AUTHOR=Yuan Zijian , Zhou Qian , Wang Baozeng , Zhang Qi , Yang Yang , Zhao Yuwei , Guo Yong , Zhou Jin , Wang Changyong TITLE=PSAEEGNet: pyramid squeeze attention mechanism-based CNN for single-trial EEG classification in RSVP task JOURNAL=Frontiers in Human Neuroscience VOLUME=Volume 18 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2024.1385360 DOI=10.3389/fnhum.2024.1385360 ISSN=1662-5161 ABSTRACT=Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes. Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level. Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 (p<0.05). These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate