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Depressive states in both healthy individuals and those with major depressive

disorder exhibit differences primarily in symptom severity rather than

symptom type, suggesting that there is a spectrum of depressive symptoms.

The increasing prevalence of mild depression carries lifelong implications,

emphasizing its clinical and social significance, which parallels that of

moderate depression. Early intervention and psychotherapy have shown

effective outcomes in subthreshold depression. Electroencephalography serves

as a non-invasive, powerful tool in depression research, with many studies

employing it to discover biomarkers and explore underlying mechanisms for

the identification and diagnosis of depression. However, the efficacy of these

biomarkers in distinguishing various depressive states in healthy individuals and

in understanding the associated mechanisms remains uncertain. In our study,

we examined the power spectrum density and the region-based phase-locking

value in healthy individuals with various depressive states during their resting

state. We found significant differences in neural activity, even among healthy

individuals. Participants were categorized into high, middle, and low depressive

state groups based on their response to a questionnaire, and eyes-open

resting-state electroencephalography was conducted. We observed significant

differences among the different depressive state groups in theta- and beta-

band power, as well as correlations in the theta–beta ratio in the frontal lobe

and phase-locking connections in the frontal, parietal, and temporal lobes.

Standardized low-resolution electromagnetic tomography analysis for source

localization comparing the differences in resting-state networks among the

three depressive state groups showed significant differences in the frontal and

temporal lobes. We anticipate that our study will contribute to the development

of effective biomarkers for the early detection and prevention of depression.
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density (PSD), phase-locking value (PLV), source localization, sLORETA

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1384330
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1384330&domain=pdf&date_stamp=2024-08-12
https://doi.org/10.3389/fnhum.2024.1384330
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1384330/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1384330 August 8, 2024 Time: 11:44 # 2

Li et al. 10.3389/fnhum.2024.1384330

1 Introduction

Major depressive disorder (MDD) is a pervasive mental
health challenge that affects over 322 million people globally,
and its prevalence tends to increase with age.1 Characterized by
profound alterations in mood, cognitive function, and overall
well-being, MDD not only diminishes individual quality of life
but also imposes a significant societal burden. The complexity
of MDD and its enormous impact highlight the urgent need for
reliable methods of early diagnosis. Depressive states in healthy
individuals and those with MDD differ quantitatively, but not
qualitatively (Cox et al., 2001). The qualitative differences refer to
different types of expression, such as psychological experiences and
depressive symptoms. Meanwhile, quantitative differences refer to
differences in the degree of depression or severity of symptoms
rather than the type of symptoms (Flett et al., 1997). Previous
studies have found a continuum of depressive symptoms through
cluster analysis, where the depressive state is on a continuum
or spectrum, and as the severity of a symptom increases, so too
does the likelihood that it will be categorized as depressive in the
cluster analysis. Individuals with mild depression are more likely
to develop moderate depression than those without depression,
and psychotherapy has been proven to be effective in treating
subclinical depression (Cuijpers et al., 2014). The prevalence of
mild depression is on a gradual upward trend and has lifelong
implications (An et al., 2022). Mild depression is no less socially
and clinically significant than moderate depression, and early
intervention in subthreshold depression is more likely to yield a
positive impact on adolescents (Cuijpers et al., 2021).

Electroencephalography (EEG) holds promise in the diagnosis
and management of depression, with potential applications in
treatment selection, classification, and prediction of the treatment
response. Moreover, EEG has been suggested to assist in
differentiating patients with depression from those with other
clinical disorders and from normal individuals (Jaseja, 2023).
A previous study demonstrated the effectiveness of power spectrum
density (PSD) in analyzing EEG signals for early-stage depression,
offering a deeper understanding of brain activities under different
physiological conditions (Grin-Yatsenko et al., 2009). Several
studies have reported differences in EEG power between patients
with MDD and healthy individuals. Increased delta-band phase lag
and reduced resting-state gamma current density in the anterior
cingulate cortex have been found in MDD patients (Simmatis
et al., 2023). Another study found that MDD patients showed
significantly elevated current density in delta, theta, alpha, beta1,
and beta2 frequency bands relative to controls in the anterior
cingulate and prefrontal cortices (Korb et al., 2008). Additionally,
it has been reported that the frontal gamma power in individuals
with depression is increased relative to healthy controls, and that
delta power during sleep is lower in individuals with depression
than in healthy controls (Meerwijk et al., 2015). Analysis of EEG
power ratios has also shown significant differences in specific ratios
between depressed patients and healthy controls, including the
alpha–beta ratio (ABR) and the theta–beta ratio (TBR), suggesting
that these ratios could be used as biomarkers of depression
(Chang and Choi, 2023).

1 http://www.jstor.org/stable/resrep28026.1

In clinical neuroscience, the phase locking value (PLV) has been
a valuable tool for identifying aberrant neural connectivity patterns
in various neurological disorders, offering new perspectives on
the pathophysiology of these disorders (Uhlhaas and Singer,
2006). Previous studies have explored the relationship between
EEG patterns and changes in depressive mood, and found that
individuals’ changes in depressive mood over certain consecutive
time periods were associated with resting-state EEG features,
particularly phase reset rates; these findings provide new insights
into the detection of early depression (Morita et al., 2023). The
potential of PLV to detect abnormal neural synchrony patterns
in patients with MDD has been demonstrated. Moreover, resting-
state EEG has been investigated for the detection of MDD,
and the coherence feature has been identified as a reliable and
effective solution for EEG-based detection of MDD (Wu et al.,
2021). Previous studies have also demonstrated differences in
EEG functional connectivity between MDD patients and healthy
individuals. Alpha-band functional connectivity in the default
mode network (DMN) can predict depression severity and is more
prominent in MDD patients than in healthy individuals (Simmatis
et al., 2023). A previous study found that depressed patients had
significantly reduced resting PLV-based functional connectivity
in the delta band compared with healthy controls (Huang S. S.
et al., 2023). Another study identified specific EEG features
in MDD patients (e.g., lower alpha and higher gamma phase
lag index-based connectivity) compared with healthy individuals
(Huang Y. et al., 2023).

The resting state serves as a dynamic substrate for brain
activity, encompassing a range of operational modes from sensory
processing to attention. Previous research indicated that 60 to
80% of the brain’s energy budget was dedicated to supporting
neuronal communication during the resting state, underscoring
the predominance of this activity in brain function (Raichle,
2006). The DMN plays a crucial role in understanding resting-
state activity and provides insights into the neural mechanisms
of neurological disorders (Mohan et al., 2016). Low-resolution
brain electromagnetic tomography (LORETA) is capable of using
EEG data to determine the characteristics of resting-state networks
across intrinsic frequency bands (Aoki et al., 2015). A previous
study using LORETA demonstrated increased resting-state current
source density in the frontal regions across the delta, theta,
and beta bands (Korb et al., 2008). Another study identified
decreased spectral power activity in the right middle temporal gyrus
compared with healthy controls (Lubar et al., 2003).

Several biomarkers reflect the significant effects of depression
on brain activity and can be used in its diagnosis. However,
most studies have focused on differences in EEG characteristics
between MDD patients and healthy controls, and it remains
unclear whether there are differences in the EEG characteristics
of healthy individuals with different depressive states. In our
previous study, we reported differences in EEG characteristics
among healthy individuals with varying depressive states who
were exposed to visual stimuli (Li et al., 2023). This study
highlighted that individuals in a more severe depressive state
exhibited a decrease in P300 amplitude and distinct brain activity
patterns in the frontal and parietal regions. The present study
builds on this research by exploring significant differences in EEG
characteristics among healthy individuals during the resting state.
While our previous research explored EEG differences during
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specific tasks, further investigation is essential to understand how
the brain functions differently in the resting state. This would
potentially add new perspective on how depressive states affect
neural activity. Additionally, resting-state EEG is less demanding
for participants, which might make it more broadly applicable to
the early detection of depression. Therefore, we investigated brain
activity of healthy individuals in the resting state and hypothesized
that this continuum might be present in the resting-state neural
activity of healthy individuals.

In this study, we investigated whether there are significant
differences in the neural activity of healthy individuals with
different depressive states during the resting state. We assessed
participants’ depressive states using the Beck Depression Inventory
Second Edition (BDI-II), and EEG activity was recorded during
the experiment. We investigated whether participants with
more severe depressive states had reduced theta-band power,
increased delta-band power, and lower power ratios relative to
participants with less severe depressive states. We also investigated
whether there was frontal-parietal impairment of functional neural
connectivity, based on a PLV analysis of participants with different
depressive states.

2 Materials and methods

2.1 Participants

We conducted further investigations using the same
participants as in our previous study (Li et al., 2023). The
participants comprised 46 individuals (female, n = 16; male, n = 30;
mean age, 22 ± 3 years) with no history of depression diagnosis or
ongoing medication. Ethical approval for this study was obtained
through the Ethical Review of Human Subject Research of the
Tokyo Institute of Technology (Approval Number: A20202) and
Ethical Review of Human Research of Tokai University (Approval
Number: 21134). The present study included 43 participants from
the previous study population; 3 participants were excluded due
to either incomplete datasets or outlier responses relative to other
participants in the previous experimental task.

The severity of the depressive states of participants was
evaluated using the Beck’s Depression Inventory (BDI-II), a
21-question inventory that probes into participants’ life and
psychological conditions over the prior two-week period.
Responses were scored on a 0–3 scale for each question, resulting
in a total score of 0–63. Lower scores indicated less severe
depressive symptoms. Given the non-clinical nature of the
participants, the BDI-II scores in this study were generally low with
limited variability (mean score: 6.413; standard deviation: 4.773).
All participants completed the BDI-II questionnaire via Google
Forms prior to the EEG experimental procedures.

2.2 Experimental design

The overall experiment consisted of three sections: depression
state assessment, resting-state EEG, and EEG during emotional
visual stimuli. In our previous study, we reported EEG
characteristics during emotional visual stimuli, which were

measured after resting-state EEG. While the present study used
the depressive states results from the BDI-II questionnaire data, it
shifted the focus to explore how depressive states are reflected in
resting-state EEG.

The experiment design was as follows. First, depression was
assessed using the BDI-II questionnaire, which was followed by
placement of the EEG electrodes, explanation of the experimental
procedure, and the EEG measurement session. For the EEG
measurement session, a “+” mark was displayed in the center
of the screen monitor to guide the participants’ gaze, during
which time they were instructed to clear their minds as much
as possible. To ensure the length of the data, we recorded
EEG data for approximately 1.5 min. The experiments were
conducted in a bright soundproof room, with the participant sitting
comfortably on a chair and their head placed on a chin rest to
prevent head movement.

2.3 Data measurement and analysis

Collection of EEG data was performed using the Polymate
Pro MP6100 amplifier (Miyuki Giken Co., Tokyo, Japan), which
recorded from 21 electrodes based on the International 10–20
system at a sampling frequency of 500 Hz, including the vertical
electrooculogram (VEOG) and horizontal electrooculogram
(HEOG). We ensured that the electrode impedance did not exceed
the recommended value of 50 k� .

Data processing was conducted using a MATLAB-based script
in conjunction with the EEGLAB toolbox. Raw signals were
initially referenced to AFz during the collection phase and then
re-referenced to the average of all EEG electrodes during pre-
processing. A 0.5–50-Hz bandpass filter was implemented. The
Infomax Independent Component Analysis algorithm was used to
remove eye movement-, blink-, muscle-, and heart-related artifacts
from EEG recordings.

2.3.1 Analysis of PSD and power ratio
In this study, the PSD of EEG signals was computed using

the pwelch function in MATLAB. Welch’s algorithm implements a
periodogram-based spectral estimation method, using fast Fourier
transform (FFT). This technique involves dividing the EEG time
series into eight segments with 50% overlap. Each segment is
then windowed with a Hamming window to minimize spectral
leakage. The FFT is applied to each windowed segment to
obtain periodograms, which are then averaged to determine the
estimated PSD (Welch, 1967). The PSD was calculated for the
preprocessed EEG recordings, utilizing the 1-min-long EEG data
from each participant. To assess temporal fluctuations in resting-
state EEG, the 1-min recording was segmented into six 10-s
intervals, allowing for a nuanced PSD analysis across distinct
frequencies and timeframes. Calculations were confined to specific
frequency ranges: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–50 Hz)2. Average frequency-
specific power values were computed to characterize the power
spectrum within each band. Subsequently, the relative power for
each frequency band was ascertained by normalizing the absolute

2 https://www.mathworks.com/help/signal/ref/pwelch.html
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power to the total power spectrum for each individual participant.
To discern the influence of depressive states, statistical analyses
were undertaken across three distinct groups, with adjustment for
multiple comparisons.

For power ratios, we calculated the alpha–theta ratio (ATR),
ABR, and TBR for each participant, and then conducted correlation
analyses of these three power ratios separately to determine their
correlation with the BDI-II score.

2.3.2 Analysis of PLV
PLVs were calculated for each subject to quantify the

synchronization strength between electrode pairs on the scalp in
order to gain insight into the functional connectivity of the brain.
PLVs range from 0 to 1, with values closer to 1 representing
stronger synchronization. This analysis aimed to understand how
the depressive state affects the functional connectivity between
different areas.

For calculation of the PLV between two electrodes, the process
begins with bandpass filtering of the data from each electrode
within a specific frequency range. Subsequently, the Hilbert
transform is applied to these filtered signals. This transformation
converts the real-valued EEG signals into complex-valued analytic
signals, which reveal the instantaneous phase of the EEG signal
at each time point. In the next step, the instantaneous phase is
extracted for each signal, and the phase difference between the two
signals at each time point is calculated. Finally, the computation
of the PLV is carried out by taking the mean of the exponential
values of the complex phase differences over time, which quantifies
the degree of phase synchronization between the two signals
(Aydore et al., 2013).

The equation for the PLV between two electrodes is as follows:

PLV f
pq =

∣∣∣∣∣ 1
N

N∑
t = 1

ei
(
φ

f
p(t)−φ

f
q(t)

)∣∣∣∣∣.
Here,

1. φf
p (t): instantaneous phases of signals from frequency band f

and electrodes p at time point t.
2. φf

q(t): instantaneous phases of signals from frequency band f
and electrodes q at time point t.

3. N: total number of time points in the signal.
4. The computation involves summing the exponential of the

phase differences at all time points, followed by calculating the
absolute value of this average to yield the PLV.

We calculated PLVs for each frequency band and between
each electrode pair for each subject and normalized them to
ensure comparability across participants.3 We employed Min-Max
normalization to scale the values, which transformed the data into
a standardized range of 0 to 1. This normalization was achieved
by subtracting the minimum value from each data point and
then dividing the result by the difference between the maximum
and minimum values. We then divided the brain into different
regions and quantified the synchronization strength by calculating
the average of the connection strength of one electrode to all

3 https://www.mathworks.com/help/signal/ref/hilbert.html

electrodes in a specific region. We divided 19 electrodes based on
the 10–20 system as follows (Figure 1): the prefrontal cortex (PFC)
region, containing Fp1 and Fp2; the dorsolateral prefrontal cortex
(DLPFC) region, containing F3 and F4; the ventrolateral prefrontal
cortex (VLPFC) region, containing F7 and F8; the midline frontal
cortex (mFC) region, containing Fz and Cz; the temporal cortex
(TC) region, containing T3, T4, T5, and T6; the parietal cortex
(PC) region, containing C3, C4, P3, P4, and Pz; and the occipital
cortex (OC) region, containing O1 and O2 (Chai et al., 2019). We
then performed a correlation coefficient analysis to explore the
relationship between depressive states and the strength of neural
synchronization across different electrodes and regions.

2.3.3 Analysis of source localization
Resting-state EEG data recorded from 19 scalp electrodes

were analyzed via standardized low-resolution electromagnetic
tomography (sLORETA) for source localization (Pascual-Marqui,
2002). For each participant, 60 s of resting-state EEG data was
utilized for cross-spectral computations. Functional independent
component analysis was employed to determine the spectral
density of electric neuronal generators across 6239 cortical voxels
within the seven classical EEG frequency bands: delta (1–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma
(30–50 Hz). This analysis aimed to identify specific regions
and frequency bands associated with the resting-state network
(Herrmann et al., 1979). Statistical evaluations were performed
on the coefficients of 15 components to determine how various
depressive states influence network utilization. A pairwise t-test
was conducted among the three groups, with multiple testing
corrections applied through statistical nonparametric mapping
(SnPM) using 5000 permutations.

3 Results

3.1 Distribution of depressive states

The distribution of participants’ depressive states is shown
in Figure 2 (Li et al., 2023). Participants’ depressive states were
assessed using the BDI-II. The maximum score of the BDI-II
questionnaire is 63, but because the participants were healthy
individuals who were not diagnosed with depression, the maximum
score among the population in this study was 20. According to our
previous study (Li et al., 2023), participants with a score of 0–3 were
categorized into the low depressive state group (n = 13), those with
a score of 4–9 were categorized into the medium depressive state
group (n = 21), and those with a score of 10–20 were categorized
into the high depressive state group (n = 9).

