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Accident analyses repeatedly reported the considerable contribution of run-off-
road incidents to fatalities in road traffic, and despite considerable advances in 
assistive technologies to mitigate devastating consequences, little insight into the 
drivers’ brain response during such accident scenarios has been gained. While 
various literature documents neural correlates to steering motion, the driver’s 
mental state, and the impact of distraction and fatigue on driving performance, 
the cortical substrate of continuous deviations of a car from the road – i.e., how 
the brain represents a varying discrepancy between the intended and observed 
car position and subsequently assigns customized levels of corrective measures 
– remains unclear. Furthermore, the superposition of multiple subprocesses, 
such as visual and erroneous feedback processing, performance monitoring, 
or motor control, complicates a clear interpretation of engaged brain regions 
within car driving tasks. In the present study, we thus attempted to disentangle 
these subprocesses, employing passive and active steering conditions within 
both error-free and error-prone vehicle operation conditions. We  recorded 
EEG signals of 26 participants in 13 sessions, simultaneously measuring pairs 
of Executors (actively steering) and Observers (strictly observing) during a car 
driving task. We observed common brain patterns in the Executors regardless of 
error-free or error-prone vehicle operation, albeit with a shift in spectral activity 
from motor beta to occipital alpha oscillations within erroneous conditions. 
Further, significant frontocentral differences between Observers and Executors, 
tracing back to the caudal anterior cingulate cortex, arose during active steering 
conditions, indicating increased levels of motor-behavioral cognitive control. 
Finally, we  present regression results of both the steering signal and the car 
position, indicating that a regression of continuous deviations from the road 
utilizing the EEG might be feasible.

KEYWORDS

car driving, steering, electroencephalogram, error processing, feedback processing

OPEN ACCESS

EDITED BY

Suriya Prakash Muthukrishnan,  
All India Institute of Medical Sciences, India

REVIEWED BY

Gianluca Di Flumeri,  
Sapienza University of Rome, Italy
Sunaina Soni,  
Subharti Medical College, India
Navdeep Ahuja,  
All India Institute of Medical Sciences, India

*CORRESPONDENCE

Gernot R. Müller-Putz  
 gernot.mueller@tugraz.at

†These authors share senior authorship

RECEIVED 08 February 2024
ACCEPTED 17 June 2024
PUBLISHED 27 June 2024

CITATION

Pulferer HS, Guan C and 
Müller-Putz GR (2024) Investigating multilevel 
cognitive processing within error-free and 
error-prone feedback conditions in executed 
and observed car driving.
Front. Hum. Neurosci. 18:1383956.
doi: 10.3389/fnhum.2024.1383956

COPYRIGHT

© 2024 Pulferer, Guan and Müller-Putz. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 27 June 2024
DOI 10.3389/fnhum.2024.1383956

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1383956&domain=pdf&date_stamp=2024-06-27
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1383956/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1383956/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1383956/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1383956/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1383956/full
mailto:gernot.mueller@tugraz.at
https://doi.org/10.3389/fnhum.2024.1383956
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1383956


Pulferer et al. 10.3389/fnhum.2024.1383956

Frontiers in Human Neuroscience 02 frontiersin.org

1 Introduction

Driving a car constitutes a crucial part of everyday life for a large 
proportion of the population, and consequently, error situations like 
lane deviations are by no means rare occurrences in road traffic. 
Accident analyses unveiled that single-vehicle accidents comprising 
run-off-road, head-on, and sideswipe crashes contribute to a large 
portion of accident fatalities despite involving only a minor fraction 
of all occupants involved (Kusano and Gabler, 2014; Cicchino, 2018). 
However, while several engineering approaches, such as lane-keeping 
assistants, are well-researched and significantly contribute to 
decreasing accident and thus fatality rates (Kusano et al., 2014), little 
research has analyzed the drivers’ perception – i.e., the preceding and 
accompanying brain response – of erroneous vehicle behavior within 
these run-off-road scenarios.

Indeed, an abundance of non-invasive brain research investigated 
numerous aspects of vehicle operation to the present day. Various 
groups reported neural correlates to or successful classification of, e.g., 
steering motion (Simpson and Rafferty, 2022; Vecchiato et al., 2022), 
the driver’s mental state (ElSherif et al., 2020), or the influences of 
distraction and fatigue (Schneiders et al., 2020; Zeng et al., 2022) on 
the driving performance utilizing the electroencephalogram (EEG). 
Additionally, insights on discrete error-related brain activity occurring 
during the operation of a vehicle induced by wrong turns (Zhang 
et al., 2015) or steering errors caused by the interface (Garcia et al., 
2017) emerged specifically in the context of brain-computer 
interfaces (BCIs).

While all of these and similar studies significantly contributed to 
in-depth documentation of cognitive responses relating to car driving, 
several issues and open questions remain unaddressed. For one, while 
the term car driving is often used to refer to the overall task of 
operating a vehicle, it can only be an umbrella term for the multitude 
of subprocesses transpiring simultaneously in a neuroscientific sense. 
Ranging from motor control and visual processing to performance 
monitoring, erroneous feedback processing, and possibly subsequent 
corrective behavior, brain recordings during car driving scenarios 
portray the full superposition and thus obscure the contribution of 
each subprocess to possible regression or classification successes. 
Furthermore, some of these subprocesses remain largely 
undocumented to the present day. While for example the occurrence 
of scalp potentials such as the frontocentral error-related negativity 
(ERN) (Falkenstein et al., 1989) and the centroparietal error positivity 
(Pe) (Nieuwenhuis et  al., 2001) during vehicle operation is well-
documented for various discrete error events (Wimmer et al., 2023), 
the neural representation of continuous deviations from the road – 
i.e., how the brain processes continuously varying discrepancies 
between intended and observed outcomes – remains largely unclear.

