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Introduction: Accurate classification of single-trial electroencephalogram (EEG)

is crucial for EEG-based target image recognition in rapid serial visual

presentation (RSVP) tasks. P300 is an important component of a single-trial

EEG for RSVP tasks. However, single-trial EEG are usually characterized by low

signal-to-noise ratio and limited sample sizes.

Methods: Given these challenges, it is necessary to optimize existing

convolutional neural networks (CNNs) to improve the performance of P300

classification. The proposed CNN model called PSAEEGNet, integrates standard

convolutional layers, pyramid squeeze attention (PSA) modules, and deep

convolutional layers. This approach arises the extraction of temporal and spatial

features of the P300 to a finer granularity level.

Results: Compared with several existing single-trial EEG classification methods

for RSVP tasks, the proposed model shows significantly improved performance.

The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under

the receiver operating characteristic curve (AUC) is 0.9341 (p < 0.05).

Discussion: These results suggest that the proposed model e�ectively extracts

features from both temporal and spatial dimensions of P300, leading to a more

accurate classification of single-trial EEG during RSVP tasks. Therefore, this

model has the potential to significantly enhance the performance of target

recognition systems based on EEG, contributing to the advancement and

practical implementation of target recognition in this field.

KEYWORDS

P300, single-trial EEG, target recognition, convolutional neural network, rapid serial

visual presentation, pyramid squeeze attention mechanism

1 Introduction

Brain-computer interface (BCI) technology enables direct communication between

humans and computers or other external devices by interpreting brain electrical

activity (Cecotti and Graser, 2010; Manor and Geva, 2015). BCI technology has

a wide range of applications across various domains, such as motion direction

recognition (Zhang et al., 2022a), emotion recognition (Chen et al., 2019; Joshi

and Ghongade, 2021; Tao et al., 2023), and epileptic seizure detection (Xu et al.,

2020; Dissanayake et al., 2021; Jana and Mukherjee, 2021; Wang B. et al., 2023).

Concurrently, researchers are actively investigating the potential application of

electroencephalography (EEG) in the realm of target recognition (Lan et al., 2021).

In complex environments, computer vision is prone to environmental disturbances,
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leading to diminished recognition capabilities. In contrast, human

visual recognition has the problem of slow manual processing

and low efficiency of human-computer interaction. Nevertheless,

integrating human brain with computer vision can enhance both

the accuracy and efficiency of target recognition in such intricate

settings. Numerous studies have revealed that artificial intelligence

(AI) methodologies effectively categorize event-related potentials

(ERPs) produced by the brain of the subject when engaged in

a rapid serial visual presentation (RSVP) task (Li et al., 2021;

Tan et al., 2021; Zang et al., 2021). This classification process has

considerable potential to improve EEG-based target recognition.

The RSVP paradigm is a common experimental approach for

target recognition tasks. Within this paradigm, image stimuli are

presented sequentially at a uniform frequency, typically ranging

from 2 to 20 Hz, with each stimulus consistently occupying

the same spatial location throughout the display (Zhang et al.,

2020). When subjects successfully detect a target image in a rapid

sequence, they excite P300, which is a specific component of

the ERP (Lees et al., 2018). The RSVP paradigm is widely used

in different scenarios, such as dim target detection in remote

sensing images (Fan et al., 2022), dual-brain collaborative target

detection (Zhang et al., 2021), and so on. The commonly used

AI methods for processing single-trial EEG are deep learning and

machine learning. In the past decades, researchers have proposed

different algorithms based on traditional machine learning for

single-trial EEG classification under RSVP tasks. The Common

Sparse Spectral Spatial Pattern algorithm (Dornhege et al., 2006)

is extended based on the Common Spatial Pattern algorithm

for single-trial EEG analysis. Marathe et al. (2014) implemented

a sliding window methodology in tandem with Hierarchical

Discriminant Component Analysis to address temporal variability

in neural responses, thereby enhancing the single-trial EEG

classification accuracy. Alpert et al. (2013) introduced the Spatially

Weighted FLD-PCA (SWFP) method, which is grounded on a

two-stage linear classification approach for event-related responses.

This method employs the Fisher Linear Discriminant classifier

in conjunction with Principal Component Analysis to achieve

dimensionality reduction, thereby enhancing the single-trial EEG

classification performance. In the realm of single-trial EEG

classification, conventional machine learning techniques often rely

on linear algorithms, which are typically characterized by their

swift training times and robustness. However, these methods may

face limitations in terms of both the extraction of discriminative

features and overall classification accuracy (Zang et al., 2021).

This highlights the pressing requirement for new classification

techniques that can more accurately and expediently extract

meaningful features from single-trial EEG.

In recent years, deep learning techniques have been increasingly

adopted for single-trial EEG classification tasks. As an end-

to-end approach, deep learning obviates the need for manual

feature design and extraction, instead leveraging its nonlinear

computational prowess to derive features at multiple hierarchical

levels. The CNN, a prevalent deep learning architecture, has

proven particularly potent in image feature extraction. CNNs apply

both temporal and spatial convolutions, thereby enabling them to

extract crucial temporal and spatial characteristics from EEG with

efficiency and precision (Schirrmeister et al., 2017; Zang et al.,

2021). As a result, CNNs have become a popular choice for the

analysis of EEG. For instance, Cecotti and Graser (2010) utilized

CNN to extract spatial and temporal features from P300. Lawhern

et al. (2018) proposed EEGNet, a compact CNN that employs

a combination of deep and separable convolutions for more

efficient feature extraction. Bhandari et al. (2023) have designed a

novel, compact CNN architecture that integrates temporal dilated

convolutions along with channel-wise attention mechanisms. This

design aims to enhance the classification efficiency of P300. Macías-

Macías et al. (2022) introduced a capsule neural network that

has shown promising P300 classification performance with small

samples and few channels. Furthermore, Wang Z. et al. (2023)

proposed a novel method that integrates an attention module with

a capsule neural network, aiming to enhance P300 classification

effectiveness. Zhang et al. (2022b) proposed an improved EEGNet

model, which enhances the signal-to-noise ratio through xDAWN

filtering and addresses sample imbalance with a focal loss function.

It has achieved good performance in both offline and online

data. Wang Z. et al. (2023) combined techniques such as Mixup,

stochastic weight averaging, label smoothing, and focal loss during

the training of deep learning methods so as to improve the

performance of models such as EEGNet in the cross-subject

P300 classification task. The single-scale convolution used by

these methods may not be able to comprehensively extract the

temporal and spatial features of P300. Employing multi-scale

convolutional kernels in CNNs enables a more extensive capture

of receptive field features within EEG.This capability has the

potential to enhance the variety and richness of the extracted

feature information, thereby potentially boosting the performance

of EEG classification tasks. For example, Altuwaijri et al. (2022)

proposed a multi-branch CNN model incorporating an attention

module to facilitate effective EEG decoding for motor imagery

tasks. Tao et al. (2023) proposed an attention-based convolutional

recurrent neural network specifically designed for EEG-based

emotion recognition. Additionally, Lan et al. (2021) introduced a

multi-attention convolutional recurrent model (MACRO), which is

reported to more efficiently extract spatio-temporal features from

P300. While deep learning-based EEG classification techniques

have demonstrated significant advancements, the comprehensive

utilization of spatio-temporal information within EEG data

remains a substantial challenge. For instance, prevailing methods

may inadequately address the extraction of fine-grained features.

Such an oversight can result in the omission of subtle time

and space variations within the EEG which contain extensive

information across time and space domains. The development of

more effective methods for capturing this intricate data is essential

for achieving more accurate EEG classification outcomes.

The pyramid squeeze attention (PSA) module has proven

effective in extracting multi-scale features from images (Jiang et al.,

2022; Yan et al., 2022). As the P300 exhibits a significant positive

wave peak on EEG images that appears ∼300 ms after stimulation,

there is a current need to extract as many of these features as

possible. Although the PSA module has not yet been used for EEG

classification tasks, its application to P300 feature extraction has the

potential to yield finer-grained information. Therefore, the impact

of the PSA module on the performance of CNN feature extraction

and classification deserves in-depth study.
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This study introduces PSAEEGNet, a novel framework

that integrates attentional mechanisms within multiscale

convolutional neural networks to address the classification of

single-trial EEG in RSVP tasks. Comparative analysis reveals

that PSAEEGNet surpasses the performance of several existing

models, including hierarchical discriminant component analysis

(HDCA) (Marathe et al., 2013), shallow convolutional neural

network (ShallowConvNet), deep convolutional neural network

(DeepConvNet) (Schirrmeister et al., 2017), and EEGNet (Lawhern

et al., 2018), in terms of classification accuracy. Notably, the

PSAEEGNet achieves marked effectiveness in discriminating P300.

