzodiazepines,
suggesting an alternative mechanism (Chaieb et al., 2015).

Temporal Interference (TI) stimulation employs the
convergence of two or more high-frequency (kHz) currents
to create a low-frequency envelope that selectively modulates
brain activity. Importantly, the high-frequency carrier currents,
though present, do not impact neuronal activity due to the
low-pass filtering effect of neuronal membranes (Hutcheon and
Yarom, 2000). This generates a focused electric field (E-field) that
oscillates at the difference in frequency of these high-frequency
waves (Grossman et al., 2017). Notably, recent human studies have
successfully demonstrated TI in humans, including the targeted
modulation of the hippocampus (Violante et al., 2023).

Transcranial magnetic stimulation (TMS) uses electromagnets
to induce currents within the brain, producing supra-threshold
E-fields on the order of hundreds of V/m (Bijsterbosch et al.,
2012) compared to less than 1V/m with tES (Evans et al., 2020).
Approaches to TMS includes single-pulse TMS for the exploration
of brain function and repetitive TMS (rTMS) used to induce
effects lasting longer than the stimulation period (Klomjai et al.,
2015). TMS can induce long-term potentiation (LTP) through
the unblocking of post-synaptic NDMA receptors blocked by
magnesium ions resulting in an influx of calcium ions in post-
synaptic neurons (Cooke and Bliss, 2006). Additionally, long-term
depression (LTD) can be induced through the slow flow of calcium
ions from lower-frequency stimulation (Chervyakov et al., 2015).
TMS can also alter gene expression and enzyme production along
with a multitude of other effects (Chervyakov et al., 2015). Notably,
rTMS effects are frequency-dependent, with inhibition below 1Hz
and facilitation above 5Hz, although this generalization is disputed
(Prei et al., 2023).

The application of TMS involves diverse pulse patterns, tailored
to specific purposes. One notable example is theta-burst TMS,
showing promise in treating major depressive disorder. This
method employs short bursts of 50Hz stimulation to mimic the
effects of LTP and LTD, thought to induce synaptic plasticity while
offering shorter, lower-intensity procedures than traditional rTMS
(Chung et al., 2015). Low-Intensity Repetitive TMS (LI-rTMS)
uses an order of magnitude weaker magnetic field strengths (1-
150mT) and remains subthreshold, unlike typical TMS that can
evoke motor potentials (Barker et al., 1985; Moretti and Rodger,
2022). Furthermore, deep brain regions can be stimulated with
deep TMS (dTMS) using a specialized coil known as the Hesed coil
(Zangen et al., 2005). Additionally, repetitive magnetic temporal
interference (rTMI), which utilizes the electrotemporal interference
of high-frequency TMS holds promise for selectively modulating
deep-brain targets (Khalifa et al., 2023). Finally, multi-locus TMS
(mTMS) is an approach that uses an array of electronically
controlled coils, allowing for the shifting and re-orienting of the
induced E-field (Koponen et al., 2018).

Transcranial Photobiomodulation (tPBM) commonly employs
near-infrared light (600 nm–1,100 nm) to modulate brain activity
(Salehpour et al., 2018). Light that reaches the brain is absorbed
by chromophores, particularly Cytochrome c oxidase, increasing
mitochondrial activity and Adenosine triphosphate production.
This also modulates reactive oxygen species and the release
of calcium ions, activating transcription factors for long-term
cellular effects (Caldieraro and Cassano, 2019). Resultant biological
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FIGURE 1

Characteristics of the four non-invasive brain stimulation modalities: transcranial electrical stimulation (tES), transcranial magnetic stimulation (TMS),

transcranial photobiomodulation (tPBM), and transcranial ultrasound stimulation (TUS). This figure outlines common subtypes, primary mechanisms,

advantages, and limitations for each modality. Created with BioRender.com.

responses include improved oxidative metabolism and increased
blood flow (Caldieraro and Cassano, 2019). tPBM is also thought
to have anti-inflammatory and pro-neurogenic effects (Cassano
et al., 2016). However, the absorption of light by hair limits tPBM
applications outside of the forehead region, intranasally or through
the oral cavity (Salehpour et al., 2018; Askalsky and Iosifescu, 2019).
While tPBM traditionally uses a continuous wave, recent work
explores pulsed wave tPBM, allowing for short, high-power pulses
(Tang et al., 2023).

Thus far conclusive evidence regarding the efficacy of tPBM
for depression and dementia is yet to emerge (Salehpour et al.,
2021; Vieira et al., 2023). However, there are encouraging
results regarding the effects of tPBM on cognitive abilities and
brain function during aging (Dole et al., 2023). Aside from
modulating neural activity directly, a picosecond 532nm pulse
has been observed as temporarily improving blood-brain barrier
permeability (Li et al., 2021), enhancing the delivery and efficacy of

paclitaxel in mice with glioblastoma (Cai et al., 2023). Additionally,
advances in photopharmacology offer the potential to precisely
control pharmaceuticals within the brain using light (Velema et al.,
2014).

Transcranial ultrasound stimulation (TUS) uses high-
frequency sound waves for non-invasive neural modulation. It is
employed in various applications, including the increase of blood-
brain barrier permeability via cavitation (Hynynen et al., 2001) and
tissue ablation through heating (Martin et al., 2009). Alternatively,
low-intensity ultrasound has been demonstrated to modulate
brain activity. Examples include the attenuation of thermal
pain sensitivity (Badran et al., 2020) and sensory-evoked brain
oscillations (Legon et al., 2014). Focused ultrasound stimulation
(FUS) uses out-of-phase high-frequency waves to stimulate deep
brain regions with millimeter precision (Ghanouni et al., 2015).
Low-intensity focused ultrasound (LIFUS) is the application of
ultrasound stimulation at low intensities to modulate neuronal
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activity without causing tissue damage. Thermal effects are thought
to be negligible from LIFUS as tissue temperatures rise by less
than 0.1◦C. Non-thermal effects from LIFUS include stable
acoustic cavitation, which involves pressure-induced oscillations
of gas-filled microbubbles and influencing neuron excitability via
membrane deformation. Additionally, LIFUS can alter ion channel
permeability and membrane characteristics through mechanical
energy, impacting ion flux and neuronal membrane discharge
from mechanosensitive ion channels. These complex interactions
are thought to contribute to the neuromodulatory effects of LIFUS
(Fomenko et al., 2018). Transcranial pulsed stimulation (TPS)
employs short pulses of ultrasound lasting 3µs. These short pulses
mitigate brain heating and preliminary evidence suggests cognitive
benefits in Alzheimer’s patients (Beisteiner et al., 2020).

3 Obstacles to e�ective non-invasive
brain stimulation

The brain can be considered a dynamical, emergent complex
system (Turkheimer et al., 2022). Put simply, ongoing brain
function is a result of the interplay between exogenous
stimuli/perturbations and endogenous processes and goals. The
brain presents both stochastic and deterministic characteristics,
underpinning the difficulty in developing a mechanistic
understanding of brain function and behavior. While the causal
perturbations of NIBS facilitate the characterization of neural
mechanisms, the complex, individual nature of brain structure
and function makes the optimization of NIBS challenging. These
sources of variation are illustrated in Figure 2.

One source of complexity is the inter-individual variation in
head and brain morphology. For instance, skull thickness (Lillie
et al., 2016) and cortical thickness, volume, and surface area
are negatively correlated with age (Lemaitre et al., 2012). In
adults, ventricles within the brain become larger with age and
both white and gray matter volumes are reduced (Bethlehem
et al., 2022). These inter-individual and intra-individual variations
are particularly consequential in tES. For example, current flow
modeling has demonstrated that identical tES parameters result in
an over 100% difference in the intensity of the E-field generated
in the motor cortex (Evans et al., 2020). There is also the potential
for unintentional stimulation of off-target regions, especially when
individualized modeling is not performed (Soleimani et al., 2023).

The correlation between the applied stimulation dose and the
resulting response remains unclear. In tPBM, a biphasic dose-
response curve is suggested (Yang M. et al., 2021). Conversely, a
positive relationship between the dose of TUS applied to the lateral
geniculate nucleus and the subsequent suppression of visually
evoked potentials has been observed (Mohammadjavadi et al.,
2022). Regarding tDCS, a simple linear dose-response relationship
may be an oversimplification (Esmaeilpour et al., 2018). Dose-
response relationships across NIBS remain unclear, likely due to a
complex interplay of factors including the functional state of the
brain during stimulation.

The functional state of the brain during stimulation is an
important area of consideration when optimizing NIBS (Bradley
et al., 2022). For instance, responses to tES are associated with
preexisting concentrations of the neurotransmitters GABA and

glutamate (Filmer et al., 2019). However, the specific nature
of the brain-state dependent dose-response relationship in tES
remains inadequately understood (Lee et al., 2021). Similarly,
FUS differentially affects active and resting neurons (Yang P.-
F. et al., 2021). The use of electroencephalography (EEG)
for measuring TMS evoked potentials has proven effective in
optimizing stimulation orientation in the left pre-supplementary
motor area (Tervo et al., 2022). Additionally, it enables real-
time adjustment of stimulation protocols to control the efficacy
of plasticity induction in the motor cortex (Zrenner et al., 2018).
As with NIBS more broadly, applying these state-dependent
techniques beyond the motor system is an additional challenge.