Previous source localization studies already tackled variations of 
these problems, utilizing functional magnetic resonance imaging and 
positron emission tomography to disentangle active steering and 
passive viewing of recorded car driving (Walter et al., 2001; Horikawa 
et  al., 2005) and effectively separate the visual and motor-related 
components of driving. Garcia et al. (2017) identified distinct brain 
states related to proactive and reactive steering in an EEG study, 
differentiating generic and corrective motor output. Recent work 
further documented a neural correlate to continuous deviations of 
feedback from an intended target within a tracking task (Pulferer 
et al., 2023), paving the way to similar findings for deviations of a 

vehicle from the road within a car driving task. However, to the best 
of our knowledge, disentangling the superposition of all these 
processes within a car driving task has not yet been attempted.

In addition to the mentioned questions, previous research has not 
attempted to infer continuous signals such as car trajectories or 
steering motion from the EEG to the present day. While there have 
been approaches to regress ongoing continuous movement of both 
upper and lower limbs within a range of studies (Mondini et al., 2020; 
Tortora et al., 2020; Fu et al., 2022; Borra et al., 2023), utilizing both 
classical machine learning approaches as well as convolutional or 
recurrent neural networks, literature has not yet applied these 
methods to infer task-related signals during car driving. However, 
these findings could provide valuable information, both for vehicle 
safety in general and brain-computer interfaces in particular.

In the present study, we thus aimed to investigate the cortical activity 
within a simulated car driving task for both observed and executed 
driving, employing passive (steering along), proactive (unhindered 
steering), as well as reactive (corrective) steering conditions, comprising 
error-free and error-prone vehicle operation conditions. 
We simultaneously recorded EEG signals in pairs of participants within 
13 sessions (26 participants in total), wherein each participant took on 
the role of Executor (person actively steering) and Observer (person 
merely observing) once. Additionally, both the steering wheel signal and 
the car position were recorded to enable time-locking to specific time 
points of interest such as maxima in steering wheel deflection or car 
deviation from the road. We hypothesized that different brain regions 
should reach synchrony at different time-locks depending on the specific 
processes they are tasked with. Further, we utilized a slight modification 
of EEGNet, a well-known convolutional neural network architecture in 
the context of EEG decoding, to infer both the steering signal and the 
current car position on-screen from the EEG; an endeavor not yet 
reported within literature so far. Within sensor space, time-frequency, 
directional connectivity, and source localization analyses, we overall 
aimed to identify distinct brain patterns relating to steering motion, 
visual processing, and erroneous feedback processing.

2 Methods

2.1 Participants

Within a total of 13 sessions in pairs of two, 26 able-bodied 
participants [age: 23.8 (mean) ± 2.2 (SD) years; age range: 20 to 
28 years; 13 male, 13 female] underwent a car driving task employing 
varying vehicle operation conditions. Of all participants, each reported 
normal or corrected-to-normal vision, and 15 confirmed prior 
participation in an EEG study. We  assessed 23 persons as right-
handed, and three as left-handed, according to the Edinburgh 
Handedness Inventory (Oldfield, 1971). Each participant gave their 
written informed consent and received compensatory payment for 
their time. All measurements were conducted at the Graz University 
of Technology and approved by the local ethics committee.

2.2 Data acquisition

During each session of recordings, the EEG and electrooculogram 
(EOG) of two participants – each of which operated as an Observer 
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and as an Executor once - were recorded simultaneously on 64 active 
electrodes per person (actiCAP, Brain Products GmbH, Gilching, 
Germany). The total setup corresponded to a 60-channel EEG 
according to a modified 10–10 system layout 
(Supplementary Figure S1), as well as a 4-channel EOG, both recorded 
at a sampling rate of 200 Hz. As in previous work (Martínez-Cagigal 
et  al., 2020; Pulferer and Müller-Putz, 2022) six electrodes from 
frontopolar and temporal sites (Fp1, Fp2, FT9, FT10, TP9, TP10) were 
removed, and reallocated to two parietooccipital electrode positions 
for increased channel density above the cuneus and precuneus area 
(PPOh1, PPOh2; according to the 10–5 system), as well as four EOG 
locations (above and below the left eye and the outer canthi of both 
eyes). Ground and reference electrodes were placed at the electrode 
position Fpz and on the participants’ right mastoid, respectively.

All data were recorded and synchronized via lab streaming layer 
(https://github.com/sccn/labstreaminglayer). The presented main 
paradigm was created and displayed utilizing MATLAB 2017b 
(MathWorks Inc. United States); the eye artifact correction package 
we employed (Kobler et al., 2020) additionally utilized Psychtoolbox 
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

2.3 Experimental design

Before each session, we assigned each of the two participants an 
initial role at random, corresponding to either Executor or Observer. 
The setup involving two participants at the same time was chosen as 
previous literature reported considerable differences between executed 
and observed erroneous action in the processing of discrete error stimuli 
(van Schie et al., 2004). The participant acting as Executor then took a 
seat in front of an Xbox Wireless Racing Wheel (Microsoft, 2006/2007; 
sans foot pedals) inside our measurement box, while the Observer was 
positioned outside (Figure 1A). This spatial separation prevented direct 
visual contact between the two participants; however, due to the noise 
caused by the steering wheel’s mechanics, we decided against closing the 
door to the measurement box to establish identical auditory paradigm 
conditions for Executor and Observer. Both participants faced their 
computer screens at a comfortable distance (~1 m).

The whole measurement session then consisted of two identical 
iterations through our paradigms. In detail, for each of the iterations, 
we first presented the participants with a run unrelated to the main 
hypothesis (6 min), designed to capture the rotational movement of 
the corneo-retinal dipole. This run specifically recorded vertical and 
horizontal eye movement, blinks, and resting state data (open-eyed), 
cued by a moving, pulsating, or static target on-screen, to create an eye 
artifact removal model for offline artifact correction (Kobler et al., 
2020). No interaction with the steering wheel occurred during this 
first run. Afterward, the car-driving paradigms commenced, 
consisting of four different vehicle operation conditions labeled 
Passive Steering, Proactive Steering, Reactive Steering (Distinct), and 
Reactive Steering (Indistinct). Each condition was presented in three 
separate runs (3.5 min each), adding up to around 15 min of recordings 
per condition including instructions, and totaling to approximately 
1 h of recordings for one paradigm iteration (Figure 1D). To capture 
the subjective perception of the Executor’s steering performance per 
condition and run, we additionally asked both participants to rate the 
perceived performance on a visual analog scale ranging continuously 
from 0 (bad performance) to 1 (excellent performance).

After the first paradigm iteration, the participants took a short 
break before the roles were reversed and the second paradigm 
iteration started up. Specifically, the person previously acting as 
Executor left the box and switched positions with the former 
Observer to henceforth observe from the outside as the new Observer. 
Likewise, the former Observer took their place at the steering wheel, 
acting as the new Executor for the rest of the measurement. This 
switch allowed us to capture both observation and execution data of 
each participant. The measurement commenced again with a second 
eye movement recording run, followed by the four car-driving 
paradigm conditions.

2.3.1 Driving simulation
For all car-driving conditions, the paradigms comprised a bird-

view environment depicting a gray road with a white center line, as well 
as a yellow car to operate (Figure  1C). The car’s initial position 
corresponded to the center of the screen in the horizontal axis and 
approximately a fourth of the screen’s height from the bottom up in the 
vertical axis, henceforth considered the origin of our coordinate system 
when describing the car’s position on-screen). Additionally, we set a 
randomized non-zero initial horizontal velocity to enforce a necessity 
of steering within the Proactive Steering (v px sx, /0 5= ± ) and both 
Reactive Steering [v px sx, , /0 300 300∈ −( ) ] conditions, while the 
vertical velocity was fixed to zero throughout the experiment. As such, 
a sense of forward motion was exclusively enforced by moving the 
shaded background downwards at a constant speed. Starting from 
these initial settings, the car’s position was updated at 50 Hz by 
integrating the current position from the previous velocity and 
position, and directly adding the current steering input weighted by a 
fixed weighting factor (wf ) per condition; the current velocity was then 
in turn differentiated from the new kinematics. The fixed weighting 
factor was set higher for the Reactive Steering conditions (wf = 30) 
compared to the Proactive Steering condition (wf = 5) to raise the level 
of steering difficulty. As the current work aimed to analyze the cortical 
response to recurring lane deviations rather than the overall driving 
experience, the simulation was kept as minimalistic as possible.

2.3.2 Car-driving conditions
For each of the car-driving conditions, we  instructed both 

participants to focus their attention on the moving car while the 
Executor steered with both hands according to the instructions 
delivered directly before the commencement of the different 
conditions. We additionally instructed the participants that steering 
errors causing a deviation from the road should be perceived as more 
drastic than errors that only caused a mere deviation from the white 
centerline while remaining on the road, thus introducing different 
levels of urgency to the erroneous feedback processing.

2.3.2.1 Passive steering
During the runs of the Passive Steering condition (Figure 1C1), the 

participants faced a winding road spanning approximately half of the 
screen’s width. In contrast to the other presented main paradigms, the 
car stayed exactly on the road by itself, moving along the turns at a 
frequency of 0.25 Hz (i.e., the duration between maximum 
displacement to the right and consecutively to the left corresponded 
to 2 s). Both participants were informed about the fake nature of the 
feedback beforehand; we instructed the Executor to steer along as if 
they were in control of the car, even though they were not.
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We set the movement along the road at an exact frequency 
without jittering to observe the influence of periodic stimulus 
movement on the brain signals. In addition, the Passive Steering 
condition (i.e., merely steering along to the self-moving car) served to 
disentangle cortical activity related to generic (passive) and self-reliant 
(proactive) motor output.

2.3.2.2 Proactive steering
During Proactive Steering condition runs (Figure  1C2), the 

Executor wielded full steering control and was instructed to attempt 
to always stay on the white centerline of a straight and narrow road. 
The steering settings were chosen such that all participants could 
comfortably reach this goal. The Proactive Steering condition was 
designed to provide information on how the brain operates during 
successful fine-tuned feedback control.

2.3.2.3 Reactive steering (distinct)
As in the Proactive Steering runs, the Reactive Steering (Distinct) 

runs (Figure 1C3) depicted a straight and narrow road again, and the 
Executor was similarly instructed to attempt to always stay on the 
white centerline. In contrast to the Proactive Steering scenario however, 
the steering control for the Reactive Steering (Distinct) runs was 
momentarily revoked whenever the car’s deviation from the centerline 
fell below one-fifth of the screen’s width. In practice, this was achieved 
by removing the steering input when integrating the current velocity - 
and thus forcing the system to instead depend on the prior kinematics 
only - whenever the car crossed the threshold. As a result, the Executor 
had no control within this margin around the road, and the car would 
instead cross over the centerline unhindered until it exited the margin 
on the other side again. At this point, the Executor regained control 

and could steer back toward the road once again. To prevent excessive 
steering off the road, we instructed the Executors to attempt to return 
to the centerline swiftly after regaining control. We employed this 
specific control mechanism to enforce continuous erroneous feedback 
processing in the form of lane deviations. In our hypothesis, the limited 
control offered in this condition should cause considerable engagement 
of feedback monitoring and error processing networks in the brain.

2.3.2.4 Reactive steering (indistinct)
During Reactive Steering (Indistinct) runs (Figure 1C4), we finally 

aimed to investigate differences in cortical modulations with the 
perceived importance of an error. To this end, participants faced the 
same limited control scenario as during the Reactive Steering (Distinct) 
condition (the margin of revoked steering control around the road 
remained unchanged). However, instead of the narrow and distinct 
road shown previously, the Reactive Steering (Indistinct) runs instead 
depicted a broad road with blurred edges. The premise that getting off 
the white centerline already constituted a steering error, but getting off 
the road should be perceived as even more drastic, remained intact. 
However, we hypothesized that the larger area of the road, as well as 
its vague boundaries, should lead to a different perception of urgency 
with faulty steering, and thus only provoke minor engagement of 
related cortical networks compared to Reactive Steering (Distinct) runs.

2.4 Data processing

As previous research reported contributions of various frequency 
bands to error processing in the brain (Yordanova et  al., 2004; 
Koelewijn et  al., 2008; Carp and Compton, 2009), we  chose to 

FIGURE 1

(A) Experimental setup. Both participants observed the driving performance on their screen (no visual contact with each other) as the Executor steered 
the car with an XBox driving wheel. (B) Epoching scheme. Executor and Observer EEG data were time-locked within [−2,6]s of zeros in the horizontal 
car position and the steering signal, respectively. (C) Car-driving conditions. A gray road with a white centerline on a shaded background, as well as a 
yellow car, were displayed for all conditions. The car remained on a narrow winding road by itself during the Passive Steering condition (C1); the 
Executor had full steering control during the subsequent Proactive Steering runs on a straight, narrow, and distinct road (C2). During the Reactive 
Steering conditions, participants faced a narrow and distinct road (C3; Distinct) and a wide and blurred road (C4; Indistinct). During Reactive Steering 
conditions, steering control was revoked within a fixed margin around the road (marked with a yellow dashed line here) to cause unintended vehicle 
behavior and provoke erroneous feedback processing. (D) Recording pipeline. Electrode positions were recorded for both participants before the first 
paradigm iteration started, consisting of eye movement recordings and a run-through of all four car-driving conditions in three runs each with 
performance rating (PR) questionnaires after each run. (E) Processing pipeline.

https://doi.org/10.3389/fnhum.2024.1383956
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Pulferer et al. 10.3389/fnhum.2024.1383956

Frontiers in Human Neuroscience 05 frontiersin.org

bandpass filter both EEG and EOG signals at 0.2-30 Hz (Butterworth, 
10th order). Subsequently, we identified and spherically interpolated 
noisy channels via visual inspection, abnormal kurtosis, and abnormal 
joint probability (exceeding five standard deviations of the mean for 
both measures). We used EEG and EOG data of the eye movement 
recordings to train an eye artifact correction model to correct the 
hypothesis-related EEG data of the main paradigm conditions for 
rotational movements of the corneo-retinal dipole (Kobler et  al., 
2020), followed by ICA [FastICA algorithm (Hyvärinen, 1999), 
https://research.ics.aalto.fi/ica/fastica/index.shtml] in the case of a 
persisting influence of ocular movement on the EEG. To this end, the 
independent components were first automatically labeled using the 
ICLabel classifier available in EEGLab (Pion-Tonachini et al., 2019). 
Components attributed to eye, heart, or muscle artifacts with a 
classification accuracy of at least 90% were then automatically 
removed. The scalp distribution of the ICA weights, as well as the time 
series of the components, were then visually inspected to exclude 
remaining eye, heart, or muscle artifacts. The EOG and anterior 
frontal row electrodes were then excluded from further analysis, 
leading to a remaining total of 55 channels to consider which were 
then re-referenced to their common average. The whole processing 
approach is depicted in Figure 1E.

In terms of non-biological signals, the car’s x-position signal was 
analyzed as recorded without further processing. To alleviate jitters in 
the recorded steering wheel signal, we  smoothed the data with a 
Savitzky–Golay filter utilizing second-order polynomials to fit 
windows of 351 samples (1.75 s) (Savitzky and Golay, 1964).

2.5 Data analysis

To obtain an understanding of the differences in cognitive 
processing between the four car-driving paradigm conditions, as well 
as differences between execution and observation of the task, 
we analyzed the recorded data both in sensor space and in source 
space. Due to the lack of normality in the distribution of single 
evaluation metrics, non-parametric tests were selected to assess 
significant differences between populations. To this end, significant 
differences between pairs of populations (e.g., Executor vs. Observer) 
were evaluated using a Wilcoxon signed rank test; for comparisons 
between more than two populations (e.g., the four car-driving 
conditions) were assess with a Friedman-Nemenyi test – a many-
sample extension of the Wilcoxon test (Zimmerman and Zumbo, 
1993). Both tests were followed by subsequent False Discovery Rate 
(FDR) correction for multiple comparisons.

2.5.1 EEG data
To identify different brain regions tasked with individual 

subprocesses of car driving, we chose to analyze two different time-
locks of interest within this work: (a) a time-lock to zero-crossings in 
the car’s x position (henceforth termed car zero), and (b) a time-lock 
to zero-crossings in the steering wheel signal (henceforth steer zero). 
Considering the periodic left-and-right movement of the car, the car 
zero time-lock served to trace visual/feedback processing, while the 
steer zero time-lock should identify movement-related activity in the 
brain. For both time-locks, we epoched the continuous EEG data to 
slices within [−2,6]s. As a last step, we rejected bad epochs based on 
visual inspection, thresholding (exceeding ±100 μV), abnormal 

kurtosis, and abnormal joint probability (exceeding five standard 
deviations of the mean for both measures).

As the steering behavior differed considerably between the 
displayed car-driving conditions, comparing the grand average signals 
throughout the epoch length across conditions was considered as 
meaningless. Instead, we  chose to additionally track consecutive 
extrema for each of the two time locks, i.e., the succeeding maxima in 
horizontal car deviation from the origin (car max), and in steering 
wheel deflection (steer max). To compare between conditions then, 
only the topographical maps at the four time points car zero/max and 
steer zero/max were considered.

To utilize the full epoch information nonetheless, we selected the 
channel displaying the largest signal amplitude within those four time 
points per condition, corresponding to either the electrode position 
FCz, Cz, or Pz. This selection was made to display the recorded 
cortical activity meaningfully yet compactly per trial, as in principle, 
these maps would have been possible for all EEG channels. For this 
singular channel, we then considered all trials per participant and 
sorted them in ascending order according to their latency between 
zero-crossings (i.e., car/steer zero) and consecutive extremum (i.e., car/
steer max). As the number of trials varied between participants, 
we then spherically interpolated the sorted trials time points  ×  matrix 
at the specific EEG channel per participant along the trial dimension 
to obtain 100 interpolated ‘pseudo trials’ for each participant [i.e., a 
(100× time points ) matrix], in line with similar approaches by Burle 
et al. (2008). A matching procedure was used to spherically interpolate 
the corresponding latencies. The resulting sorted and interpolated 
trials for the selected EEG channel, as well as the latencies, were then 
grand averaged across all participants to display changes in EEG 
activity with steering activity and car position.

2.5.2 Frequency analysis
To analyze the time-frequency behavior in each role and 

condition, we calculated the one-sided Short-Time Fourier Transform 
(STFT) of the 55-channel EEG on each 8 s-long single trial (i.e., 1,601 
time points at 200 Hz), using a 200-sample Hanning window at 175 
samples of overlap in a 256-point Fast Fourier Transform (FFT). 
Spectrograms displaying a signal power beyond ±3 standard 
deviations from the mean were excluded from further analysis, 
corresponding to on average 4.3% (STD 9.0%) of trials across all 
conditions. For each role, condition, and participant, the resulting 
single-trial spectrograms were then averaged across trials and within 
the frequency ranges corresponding to delta (1-4 Hz), theta (4-8 Hz), 
alpha (8-13 Hz), and beta (13-30 Hz) bands. We then calculated the 
event-related desynchronization/synchronization (ERD/ERS) as 
initially described by Pfurtscheller and Aranibar (1977) and 
Pfurtscheller (1992) using the whole epoch as a baseline. As steering 
behavior and visual feedback varied considerably across time between 
conditions, making a comparison of time points meaningless, 
we chose to mask the positive (ERS) and negative (ERD) values in the 
channels×time points map obtained for each frequency band of 
interest, respectively. The masked maps were then averaged across all 
time points to obtain a topographical map corresponding to the time-
averaged ERD/ERS arising throughout the epoch, made possible by 
the recurring desynchronization/synchronization of the same scalp 
regions. The procedure is exemplified in Figure 2 for the alpha band 
in the Executor’s Passive Steering condition within the car zero 
time-lock.
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2.5.3 Directional connectivity analysis
In line with Granger and Wiener’s description of causal relation 

between time series (Granger, 1969), we  utilized multivariate 
autoregressive (MVAR) models to analyze the causal connections 
between the single EEG channels. A causal connection may 
accordingly be assumed if knowledge of past values of one time series 
improves predictions of another time series. These MVAR models can 
be generalized to.
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where y n R M( )∈ ×( )1  denotes a multivariate time series at time point 
n (in this case, the 55-channel EEG), A Rk

M M∈ ×( ) the static 
coefficient matrices for time lags k N∈  up to model order p N∈ , 
y n k R M−( )∈ ×( )1  the regressor vector in the form of the multivariate 
time series at lag k , and  n R M( )∈ ×( )1 the innovation process vector 
in the form of zero-mean white noise. In matrix form, the stacked 
coefficient matrices A A A Rp
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1, , can be estimated via 
Least Squares approach; in this work, we opted to use the Arfit module 
employing a stepwise least squares algorithm (Schneider and 
Neumaier, 2001; Schlögl, 2006). As model performance crucially 
depends on the selected model order p, i.e., on the number of past 
time points considered for prediction, we selected the optimum model 
order poptias the model order p∈[ ]1 50, minimizing Schwarz’s 
Bayesian Criterion (Schwarz, 1978) implemented in the Arfit module.

As the contribution of each individual time lag to the model’s 
performance provided limited information in our case, we rather 
chose to investigate the oscillatory content in the frequency 
domain as obtained by Fourier-transforming the relationship of 
Eq. (1) (Saito and Harashima, 1981; Akaike, 1998; Baccalá et al., 
1998). Using the transformation property of the lag operator, 
F y n k ikNf y f−( ){ } = −( ) ( )exp 2π , with y f( ) the Fourier 
transform of y n( ) , the frequency representation of 

y f I A ikNf E f H f E f
k

p

k( ) = − −( )












( ) = ( ) ( )
=

−

∑
1

1

2exp π
 

can
 

be obtained, with E f F n( ) = ( ){ } , and H f( ) the transfer matrix 
projecting the frequency content of our zero-mean white noise to the 
frequency content observed in our multivariate time series. Various 
connectivity measures utilize H f RM M( )∈ ×  to infer directional 
connectivity within the M  time series [see for instance (Faes et al., 
2013)]; for this work, we employed the directed transfer function 
(DTF) (Kamiński and Blinowska, 1991):
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Each entry ij of the asymmetric matrix DTF f RM M( )∈ ×  then 
describes both direct and indirect contributions of a driving time 
series j to a target time series i. Per definition, the total contribution of 
all driving channels to each single target channel of DTF f( )2  is 
normalized, i.e., 
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2, yields a measure for the total information 

outflow of each driving channel.
To estimate the DTF  matrix, the eMVAR toolbox by Faes et al. 