2 Materials and methods

2.1 Data and data preprocessing

This study uses the RSVP-based brain-computer interface

benchmark dataset from Tsinghua University (Zhang et al., 2020),

which contains EEG data from 64 healthy subjects with 64 electrode

channels, sampled at 250 Hz. EEG were collected while subjects

performed a target image detection task. For each subject, two

groups of experiments were conducted, with each group containing

two blocks. Each block consisted of 40 trials, and each trial was

presented with 100 stimulus images randomly at a frequency of

10 Hz. The stimuli consisted of two categories: target images

and nontarget images. The target images were presented with a

probability of 1%–4%.

In this study, a selection of 62 electrodes (1–32, 34–42, 44–64)

were chosen for further processing as Zhang et al. (2020). The EEG

data were then filtered using a Butterworth filter with a bandwidth

of 2–30 Hz, following the methodology of Lan et al. (2021).

Subsequently, a segment spanning 0–1,000 ms was extracted post

the onset of each image stimulus. This segment was further divided

into data comprising 250 sampling points. As a result, the format of

the single-trial EEG data was structured as a matrix of 62 electrodes

by 250 sampling points.

2.2 PSA module structure

The PSA module is a lightweight and efficient attention

method (Zhang et al., 2023), the implementation of PSA module

consists of the following four steps, as shown in Figure 1.

The PSA module commences with multi-scale feature extraction

using the Squeeze and Concat module. Next, the Squeeze and

Excitation block (Hu et al., 2018) processes the feature maps

at various scales to extract attention information and produce

corresponding attention vectors. These attention vectors are

then normalized using the Softmax function. Subsequently, the

normalized weights undergo element-wise multiplication with the

corresponding feature maps to produce enriched feature maps with

comprehensive multi-scale information. In this study, the PSA

module enhances feature extraction at a more granular level, which

allows for the extraction of more detailed information from the

P300, facilitating improved target recognition in brain-computer

interface systems.

2.3 PSAEEGNet architecture

This study introduces a CNN model named PSAEEGNet,

which incorporates PSA modules. The PSAEEGNet is composed of

four key modules: two are dedicated to temporal feature extraction,

one to spatial feature extraction, and the final one to classification.

The general architecture of the model is illustrated in Figure 2.

Table 1 provides detailed information on the main parameter

settings used in the model.

The first module is the primary temporal feature extraction

(PTFE) module, which is mainly used for initial extraction of

temporal features and dimensionality reduction, comprising a

reshaping layer, a two-dimensional convolutional layer (Conv2D),

and a batch normalization (BN) layer (Ioffe and Szegedy, 2015). The

reshaping layer transforms the EEG data matrix to match the input

format required by the Conv2D layer. Subsequently, the Conv2D

layer applies temporal convolution to the processed EEG data. The

dimensions of the time-convolution kernel are set at (1, 125). The

resulting output feature map has dimensions of eight filters by 62

electrodes and 250 sampling points. A BN layer is also utilized to

mitigate distributional shifts (Liu et al., 2018).

The second module is the primary spatial feature extraction

(PSFE) module, which is dedicated to the initial extraction of

spatial features, incorporating a deep convolutional layer, a PSA

module, a BN layer, and a pooling layer. The process begins with

the input undergoing convolution via a DepthwiseConv2D layer

with a kernel size of (62, 1), subsequently activated through a BN

layer and an exponential linear unit (ELU). Following this, the

PSA module, armed with an array of convolution kernels sized

(3, 5, 7, 9), orchestrates the concurrent convolution of the input,

thereby gleaning multi-scale spatial features from the EEG. A

subsequent BN layer and ELU activation further refine the features.

Finally, a global average pooling layer is utilized to diminish the

dimensionality and curtail the likelihood of overfitting.

The third module is the deep temporal feature extraction

(DTFE) module, the SeparableConv2D and PSA modules are

employed to enhance the extraction of temporal features. The

Separable Convolution layer, which comprises DepthwiseConv2D

followed by PointwiseConv2D, serves to decrease the number

of parameters by partitioning the operations of standard

convolution (Lawhern et al., 2018). In the process delineated

in this study, each channel undergoes initial convolution

individually via DepthwiseConv2D [with a kernel size

of (1, 16)]. Subsequently, the PSA module [employing

kernels of sizes (1, 3, 5, 7)] extracts multi-scale temporal

feature information from the EEG data of each channel,

and PointwiseConv2D is then utilized to integrate the inter-

channel information. Mirroring the approach in PSFE module,

a BN layer and the ELU function are applied following the

separable convolutional layer, and global average pooling is

subsequently implemented.

In the final classification module, a fully connected layer

endowed with a softmax activation function acts as the classifier

within the architecture. This layer contains precisely two units,

reflecting the binary classification of the EEG data categories. The

feature vectors delineated by preceding layers are directly relayed

to the fully connected layer, whereupon the model computes the

probabilistic decision scores for the target and non-target classes.

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1385360
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Yuan et al. 10.3389/fnhum.2024.1385360

FIGURE 1

The PSA module architecture. The PSA module includes four steps. First, the Squeeze and Concat module is used for multi-scale feature extraction.

Then, the Squeeze and Excitation module processes feature maps of each scale to extract attention information and generate corresponding

attention vectors. The Softmax function is then used to normalize these attention vectors. Finally, the normalized weights are multiplied

element-wise with the corresponding feature maps.

FIGURE 2

The PSAEEGNet architecture. The PSAEEGNet network structure consists of four simple modules. The first module is the primary temporal feature

extraction (PTFE) module, which is mainly used for preliminary extraction and dimensionality reduction of temporal features; the second module is

the primary spatial feature extraction (PSFE) module, which is used for preliminary multi-scale extraction of spatial features; the third module is the

deep temporal feature extraction (DTFE) module, which carries out multi-scale temporal feature extraction based on the primary temporal feature

extraction module; and the fourth module is the classification module, which is used by the fully-connected layer to accomplish the task of binary

classification of P300.

Furthermore, Dropout is implemented following modules

PSFE and DTFE to expedite the training process and impose

regularization on the model (Srivastava et al., 2014; Tompson et al.,

2015)

2.4 Training settings and implementations

The CNN proposed in this study is fine-tuned using the

Adam optimizer, learning rate set to 0.001, adhering to the

hyperparameter specifications suggested by Kingma and Ba (2014).

Cross-entropy is utilized as the loss function of choice. To

counteract the issue of data imbalance, class weights have been

integrated within the loss computation. The learning rate is

halved if no decrement in validation loss is observed after five

consecutive epochs. Additionally, an early stopping protocol is

instituted to prevent overfitting and to minimize training duration;

training is halted if a reduction in validation loss does not occur

within 20 epochs. The batch size for the training process is set

at 64.

The deep learning architectures presented in this

study were constructed using the PyTorch framework and

trained on an NVIDIA RTX 3090 GPU, with the support

of CUDA 11.7 and cuDNN v7.6. Consistency in training

configurations has been upheld for all the models included in

this research.

2.5 Evaluation index

The performance of the PSAEEGNet was evaluated using a

suite of metrics: accuracy (ACC), true positive rate (TPR), false
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TABLE 1 The PSAEEGNet architecture.

Module Layer Filters Size Output Option

1 Input – – (6, 250) –

Reshape – – (1, 62, 250) –

Con2D 8 (1, 125) (8, 62, 250) –

BatchNorm – – (8, 62, 250) –

2 DepthwiseConv2D 16 (62, 1) (16, 1, 250) –

BatchNorm – – (16, 1, 250) –

Activation – – (16, 1, 250) ELU

PSA 16 (3, 5, 7, 9) (16, 1, 250) –

BatchNorm – – (16, 1, 250) –

Activation – – (16, 1, 250) ELU

AveragePooling2D – (1, 8) (16, 1, 31) -

Dropout – – (16, 1, 31) p = 0.5

3 DepthwiseConv2D 16 (1, 16) (16, 1, 31) –

PSA 16 (1, 3, 5, 7) (16, 1, 31) –

PointwiseConv2D 16 (1, 1) (16, 1, 31) –

BatchNorm – – – (16, 1, 31) –

Activation – – (16, 1, 31) ELU

AveragePooling2D – (1, 8) (16, 1, 4) –

Dropout – – (16, 1, 4) p = 0.5

4 Reshape – – 64 View

Liner – – 2 –

Activation – – 2 Softmax

positive rate (FPR), F1-score, and the area under the receiver

operating characteristic curve (AUC) (Cho and Jang, 2020). These

metrics can be shown in the following way (Equations 1–5):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

F1− score =
2× TP

2× TP + FP + FN
(4)

AUC =
1

P × N

P∑

i=1

N∑

j=1

I(pi > pj) (5)

3 Results

3.1 Role of PSA module

This section focuses on the experimental assessment of how

varying numbers of PSAmodules and convolutional kernels within

these modules affect the feature extraction efficacy and subsequent

classification accuracy of CNN. The empirical research conducted

in this segment is instrumental in iteratively refining and ultimately

defining the architecture of the PSAEEGNet model. Stratified five-

fold Cross-Validation was used to test all models for each subject.