3.2 PSD and power ratio

PSD analysis was conducted to evaluate the impact of
depressive states on EEG spectral power across different
frequencies. The PSD serves as an indicator of the distribution of
signal power among frequency components. Subsequently, a one-
way analysis of variance was applied to determine the influence
of depressive states on resting-state EEG activity. The findings
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FIGURE 1

Electrodes placement using International 10–20 system and the electrodes corresponding to different areas. The 19 electrodes are categorized into
7 distinct brain regions, denoted by color-coded circles. Each region is integral to subsequent Phase Locking Value (PLV) analysis, which examines
the neural connectivity across different areas of the brain.

FIGURE 2

Distribution of BDI-II scores.

are presented in Figure 3. Significant differences were observed
mainly in the theta and beta bands across various time intervals.
From 0 to 10 s, notable differences were observed in central beta
power at Cz and C4. From 10 to 20 s, notable differences were
observed in central beta power at Cz. From 20 to 30 s, notable
differences were observed in frontal theta power at Fp2. From 30
to 40 s, notable differences were observed in frontal theta at Fp1
and Fp2, and central beta powers at Cz. From 40 to 50 s, notable
differences were observed in frontal theta at Fp2, F3, and Fz,
and parietal beta powers at C4 and P4. From 50 to 60 s, notable
differences were observed in central and parietal beta powers at F7,
Cz, C3, C4 and P4. Results of the statistical analysis are given in
Table 1.

Figure 4A shows the topographic mapping of correlation for
ATR, ABR, and TBR. In this figure, red indicates a significant
correlation between BDI-II score and power ratio. This correlation

was found in the TBR in the left frontal area (R =−0.31, p< 0.05),
as shown in Figure 4B.

3.3 Phase locking value

We performed a correlation coefficient analysis to explore the
relationship between depressive state and neural synchronization
strength. For example, as shown in Figure 5, when the connection
region was VLPFC and the band was the beta band (13–
30 Hz), a relationship between BDI-II score and the connection
strength of F4, with respect to beta band in VLPFC region, was
demonstrated (p < 0.05). This indicates that the strength of neural
synchronization in the beta band of the F4 with respect to the
VLPFC region was significantly negatively correlated with the
depressive state. This analysis was performed for each electrode
and each specific frequency, and was transformed into topographic
maps to show the distribution and strength of the correlation
between depressive state and synchronization intensity across
the scalp.

As shown in Figure 6, significant correlations were observed
between the strength of brain connections in various regions and
depressive states across different frequency bands. For the delta
band, there were notable correlations involving the connection
strength within the mFC region and between the C3 and PC regions
in relation to depressive states. For the theta band, connections
between the Pz and OC regions showed a significant relationship
with depressive states. For the alpha band, the connectivity strength
between the C4 and PFC regions, between the C3 and TC regions,
and within the PC region (specifically at locations C3, P3, and P4)
were all significantly correlated with depressive states. For the beta
band, connection strengths that showed significant correlations
with depressive states included those between the F4 and PFC
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FIGURE 3

P-value topography across time intervals by frequency band. Topographic maps displaying the statistical significance of PSD differences among
depressive states on 1-min EEG, segmented into six 10-s intervals. The color gradient, with red indicating lower p-values, shows the results of the
one-way analysis of variance (p < 0.05).

TABLE 1 Statistical analysis of PSD by time interval, brain region, and frequency band.

Time interval (s) Brain region Frequency
band

Statistic F-Value p-Value Effect size (η2)

0–10 Cz Beta F(2, 40) 4.0 0.038 0.17

C4 Beta F(2, 40) 3.5 0.038 0.15

10–20 Cz Beta F(2, 40) 3.5 0.039 0.15

20–30 Fp2 Theta F(2, 40) 9.2 0.001 0.31

30–40 Fp1 Theta F(2, 40) 5.5 0.031 0.22

Fp2 Theta F(2, 40) 4.1 0.031 0.17

Cz Beta F(2, 40) 4.2 0.023 0.17

40–50 Fp2 Theta F(2, 40) 3.6 0.037 0.15

F3 Theta F(2, 40) 5.3 0.023 0.21

Fz Theta F(2, 40) 4.4 0.023 0.18

C4 Beta F(2, 40) 4.3 0.036 0.18

P4 Beta F(2, 40) 3.6 0.036 0.15

50–60 F7 Beta F(2, 40) 3.9 0.029 0.16

Cz Beta F(2, 40) 6.1 0.012 0.23

C3 Beta F(2, 40) 4.4 0.019 0.18

C4 Beta F(2, 40) 5.4 0.012 0.21

P4 Beta F(2, 40) 5.3 0.012 0.21

regions, the F4 and VLPFC regions, the C3 and TC regions, the
C3 and PC regions, and the P4 and TC regions. For the gamma
band, the connections between the PFC region and Fz, F4, and