The type and orientation of neurons being stimulated is another
complicating factor in elucidating dose-response relationships. For
instance, when FUS is applied, neurons exhibit varying responses
to different pulse frequencies, influenced by their distinct action
potential waveforms and genotypes (Yu et al., 2021). An important
factor of the efficacy of tES is the orientation of neurons relative to
the E-field generated. Additionally, neurons with highly-branched
axons are less sensitive to the relative direction of the E-field
(Chung et al., 2022). Interestingly, stimulation itself can also change
structural components of the brain. For instance, subthreshold
rTMS alters the dendritic spine structure in pyramidal neurons in
mice (Tang et al., 2021) and static magnetic stimulation through the
use of a permanent magnet has been shown to decrease the length
of the axon initial segment in cell cultures (Beros et al., 2022). In
the development of stimulation configurations, modeling current
flow allows for a comprehensive understanding of the interplay
between stimulation montage, E-field, and neural orientation (Lee
et al., 2021). Further developments in multi-scale modeling may
elucidate these relationships.

It is common practice in NIBS to focus on stimulating
a single brain region, even though many targeted behaviors
involve a distributed network of activity. For instance, in
depressed populations, the prefrontal cortex is often targeted, but
depression symptoms are linked to activity changes in various
brain regions including the thalamus and hippocampus among
others (Zhang et al., 2018). Consequently, achieving optimal
stimulation parameters may necessitate simultaneous stimulation
of multiple targets. Although progress has been made in this
direction (Fischer et al., 2017; Corlier et al., 2021), it remains a
relatively unexplored area.

There are a multitude of other factors that may impact
the efficacy of NIBS, from circadian rhythms (Vergallito et al.,
2022) to caffeine (Zulkifly et al., 2021) and broader genetic
predispositions (Hasan et al., 2013). Brain temperature variations
linked to age, sex, and menstrual cycle (Rzechorzek et al.,
2022) may also impact NIBS. As with all experimental studies,
excluding common disorders like dyslexia or ADHD limits
the generalizability of findings from healthy controls, given
that 15-20% of the population is neurodivergent (Doyle, 2020).
Further, underdiagnosis in certain groups, such as females with
ADHD (Young et al., 2020), may result in the inadvertent
inclusion of undiagnosed neurodivergent individuals. Overly broad
exclusion criteria can introduce population bias; insufficient
accommodations for individuals who wear head coverings
or exhibit sensory processing sensitivity may hinder diverse
participation. Many studies, excluding those focusing on disorders
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FIGURE 2

Illustration of the sources of variation that influence the e�cacy of non-invasive brain stimulation. Variations in head and brain morphology,

exogenous stimuli, neuron type and orientation, as well activity and stimulation parameters. Created with BioRender.com.

prevalent in older adults, predominantly involve young participants
and are conducted in a limited number of countries (Sun et al.,
2022; Medeiros et al., 2023; Wang et al., 2023).

4 Areas of opportunity and future
research directions

The effects of NIBS are state-dependent, making adaptive
stimulation attuned to brain dynamics crucial for maximizing
the potential of NIBS (Bergmann, 2018). In a closed-loop NIBS
system, brain activity is continuously monitored and compared
to a desired state, and stimulation parameters are adjusted
in real-time to optimize the therapeutic effects. To facilitate
a greater understanding of the mechanisms and predictors of
NIBS efficacy, multi-scale models will be informed by multi-
scale imaging from synapse to lobe (D’Angelo and Jirsa, 2022).
Ultimately, state-dependent neuromodulation could be delivered
in more wearable form. EEG captures ongoing brain states non-
invasively and has enabled tACS delivered to match the phase
and frequency of slow-wave oscillations to enhance long-term
generalized memory consolidation post-sleep (Ketz et al., 2018).
Additionally, high-definition diffuse optical tomography provides
high spatial resolution capture of hemodynamics in the cortex
(Vidal-Rosas et al., 2021) and Optically Pumped Magnetometers-
Magnetoencephalography (OPM-MEG) enables high spatial and
temporal resolutions and sensitivity (Brookes et al., 2022).

Optimizing stimulation parameters based on real-time brain state
is both necessary and attainable.