This validates the performance of all models and algorithms in

small sample training situations (Zang et al., 2021).

3.1.1 Experiments with di�erent number of PSA
module combinations

To systematically evaluate the efficacy of PSA modules, a

series of CNN architectures were meticulously designed and

implemented for experimental investigation. Each architecture

featured distinct combinations of PSA module counts, with the

foundational design principles drawn from the original PSA

module as described by Zhang et al. (2023). In these configurations,

the PSA module convolutional kernel is (3, 5, 7, 9), collectively

referred to as “A modules.” On the other hand, architectures

that did not incorporate any PSA modules were identified by the

label 0. Subsequently, the classification performance of the CNNs

is systematically compared across various combinations of PSA

module counts.

The integration of the PSA module into PTFE module

of the CNN was found to significantly impair computational
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FIGURE 3

PSAEEGNet classification results for di�erent combinations of number of PSA modules. In the figure, A+A refers to the model with PSA modules

added to PSFE module and DTFE module of the network structure; A+0 is the model with PSA modules added to PSFE module of the network

structure only; and 0+A is the model with PSA modules added to DTFE module of the network structure only. EEGNet is the blank control group with

no PSA modules added. Panels (A–E) show the performance of A+A, A+0, 0+A, and EEGNet in the metrics ACC, TPR, FPR, F1-score, and AUC,

respectively, and the error bars represent the standard deviation.

efficiency. As a result, the PSA modules were placed after the

feature extraction phases in modules PSFE and DTFE of the

CNN framework. The experimental phase of this study utilized

a consecutive series of data from five subjects, selected in their

ordinal sequence within the dataset. Subsequently, a comparison of

the classification performance was conducted for the four distinct

CNN configurations: A+A, where PSA modules were integrated

into both PSFE module and DTFE module; A+0, where a single

PSA module was added to PSFE module only; 0+A, where the

PSAmodule was incorporated solely into DTFEmodule; and where

the EEGNET module was blank control module. The comparative

outcomes are presented graphically in Figure 3.

Figure 3 illustrates the performance of the A+A group, A+0

group, 0+A group, and the baseline EEGNet across various

metrics including ACC, TPR, FPR, F1-score, and AUC. To begin

with, regarding ACC, the A+A model demonstrates superior

performance with an accuracy of 0.9267; the 0+A model achieving

an accuracy of 0.9238; the A+0model records an accuracy of 0.9189;

whereas EEGNet reports an accuracy of 0.9152. As for TPR, the

A+A model exhibits strong recognition capability, with a TPR of

0.7491; the TPRs of the A+0 and 0+A models are 0.7342 and

0.7242, respectively, whereas EEGNet displays a TPR of 0.7522.

Concerning FPR, the differences between the four experimental

models are relatively minor, with the 0+A model attaining the
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FIGURE 4

Classification results of PSAEEGNet with di�erent convolutional kernel configurations. Based on the A+A model, only the convolutional kernel of the

second PSA module of the model was modified and categorized into five groups in this study, and A, B, C, D, and E on the horizontal coordinates of

the figure are the models using the convolutional kernel (3, 5, 7, 9), (1, 3, 5, 7), (5, 7, 9, 11), (7, 9, 11, 13), and (9, 11, 13, 15), respectively. Panels (A–E)

show the performance of the five models A, B, C, D, and E for the metrics ACC, TPR, FPR, F1-score, and AUC, respectively, and the error bars

represent the standard deviation.

lowest FPR of 0.0692, closely followed by the A+Amodel at 0.0705,

then the A+0 model with an FPR of 0.0782, and EEGNet with an

FPR of 0.0823. With respect to the F1-score, all four models display

modest scores, yet the A+A model outperforms others with a score

of 0.264, surpassing the scores of 0.2319 (A+0), 0.2311 (0+A), and

0.2293 (EEGNet). Lastly, when examining AUC values, the A+A

model achieves the highest AUC at 0.9216, indicative of its overall

better performance. Following closely is EEGNet with an AUC of

0.9119, while the 0+A model registers 0.9118, and the A+0 model

records an AUC of 0.9102.

Figure 3 illustrates that the A+A group surpassed the remaining

groups concerning ACC, FPR, F1-score, and AUC metrics. These

results underscore the effectiveness and superiority of the two

PSA modules. Consequently, the study adopted a CNN model that

integrates two PSA modules for further analysis.

3.1.2 Experiments on convolutional kernel
parameters for PSA modules

In CNNs, selecting appropriate convolutional kernel

parameters is pivotal for enhancing the feature learning capacity

of the module. The size of these kernels dictates the scale at which

the model discerns and assimilates features. A pyramid multi-

scale approach is employed in the PSA module, incorporating
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FIGURE 5

Classification results of di�erent methods. In this study, the five methods of PSAEEGNet, HDCA, EEGNet, ShallowConvNet and DeepConvNet are

referred to as groups P, H, E, S, and D. Panels (A–E) show the performance of groups P, H, E, S, and D in the metrics ACC, TPR, FPR, F1 score, and

AUC, and the error bars represent the standard deviation, and * represents p < 0.05.

concurrent use of variously sized convolutional kernels. This

strategic adoption allows for the capture of diverse scale features,

thereby significantly boosting the feature extraction capabilities

of CNN.

To systematically analyze the influence of the pyramid

multi-scale convolutional kernel sizes within the PSA module

on CNN classification performance and to identify optimal

convolutional kernel parameters, this study focuses on five distinct

configurations. The experimental phase of this study utilized

a consecutive series of data from five subjects, selected in

their ordinal sequence within the dataset. Based on the A+A

combination, this study solely modifies convolutional kernel

parameters of the second PSA module into five categories: module

A with kernels (3, 5, 7, 9), module B featuring (1, 3, 5, 7), module

C utilizing (5, 7, 9, 11), module D adopting (7, 9, 11, 13), and

module E employing (9, 11, 13, 15). The module A+A combination

is named as group A, A+B as group B, and so on. The

classification results of these five groups of models are shown in

Figure 4.

The classification metrics for each group were as follows:

group A achieved an ACC of 0.9234, group B scored 0.9232,

group C attained 0.9269, group D recorded 0.9311, and group E

reached the highest ACC at 0.9326. Regarding TPR, the respective

values were 0.6928 (group A), 0.7061 (group B), 0.6865 (group C),

0.6912 (group D), and 0.694 (group E). For FPR, the outcomes

were 0.07276 (group A), 0.07314 (group B), 0.06908 (group

C), 0.0649 (group D), and 0.06338 (group E). In terms of F1-

scores, the figures stood at 0.2489, 0.2515, 0.2566, 0.2655, and

0.2732 for groups A through E respectively. Lastly, when assessing

the AUC, the results showed 0.876 for group A, 0.8857 for
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group B, 0.8875 for group C, 0.8879 for group D, and 0.8845

for group E.

The data depicted in Figure 4 reveal that group B outperforms

the other groups in terms of TPR, suggesting that it is superior

in its ability to accurately identify positive instances, which

is particularly important for applications that prioritize the

accurate identification of positive samples, such as medical

diagnosis and target detection. And there is more to model

selection than purely numerical considerations. Notably, model

B has the smallest multi-scale convolutional kernel, which

reduces computational complexity. Taken together, model B,

with its excellent TPR and low computational burden, is

a suitable choice for subsequent experiments. Therefore, the

convolutional kernel combination of module A+B is selected as

the optimal configuration for the CNN model PSAEEGNet in

this study.

3.2 Classification performance

To assess the single-trial EEG classification capabilities of

PSAEEGNet under the RSVP task, a series of experiments were

performed using data from all 64 participants in the dataset.

The performance of PSAEEGNet was evaluated by contrasting

it against conventional machine learning algorithms and several

deep learning models, notably HDCA, EEGNet, ShallowConvNet,

and DeepConvNet. Figure 5 visually represents the comparative

classification performance outcomes for each method.

Figure 5 presents the performance metrics for PSAEEGNet

(group P), HDCA (group H), EEGNet (group E), ShallowConvNet

(group S), and DeepConvNet (group D) across several dimensions:

ACC, TPR, FPR, F1-score, and AUC. The specific metric values

are as follows: group P achieved an ACC of 0.944, a TPR

of 0.7969, an FPR of 0.05321, an F1-score of 0.3644, and an

AUC value of 0.9349. For group E, the corresponding figures

were 0.935 for ACC, 0.7922 for TPR, 0.06252 for FPR, 0.3236

for the F1-score, and an AUC of 0.9302. In group D, the five

indicators were recorded as 0.9551 for ACC, 0.6792 for TPR,

0.04209 for FPR, 0.382 for the F1-score, and an AUC of 0.9074.

group S demonstrated performance with ACC at 0.9476, TPR

at 0.6286, FPR at 0.04926, F1-score at 0.3179, and an AUC

value of 0.8977. Lastly, group H exhibited weaker results in

comparison, with respective scores of 0.7625 for ACC, 0.6267

for TPR, 0.2325 for FPR, 0.0911 for the F1-score, and an AUC

of 0.7431.

As depicted in Figure 5, PSAEEGNet exhibits superior

performance relative to other methods for the TPR and AUC

metrics. A one-way repeated measures analysis of variance

(ANOVA) statistical test was employed to scrutinize the

existence of significant differences in performance among

the various methods. The results from this evaluation

indicated that the AUC of PSAEEGNet exhibited significantly

superior performance compared to all other methods under

consideration (p < 0.05). This suggests that PSAEEGNet

possesses heightened sensitivity and greater discriminative

capacity, enabling it to more effectively identify positive

samples and accurately distinguish between positive and

negative instances.

4 Discussion

4.1 E�ect of di�erent number of PSA
module combinations on CNN
classification performance

This study evaluates the classification performance of four

CNN models featuring distinct PSA module combinations to

identify the optimal number of such modules. The comparative

analysis involves four specific configurations: A+A, A+0, 0+A, and

EEGNET.

In the context of a CNN where only one PSA module

is employed, there exists the possibility to integrate PSA

modules into modules PTFE, PSFE, or DTFE to create new

network architectures. Experimental evidence suggests that

positioning a PSA module in PTFE module significantly impairs

computational efficiency, rendering such models impractical.

Thus, this configuration is not pursued. When the PSA module

is utilized solely in either PSFE module or DTFE module, the

constructed A+0, 0+A models exhibit average TPRs of 0.7342 and

0.7242, respectively, with the A+0 group marginally outperforming

the 0+A group. The differences in other metrics are minimal,

suggesting that separate usage of the PSA module during the

temporal and spatial information processing stages of the CNN

model can indeed have an impact on classification performance.

However, when the PSA module is incorporated into both PSFE

module and DTFE module, the mean values of ACC, F1-score,

and AUC for the A+A group exceed those of the A+0 and 0+A

groups. These results demonstrate the superiority and effectiveness

of using dual PSA modules within the CNNmodel.

The temporal dimension is condensed through a conventional

convolutional layer that segregates distinct temporal segments.

This is succeeded by a deep convolutional process for the

extraction of spatial characteristics, paired with the integration

of a PSA module to facilitate the amalgamation of multi-scale

spatial domain information. Subsequently, the PSA module

is reapplied during the depthwise separable convolution

stage to enable the extraction of multi-scale temporal

domain information. Such an architectural configuration

empowers the group A+A to more effectively discern critical

features, thereby enhancing the robustness and accuracy of

the model.

4.2 E�ect of PSA modules with di�erent
convolutional kernels on CNN classification
performance

A myriad of hyper-parameter settings critically impact the

classification efficacy of CNNs. In this research, the experimental

focus was on the permutations of multi-scale convolutional kernel

sizes within the PSA module.

This study focuses on the A+A configuration and selectively

modifies the convolutional kernel parameters of the second PSA

module, which is partitioned into five subgroups: A, B, C, D,

and E. The kernel sizes are as follows: module A employs

(3, 5, 7, 9), module B employs (1, 3, 5, 7), module C employs

(5, 7, 9, 11), module D employs (7, 9, 11, 13), and module E employs
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(9, 11, 13, 15). Upon conducting a one-way ANOVA analysis, no

statistically significant difference was found in the classification

performance among these five groups, suggesting that the size

of the convolutional kernels has a marginal impact on the

classification capabilities of CNN. However, the average TPRs

across the models were 0.6928, 0.7061, 0.6865, 0.6912, and 0.694

for groups A through E, respectively. Notably, group B exhibited

the highest mean TPR. Given the limited sample size and inherent

class imbalance within the dataset, it is justifiable to select the

configuration with the higher average TPR, thus making the

PSAEEGNet of group B the final model.