O1, as well as connections from the DLPFC region to Fp1 and T5,
showed significant associations with depressive states. Additionally,
connections from the mFC region to Fp1 and within the PC region
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FIGURE 4

Topographic maps and scatter plot for correlation between BDI-II score and power ratio. (A) Topographic mapping of correlation for Alpha-theta
ratio (ATR), Alpha-beta ratio (ABR) and Theta-beta ratio (TBR). The red color indicates a smaller p-value (p < 0.05), which represents the significant
correlation between BDI-II score and the power ratio, (B) Relationship between the BDI score and TBR. Each dot represents the TBR of one
participant.

FIGURE 5

Relationship between the BDI-II score and PLV strength. The x-axis
shows the BDI-II score, with a higher score associated with a higher
depressive state. The y-axis shows the PLV strength between F4 and
VLPFC, which was defined as the mean PLV strength between one
electrode and the electrodes of an area. Each dot represents the
average PLV strength of one participant.

to F4 and C4 also presented notable correlations with depressive
states. Results of the statistical analysis are given in Table 2.

3.4 Source localization

The neural substrates underlying the variations in resting
neural networks among depressive states were examined using
sLORETA, employing a one-tailed significance test. The exceedance
proportion test from sLORETA determined significant component
differences between conditions (p < 0.05). When comparing the
low and high groups, the exceedance proportion test indicated a
threshold of −2.100 corresponding to a p-value of 0.075; as shown
in Figure 7A, significant beta-band variations were localized to the
right middle frontal gyrus (t = 2.33, MNI coordinates: X = 35,
Y = 60, Z = −5). When comparing the middle and high groups,
beta-band differences were localized to the left middle temporal
gyrus (t = 2.88, MNI coordinates: X = −65, Y = −50, Z = −10),
with a threshold of −2.018 linked to a p-value of 0.015, as shown
in Figure 7B. Differences in the gamma band were localized to the
left middle temporal gyrus (t = 2.12, MNI coordinates: X = −65,

Y = −50, Z = −10) and the right middle temporal gyrus (t = 2.12,
MNI coordinates: X = 65, Y =−30, Z =−10; Figure 7C).

4 Discussion

This study investigated the effects of different depressive states
on neural activity in healthy individuals by analyzing the changes
in power spectrum density, power ratio, and region-based phase
locking value with respect to the depressive state during the resting
state. In terms of PSD, the theta band of the prefrontal cortex
showed a tendency to decrease as the depressive state increased,
and the delta band showed an upward trend as the depressive state
increased. In terms of power ratio, the TBR of the right frontal
region showed a decreasing trend with an increasing depressive
state. In terms of functional connections, significant correlations
were observed within the frontal and parietal region. In terms of
source localization by sLORETA, frontal beta, temporal beta, and
temporal gamma activities were identified.

The PSD results indicated an increasing trend in the delta band
in the prefrontal area in the resting state, but this difference was
not statistically significant. This may suggest a more complex or
different neural mechanism than hypothesized. In previous studies,
resting-state EEG delta power was reported to be associated with
psychological pain in adults with a history of depression (Meerwijk
et al., 2015). Resting-state EEG delta power has been found to
have predictive utility in predicting the response of individuals with
depression to cognitive behavioral therapy (Schwartzmann et al.,
2023). In addition, previous studies have shown that for patients
with depression, higher delta bands in the left frontal region during
resting states are associated with greater self-disgust (Amico et al.,
2023) and with greater cognitive load associated with visual input
during eye-open resting (Kan et al., 2017). Higher delta power
in the left temporal region is associated with different thought
wandering processes (Spironelli et al., 2021). Therefore, delta power
that shows an increasing tendency with increasing depressive states
might be associated with unstable mental states.

The theta band of the resting state tends to increase with
the severity of the depressive state in the frontal area, and a
significant difference was found in the prefrontal cortex. Resting-
state theta activity has been linked to information content-specific

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1384330
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1384330 August 8, 2024 Time: 11:44 # 8

Li et al. 10.3389/fnhum.2024.1384330

FIGURE 6

Topographic mapping of significant correlations in the PLV for different regions. Red color indicates lower p-values (p < 0.05), which represent a
significant correlation between the BDI-II score and the PLV strength of a certain area and frequency.