Another central limitation is ensuring consistent stimulation
of the intended target. Electrode montages are chosen to
stimulate a target region, in practice the position and intensity
of stimulation in the brain varies between individuals and
sessions. Precise sensor and stimulator positioning is crucial
for accuracy (Shirazi and Huang, 2019; Caulfield et al., 2022).
Achieving such precision involves structural imaging, simulation,
and neuronavigation, a resource-intensive process. More scalable
approaches are needed, potentially combining subject-specific MRI
approximated with generative modeling (Tudosiu et al., 2022) and
utilizing smartphone-based 3D head scanning (Everitt et al., 2023).
Additionally, techniques such as electrical impedance tomography
and pulse-echo ultrasound can estimate the electrical and acoustic
properties of the head, respectively (Fernández-Corazza et al., 2017;
He et al., 2021). Notably, advances in low-field MRI may offer more
accessible structural imaging with 64mT mobile scans approaching
the quality of 3T scans (Lucas et al., 2023). Statistical techniques
that account for inter-individual variability, such as mixed-model
analyses or cluster analysis, may also be used as opposed to the
standard population-based approaches (Vergallito et al., 2022).

One source of bias in NIBS research is rooted in the challenges
associated with gaining access to the scalp, especially when dealing
with long, thick, and/or curly hair (Louis et al., 2022). There is a
recognized bias in neuroscience concerning race and sex (Kwasa
et al., 2023). Addressing these biases could involve implementing
inclusive training and recruitment procedures. Technological
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solutions, such as 3D-printed electrodes designed for various hair
types, may also contribute to mitigating these challenges (Xing and
Casson, 2023). Additionally, offering additional remuneration for
participants with hair that requires more time for preparation and
washing is a consideration. To foster more representative research
samples, further open-sourcing of datasets containing demographic
information is recommended for the benefit of future researchers.

The efficacy of NIBS could potentially be enhanced by
combining stimulation modalities as each approach offers unique
benefits and mechanisms of action. For instance, priming with
tDCS before applying TMS may produce more robust effects
(Hurley and Machado, 2017). Similarly, concerning closed-loop
NIBS, multi-modal approaches for reading brain activity can be
more effective at classifying brain states as has been demonstrated
by the combination of EEG and functional Near Infrared
Spectroscopy to improve seizure detection accuracy (Sirpal et al.,
2019). Multi-modality may potentially extend to non-invasive
optogenetics, with recent work showing the delivery of viral vectors
facilitated by FUS to increase blood-brain barrier permeability,
followed by channel activation using light in mice (Pouliopoulos
et al., 2022). As such, it may be pertinent for further advancement
of multi-modal sensing and stimulation.

Finally, statistical power emerges as a noteworthy concern in
NIBS research. The average sample size in studies involving tDCS
and TMS is 22, leading to a situation where NIBS studies may miss
50% of true positive results (Mitra et al., 2019). While practical
constraints often limit the sample size of initial studies, enhancing
statistical power through adequately powered studies is crucial. In
instances where inter-individual variability is not accounted for
through brain imaging and simulation, broader utilization of “N-
of-1” trials with a single individual with openly available data, might
be a pertinent approach for NIBS research as it is with personalized
medicine more broadly (Schork, 2015). The aggregation of such
studies has the potential to offer valuable insights beyond the
conventional population-based approach as the inter-individual
source of variability is not a concern. This could also allow for
greater use of longitudinal study designs, that investigate the long-
term effects of multi-session stimulation.

5 Discussion

In this paper, we have explored the multifaceted landscape
of NIBS, delving into the four main modalities: tES, TMS,
tPBM, and TUS. Each modality possesses unique attributes,
mechanisms and challenges, contributing differently to the field of
neurostimulation. Yet all must deal with the inherent complexities
and challenges associated with individual morphological and
physiological variations, as well as the dynamic nature of the brain
and the subsequent state-dependent nature of stimulation.

Looking forward, this paper highlights several avenues for
advancing NIBS. The development of closed-loop systems that
integrate real-time brain state monitoring with stimulation
holds the promise of enhancing efficacy. Overcoming the
challenge of consistently stimulating the intended brain regions

across individuals necessitates innovative approaches, potentially
leveraging advances in imaging technologies and computational
modeling. Addressing biases in NIBS research and its applications,
including those related to race, sex, and neurodiversity, is
critical for ensuring the broad applicability and effectiveness
of these technologies. Furthermore, exploring the synergistic
potential of multi-modal NIBS approaches may improve outcomes.
Finally, tackling the issue of underpowered studies through
adequately sized trials, personalization and appropriate statistical
methods. Implementing these recommendations could help propel
NIBS toward achieving its full therapeutic potential across
diverse populations.
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