(2013) was used. To remove inter-participant variations within the 
EEG unrelated to the relevant information processing, we standardized 
the subject averages before model fitting. For each role (Observer, 
Executor) and condition [Passive Steering, Proactive Steering, Reactive 
Steering (Distinct/Indistinct)], we then considered the averaged epochs 
of EEG data in all participants as our multivariate time series of 

FIGURE 2

Visualization of the time-frequency analysis procedure. Due to the periodic stimulus (car) movement, repeated instances of ERD/ERS arose in recurring 
brain regions within one epoch (left panel; example from Executors’ data, car zero time-lock, Passive Steering condition, alpha frequency band). As no 
specific time points stood out, ERD and ERS were instead separated by masking values of opposite signs across the epoch (middle panels). The 
resulting, strictly negative (ERD) or positive (ERS) values were then averaged across time to produce topographical maps displaying the overall ERD/ERS 
activity per channel throughout the epoch.
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interest, generating a regressor matrix Y RM NS∈ ×  with S = 26  
participant averages, N =1601 time points, and M = 55 EEG 
channels. Statistical significance of the resulting DTF  matrix within 
each role and condition was evaluated using 50 surrogate signals, as 
previously employed in other work (Faes et al., 2010; Kostoglou and 
Müller-Putz, 2021; Wimmer et al., 2022). For this purpose, artificial 
time series (surrogates) were generated by Fourier-transforming the 
initial multivariate time series, shuffling their phases, and then back-
transforming to the time domain. For each surrogate, now void of any 
causal relation regarding the frequency content, an MVAR model was 
fitted to the previously found optimum model order popti , and the 
DTF  matrix was calculated. The threshold for statistical significance 
in each target-driver pair was then set to the 95th percentile of those 
50 surrogate DTF  results, below which any results were set to zero, 
indicating no significant directional connectivity within that specific 
driver-to-target combination.

2.5.4 Source space analysis
In addition to the explicit analysis of the recorded EEG data, 

we back-projected the signals to the cortex using Brainstorm [Version: 
16-Mar-2023; Tadel et al. (2011)]. To this end, we recorded the exact 
electrode positions for all participants before each session of 
recordings (ELPOS, Zebris Medical GmbH, Germany) and 
co-registered the ICBM152 boundary element model [BEM; Kybic 
et al. (2006)] to the specific electrode positions. To alleviate deviations 
of the individualized electrode positions from the template head 
model due to differences in head geometry, we projected the positions 
on the model’s surface. Further, we adjusted the standard values for 
cortex, skull, and scalp conductivities in the BEM to 1, 0.008, and 1. 
The required noise covariance matrix for calculating forward 
[OpenMEEG, Gramfort et  al. (2010)] and inverse solutions 
[sLORETA, Pascual-Marqui (2002)] was estimated from a resting state 
condition included in the eye movement recording runs (Srisrisawang 
and Müller-Putz, 2022) and regularized by adding an identity matrix 
scaled to 10% of the largest eigenvalue. To investigate the valence of 
the source signals rather than the signals’ modulus, we constrained the 
model to only consider one dipole source per voxel oriented 
perpendicular to the cortex. This led to a total of 15,000 source dipoles 
across the whole cortex. After projecting the averaged signals per 
participant to the source space, we thus obtained grand average source 
maps for both Observer and Executor in all four car-driving conditions.

To further investigate relevant brain regions within each role and 
condition, we downsampled the full cortical maps to 68 regions of 
interest as defined within the Desikan-Killiany atlas (Desikan et al., 
2006) spanning the whole cortex.

2.6 Regressing car x position and steering 
wheel signal

To gain a general understanding of how both the car’s position 
(for both roles) and the steering process (Executors only) are 
represented in the brain, and to specifically test which of both 
non-biological signals can more accurately be inferred from the EEG, 
we chose to slightly modify the EEGNet architecture for regression on 
our dataset (Lawhern et  al., 2018). The architecture, a three-layer 
convolutional neural network, was chosen as EEGNet reportedly 
provided high performance within a range of tasks in brain signal 

decoding (Lawhern et al., 2018). As the goal of this approach was 
predominantly to provide first results for regressing car positions and 
steering information from the brain signals, other undoubtedly 
equally suitable deep learning architectures, such as deep believe 
networks (An et al., 2014), recurrent neural networks (Tortora et al., 
2020), or even transformer models (Song et al., 2023), have not been 
investigated in the current work.

For each of the four conditions, a 1 s-window (corresponding to 
T = 200 samples) was slid through the continuous data of each run 
with a stride of 15 samples (75 ms) to obtain a total of 7,920 frames per 
condition. To prevent possible contributions of muscular activity at 
EEG channels near the neck to the regression performance, all EEG 
channels comprising the outermost circle were excluded, yielding 
windowed data in C = 43 EEG channels of the form X R∈ × ×7920 43 200

. To retain a causal relationship between training and testing data, 
we then split the frames into six folds, the last of which we retained for 
testing. Both training and testing data were standardized with respect 
to the training dataset.

The network architecture processed batches of inputs of the size 
C T×  in three consecutive layers. In the first layer, inputs were zero-
padded with 32 samples before and after the input in the time 
dimension, followed by temporal convolution with a kernel size of 
(1,64) which corresponded to a high pass cut-off at approximately 
3 Hz. Within the second layer, we  applied depthwise convolution 
across all available channels [kernel size (43,1)], followed by average 
pooling with a kernel size of (1,4). A third (final) convolutional layer 
with kernel size (1,32) further extracted temporal features, followed 
by a second instance of average pooling with a kernel size of (1,8). 
Finally, the resulting features were flattened and passed through a fully 
connected layer returning one real-valued output corresponding to 
the final prediction of the regression model. Each convolutional layer 
was followed by a batch normalization layer to accelerate convergence 
(Ioffe and Szegedy, 2015), as well as a dropout layer (0.25 dropout rate 
each) to impede overfitting. Exponential Linear Units were used for 
activation functions (Clevert et al., 2015).