4.3 Comparative performance analysis
with other methods

In this study, PSAEEGNet was utilized to process a single-trial

EEG dataset informed by the RSVP paradigm, and its performance

was compared against a range of established classification

methodologies, including HDCA, EEGNet, DeepConvNet,

and ShallowConvNet. Analytical results revealed that HDCA

underperformed in detecting ERPs, a deficiency principally due

to the analysis of traditional EEG reliance on manually curated

features, which fail to fully exploit the salient information contained

within EEG (Jiao et al., 2018). When benchmarked against other

sophisticated deep learning techniques, PSAEEGNet achieved a

mean TPR of 0.7969, registering a modest improvement of 0.47%

over EEGNet, and markedly outperforming ShallowConvNet

and DeepConvNet by 16.83 and 11.77%, respectively. In terms of

the AUC metric, PSAEEGNet attained a mean value of 0.9349,

which constitutes a 0.47% increment compared to EEGNet and

substantial margins of 3.72 and 2.75% over ShallowConvNet and

DeepConvNet, respectively. In this study, a one-way ANOVA was

employed to determine if there exists a statistically significant

difference in performance between PSAEEGNet and other

classification techniques. The analysis showed that PSAEEGNet

significantly outperformed all other methods in terms of AUC (p <

0.05). Notably, PSAEEGNet significantly improves the AUC while

sustaining a high TPR, an attribute of paramount importance

for real-world applications. Furthermore, it is remarkable that

PSAEEGNet maintains robust F1-scores and ACC even with

constrained sample sizes, underscoring its ability to perform

precise classification and prediction in the context of limited data

availability. This attribute presents a viable solution in scenarios

characterized by data paucity.

Consequently, the findings of this study permit the conclusion

that PSAEEGNet exhibits robust performance across five critical

metrics. PSAEEGNet effectively accomplishes single-trial EEG

classification within the RSVP task, underscoring the potential and

practicality of the method, especially in contexts characterized by

data imbalance.

4.4 Limitations and future perspectives

The incorporation of multiple PSA modules into the CNN

architecture inherently escalates its complexity, which subsequently

leads to an increased parameter count and may slightly affect the

computational speed of the module. Nevertheless, PSAEEGNet

exhibits remarkable effectiveness in classifying EEG, skillfully

differentiating between P300 and non-P300 by leveraging the

pyramid multi-scale convolution and the attention mechanisms

provided. This results in a notable superiority of PSAEEGNet

over comparative methods in terms of classification accuracy and

discriminative power. The use of more optimization methods and

better hardware to improve the computational efficiency of this

research method is considered for future research in real-time BCI

applications. Deep learning methods have been applied in areas

such as motor imagery (Zhu et al., 2022) and cross-subject P300

classification (Wang Z. et al., 2023), so further research based on

the methods of this study can be generalized to more application

areas and advance the development of BCI systems.

5 Conclusion

EEG based on the RSVP paradigm can be used to discover

image targets, however, EEG are characterized by non-smoothness

and low signal-to-noise ratios, and in particular, there is a greater

difficulty in the recognition of image targets using a single-trial

unbalanced EEG. To this end, this study proposes a convolutional

neural network incorporating a pyramid squeeze attention module,

which is novel in that it incorporates an attention mechanism that

adaptively extracts the attention of feature maps at different scales,

and integrates multiple PSA modules and deep convolutional layer,

which can efficiently extract the temporal and spatial domain

information of EEG. On this basis, a pyramid multi-scale structure

of convolutional kernels is used for parallel processing, and features

in EEG can be extracted at a finer granularity level by multiple

convolutional kernels, which can improve the recognition accuracy

and performance of image targets based on EEG. Comprehensive

experiments on RSVP-based single-trial EEG dataset show that

PSAEEGNet exhibits higher average TPR (0.7949) and AUC

(0.9341, p < 0.05) in terms of single-trial EEG classification

performance under the RSVP task compared to existing algorithms.

In the future, the proposed algorithm will be used in brain-

computer interface systems, which can significantly improve the

efficiency of image target recognition.
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