TABLE 2 Correlation between EEG connectivity and depressive state
across different frequency bands.

Frequency
band

Connection
between
regions

Correlation
co-

efficient
(R)

p-value

Delta mFC intra-region −0.3 0.05

C3 and PC 0.32 0.04

Theta Pz and OC 0.36 0.02

Alpha C4 and PFC −0.35 0.02

C3 and TC 0.33 0.03

PC intra-region (C3) 0.32 0.04

PC intra-region (P3) 0.33 0.03

PC intra-region (P4) 0.3 0.05

Beta F4 and PFC −0.35 0.02

F4 and VLPFC −0.39 0.01

C3 and TC 0.3 0.05

C3 and PC 0.38 0.01

P4 and TC 0.3 0.05

Gamma Fz and PFC −0.31 0.04

F4 and PFC −0.45 <0.01

O1 and PFC −0.31 0.04

Fp1 and DLPFC −0.36 0.02

T5 and DLPFC −0.35 0.02

Fp1 and mFC 0.43 <0.01

F4 and PC −0.35 0.02

C4 and PC 0.35 0.02

coding levels during response inhibition (Pscherer et al., 2022).
A higher resting theta activity was found to be associated with a
stronger N2 peak during successful response inhibition for no-go

tasks, suggesting that the resting-state theta activity forms the
foundation for a neural state that is helpful in enhancing inhibitory
control mechanisms more effectively (Pscherer et al., 2022). In
our previous study, the low depressive state group showed a
stronger N2 peak during stimuli processing (Li et al., 2023), and
the present study found stronger resting theta power in the low
depressive state group. Therefore, the higher resting theta power of
the low-depression state may indicate better control over external
stimuli, and thus maintenance of a stable mental state. Another
study demonstrated a negative correlation between theta power
of the right central region and depressive states in patients with
depression (Gao et al., 2023). Therefore, the PSD results of our
present study may indicate that neural activity is modulated by
depressive states and that it is derived from a state of psychological
distress and a lack of inhibition of negative information.

The TBR at the F4 electrode was found to be negatively
related to depressive states. A decreased TBR has been proposed
as a potential biological marker of depression, with significant
differences observed across various electrode ranges, indicating
alterations in EEG power ratios in the resting state of depression
(Chang and Choi, 2023). In addition to the results of scalp-recorded
EEG activity, the results of the source localization analysis provided
further support for a more localized difference in the beta band in
the frontal lobe among the three depressive state groups, suggesting
that different levels of depressive states affect the resting-state
network in the frontal region, specifically the middle frontal gyrus.

The PLV results demonstrate the correlation between the
strength of PLV connections and the depressive state. In the
present study, a negative correlation within the frontal lobe
was found in the delta, beta, and gamma bands. In patients
with MDD, alterations in delta-band connectivity have been
observed, with reduced resting brain connectivity in the delta
band relative to healthy controls (Qiu et al., 2022). Compared
with healthy controls, decreased beta-band functional connectivity
has been found in MDD patients during emotional stimuli
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FIGURE 7

Resting state brain network analysis using standardized low resolution electromagnetic tomography method (sLORETA) source localization. (A) The
beta band’s spatial distribution is linked to the functional independent component displaying the highest significant difference across the three
depressive state groups, with the maximum theta band location (positive, color-coded yellow) identified in the frontal areas, (B) The beta band’s
spatial distribution is linked to the functional independent component displaying the highest significant difference across the three depressive state
groups, with the maximum beta band location (positive, color coded yellow) identified in the temporal areas, (C) The gamma band’s spatial
distribution is linked to the functional independent component displaying the highest significant difference across the three depressive state groups,
with the maximum gamma band location (positive, color-coded yellow; negative, color-coded blue) identified in the temporal areas. Horizontal
(left), sagittal (middle), and coronal (right) sections through the voxel with the maximal t-statistic are displayed.