We generated separate models utilizing the same hyperparameters 
to regress the car’s x position and the steering wheel signal for each 
condition in the Executors’ data. In detail, the models were trained for 
100 epochs at a learning rate of 10–4 with a batch size of 256. We used 
the Adam optimization algorithm implemented in PyTorch to 
optimize the model parameters with respect to the mean squared 
error loss between the prediction and dependent variable (car position 
or steering signal).

To analyze the importance of each input channel to the model’s 
performance, we further calculated saliency maps on the testing data. 
To this end, the highly non-linear mapping between a two-dimensional 
input frame I  (i.e., the C T×  frames of windowed EEG data) and the 
scalar regression output S I( )  (predictions) through the neural 
network is linearly approximated in a first-order Taylor expansion 
around a given input frame I0 as
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In practice, for each (flattened) given input frame of the test set, 
the model weights w R∈ ∗( )×43 200 1are found via backpropagation, 
yielding a final saliency map M R∈ ×( )43 200 . Each entry of M then 
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corresponds to the absolute of the matching entry of w (Simonyan 
et al., 2013) and indicates the contribution of a specific channel and 
time-point to the network prediction. A topographical feature 
importance map is then obtained by summing all entries along the 
time dimension.

The network was implemented using PyTorch (https://github.
com/pytorch/pytorch); feature importance analyses were conducted 
with the Captum library (https://github.com/pytorch/captum).

3 Results

In the following paragraphs, we present grand average EEG results 
as obtained by time-locking the EEG signals to zero-crossings in the 
steering signal and zero-crossings in the car x position, respectively. 
This was done to identify specific brain regions phase-locked to either 
of these non-biological signals, i.e., regions involved in executive 
control via time-locking to the steering signal, and regions relating to 
both visual and feedback processing via time-locking to the car’s 
position on-screen. Concerning the independent component analysis, 
we excluded on average 3.3 (STD 2.6) components for all participants 
and conditions.

3.1 Differences in steering behavior 
between conditions

To analyze differences in steering behavior, we time-locked the 
EEG signals to zero-crossings of the steering wheel’s signal for all four 
conditions. As only the Executor performed the steering, we omitted 
the Observer’s data from further analysis utilizing this specific time-
lock. Results for the Proactive Steering and the Reactive Steering 
(Indist.) conditions are provided in the Supplementary Figures S2, S4, 
upper panels. A first analysis of the scalp topographies at the time-lock 
(i.e., steer zero) and the subsequent time points maximum steering 
wheel deviation (steer max) revealed comparable frontocentral 
positivities across all conditions, disregarding the corresponding type 
of control (Passive, Proactive, or Reactive Steering). The results for the 
Passive Steering and Reactive Steering (Dist.) conditions are shown in 
the lefthand side topographical maps of Figures 3A,B, respectively. 
Significant differences only arose in comparisons with the Proactive 
Steering condition, while a slight frontal shift in activity occurred for 
all other conditions when compared to the Passive Steering condition. 
The full time courses of the grand averaged EEG signals in all 
conditions within the steer zero time-lock for Execution and 
Observation are provided in the Supplementary Figures S8, S9.

Considering the focal frontocentral activity across conditions, 
we selected the EEG channel at electrode position FCz for sorting the 
trials according to their steering latencies. The resulting grand-
averaged sorted and interpolated trials of the Passive Steering and 
Reactive Steering (Dist.) conditions are shown in the image plots of 
Figures 3A,B, respectively. We observed a clear modulation of brain 
activity recorded at position FCz with the steering activity, with 
positivities in the brain signals phase-locked to instances of maximum 
steering wheel deflection (Figures 3A,B, red line in the image plots). 
For the Passive Steering condition, which followed a pre-defined 
periodicity, the patterns visibly repeated with the steering motion 
throughout the epoch length, whereas the slower (self-paced) steering 

within the Reactive Steering (Dist.) condition occurred at a larger time 
frame. Interestingly, we observed very distinct ERD/ERS in the Passive 
Steering condition (Figure 3A, topographical maps in grey boxes). 
Delta and theta bands exhibited weak central scalp topographies, 
whereas alpha and specifically beta bands showed focal activity for 
EEG channels at electrode positions C3 and C4. Similar, though more 
frontal delta ERD and ERS topographies arose for the Reactive Steering 
conditions (Figure 3B, topographical maps in grey boxes), whereas no 
clear patterns were observed for the theta frequency band. We also 
noted a clear shift in alpha activity to occipital regions for both ERD 
and ERS maps, as well as additional occipital activity in the beta band.

An analysis of the cortical regions of interest comprising the 
Desikan-Killiany atlas is depicted in Figure 4; cortical maps between 
the single condition results indicate regions of significant pairwise 
difference at a significance level of 0.05 (dark red patches, FDR 
corrected for multiple comparisons). The cortical activity within the 
Proactive Steering condition (second panel from the left) showed 
strong attenuation and proved significantly different from all other 
conditions for most regions of interest; in contrast, no overall 
significant differences were seen for pairwise comparisons in other 
conditions. Interestingly, strongest activations arose in the bilateral 
caudal anterior (cACC) and posterior cingulate cortices (PCCs), 
parahippocampal and precentral gyri, and precuneus area across all 
conditions, with additional strong unilateral engagement of prefrontal 
cortex areas.