processing (Zuchowicz et al., 2019). A negative correlation
between the frontal and parietal lobes could be found in the
alpha and gamma bands, and a negative correlation between
the frontal and temporal lobes could be found in the gamma
band. Results of the source localization analysis also confirmed
a specific variation of the gamma band in the temporal lobe
across three depressive state groups, suggesting that varying

degrees of depressive states influence the resting-state network
in the temporal region, particularly in the middle temporal
gyrus. A previous study found that the average functional
connectivity of the alpha band during the resting state showed
a negative correlation with the severity of depression (Shim
et al., 2018). Research has also shown that resting-state EEG
activity, particularly in the beta band, is a marker of the
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strength of frontoparietal connections, which are associated
with attentional performance (Rogala et al., 2020). Additionally,
increased theta and alpha connectivity for resting EEG have
been identified in dysphoria, which may represent the risk of
depression (Dell’Acqua et al., 2021). Negative correlations of
resting-state EEG functional connectivity in the frontal regions
may indicate that synchronization or communication in frontal
regions decreases with an increasing depressive state, and that the
severity of the sub-threshold depressive state may be identified
by the degree of reduction in functional connectivity in the
frontal area.

Positive correlations within the parietal lobe were found
in the delta, alpha, beta, and gamma bands, and between the
parietal lobe and temporal lobe in the alpha and beta bands.
Alterations in alpha-band connectivity have been observed in
patients with MDD, with increased coherence primarily involving
the prefrontal region (Leuchter et al., 2012). A previous study
found that beta-band EEG functional connectivity in MDD patients
was stronger than that in healthy controls in an eyes-closed
resting state (Huang S. S. et al., 2023). Increased beta-band phase
synchronization was found in the brain activity of MDD patients
who did not respond to repetitive transcranial magnetic stimulation
treatment (Zuchowicz et al., 2019). Increased resting gamma-
band phase synchronization has been associated with the severity
of depression, indicating a potential link between gamma-band
connectivity and the characteristics of depressive symptoms (Yang
et al., 2023). Additionally, deficits in gamma-band oscillations
have been observed in other psychiatric conditions, including
bipolar disorder, suggesting that gamma-band synchronization
may be a relevant marker for understanding various mental health
disorders (Tsai et al., 2023). The positive correlation in resting-
state EEG functional connections in the parietal area indicates
that the synchronization in the parietal region is strengthened
with an increasing depressive state. Additionally, enhanced resting-
state EEG connectivity in the posterior region was observed in
patients with moderate to severe late-life depression relative to
patients with mild depression, and was associated with attention
deficits (Zeng et al., 2024). Leuchter et al. (2012) reported that,
in comparison to healthy controls, unmedicated individuals with
MDD had significantly higher overall coherence in the delta,
theta, alpha, and beta frequency bands, indicating a loss of
selectivity in resting functional connectivity. These results suggest
that brain functional abnormalities in subthreshold depression
are associated with changes in the functional connectivity
in the frontal and parietal lobes, which may be important
for the early detection and diagnosis of depression in the
future.

This study has some limitations. While prior research has
established the validity of classifying participants using BDI-II
scores (Cox et al., 2001), the adequacy of the sample sizes of
each of our groups remains uncertain. Future studies should
aim to expand the number of participants in order to more
robustly discern significant correlations with other biomarkers.
Secondly, given that depression is more commonly observed
in women (Piccinelli and Wilkinson, 2000), the fact that male
participants accounted for approximately two-thirds of the study
population represents a limitation. The under-representation of
women may make the findings less applicable to the female
population. To enhance generalizability, future studies should aim

to address this by ensuring a more balanced sex distribution.
The requirement of EEG for source localization is another
limitation of this study. The analysis was conducted with 19-
channel EEG recordings, which could provide a broad overview
of brain activity. In a previous study, sources of resting-state
EEG activity were estimated using 19-channel EEG recordings
with LORETA (Aoki et al., 2015). However, a recent study
suggests that a minimum of 64 electrodes is recommended
for a robust source localization analysis (Hatlestad-Hall et al.,
2023). Consequently, the source localization results obtained in
this study should be considered a preliminary estimate. A more
detailed source localization analysis using high-density EEG data
is currently planned to enhance the accuracy and reliability of our
findings.

In this study, we observed that the PSD in the theta band,
the TBR, source localization tomography (sLORETA), and the
PLV in the frontal and parietal lobes varied according to the
depressive state in healthy individuals during a resting state. These
findings suggest that depressive states may influence neural activity
during resting states, potentially affecting cognitive functions. The
PSD, power ratio, and connectivity within the neural circuits,
particularly between the frontal and parietal lobes, could serve as an
effective indicator and contribute to improving the understanding
of neural activity during the resting state in healthy individuals. The
identification of these neural patterns associated with depressive
states could act as parameters for evaluating depressive states in
healthy individuals, potentially serving as early markers for MDD.
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