To analyze directional connectivity within all EEG channels, 
we utilized the standardized participant averages in the steer zero 
time-lock, yielding a multivariate time series matrix X RM N S∈ × × , 
with M = 55 channels, N =1601 time points [(−2,6)s epoch], and 
S = 26  participants. The optimum model orders per condition and 
role were exclusively found to be popti ∈{ }21 22, . In line with the time-
frequency analysis, we  then averaged the outflow across the four 
frequency bands of interest (delta to beta). Topographical maps 
displaying the total information outflow per band in the different 
paradigm conditions are shown in Figure 5. In detail, we observed 
large-scale information outflow at central and parietal regions during 
the Passive Steering condition across all frequency bands. In contrast, 
these regions condense increasingly toward frontocentral sites as the 
frequency is lowered; specifically in the delta band, little significant 
information outflow remains apart from regions at approximately 
electrode position FCz. Notably, an increase in information outflow 
from these frontocentral sites within the beta band arises in the 
Reactive Steering conditions.

3.2 Differences in feedback processing 
between conditions

To assess differences in visual and feedback processing between 
conditions and roles, we additionally time-locked the EEG signals to 
zero-crossings of the car’s x position for all four conditions. In the case 
of the Passive Steering trials, this merely implied time-locking to every 
instance where the car passed through the screen’s center, while for 
Proactive and Reactive Steering conditions, it additionally 
corresponded to the car’s maximum deviation from the straight road. 
In contrast to the steering time-lock employed before, we  here 
considered both Observer and the Executor data, as the visual input 
related to the car position time-lock comparably affected both roles.
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To analyze cortical responses in Observers and Executors to a 
moving stimulus sans error connotation, we first analyzed the scalp 
topographies during zero crossings (car zero) and maximum deviation 
from the screen’s center (car max) in the Passive Steering condition. 
The results are displayed in Figure 6A (Executor) and B (Observer). 
As can be seen, the topographical maps for both time points largely 
coincide for both roles, with slightly increased central activity for the 
Executors and overall attenuated signal amplitudes in the Observers 
(see scale). Statistical analyses revealed significant differences between 
this Passive Steering condition and both Reactive Steering conditions 
(small topographical maps; channels displaying significant differences 

are mapped as black circles) at a significance level of 0.05 (FDR 
corrected). The full time courses of the grand averaged EEG signals in 
all conditions within the car zero time-lock for Execution and 
Observation are provided in the Supplementary Figures S6, S7.

To analyze the relation between brain activity and car position, 
we sorted and interpolated all EEG trials at electrode position Pz 
(highest activity as observed in the topographical maps); the results 
are shown in the image plots of Figures  6A,B. Interestingly, 
we observed clear modulations of the parietal brain activity with the 
phase of the car signal, i.e., positivities in the EEG coinciding with the 
car’s center position, negativities coinciding with the car’s maximum 

FIGURE 3

Execution, steer zero time-lock. Grand average topographical maps at the time-lock (steer zero, light orange) and maximum steering wheel deflection 
(steer max, dark orange). Pairwise significant differences to the other conditions are shown as black circles in the adjacent topographical maps 
(Friedman-Nemenyi test, FDR-corrected at 0.05). Grand-average sorted and interpolated trials at electrode position FCz, time-locked to zeros in the 
steering wheel signal (steer zero, black line). Time points of maximum steering wheel deflection (steer max) per trial are indicated with a red line; 
participant averages (grey) of the steering wheel signal and car x position with their corresponding grand averages (black) are shown on top. ERD/ERS 
patterns, time-averaged across the epoch length as described, in four frequency bands of interest. All results are shown for (A) Passive Steering and 
(B) Reactive Steering (Dist.) conditions.

FIGURE 4

Execution, steer zero time-lock. Grand-average cortical activity at 68 brain regions defined within the Desikan-Killiany atlas for Passive, Proactive, and 
Reactive Steering (Dist./Indist.) conditions (f.l.t.r.). Pairwise significant differences (Friedman-Nemenyi test, FDR-corrected at 0.01) are shown as dark 
red patches on the cortical maps.
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left/right deviation from the center. In contrast to the steering time-
lock, neither ERD nor ERS maps show similar C3/C4 activity in the 
alpha and beta bands. However, similar ERD/ERS patterns arose 
between Observers and Executors, with high parietal theta and 
alpha activity.

Similar analyses for the Reactive Steering (Dist.) condition are 
shown in Figures  7A,B; results for the remaining conditions are 
provided in the Supplementary Figures S2, S4, lower panels; 
Supplementary Figures S3, S5. Compared to the Passive Steering 
condition void of any error connotation, we  observed clear 
frontocentral (Executors) and centroparietal (Observers) scalp 
distributions in the grand-average EEG signals. Overall, there 
appeared to be  a frontal shift during task execution compared to 

simple task observation. Apart from the mentioned differences in 
comparison to the Passive Steering condition, additional significant 
differences arose in comparison with the Proactive Steering condition 
for both roles; however, no differences between the two Reactive 
Steering conditions were found. Considering the topographical maps, 
we chose to investigate the single-channel EEG activity at electrode 
position Cz in this case; the sorted and interpolated grand-average 
trials are shown in the image plots of Figures 7A,B. As can be seen, 
we observed strong modulations of Cz EEG activity with the car’s 
specific x position on the screen in the Executors’ data; a similar 
though much more attenuated behavior also translated to the 
Observers’ data.

As in the Passive Steering condition, we observed similar ERD/
ERS patterns in the alpha band in the Reactive Steering. In addition, 
fronto-central delta band activity arose in the Executors, which could 
not be observed in the Observer data.

In line with analyses regarding the steer zero time-lock (see 
previous section), we analyzed the cortical activity within each 
condition in the car zero time-lock for both Observer and 
Executor data; pairwise significant differences between conditions 
at 0.05 (FDR corrected) are once again shown as red areas on the 
cortical maps (Figures  8, 9, resp.). We  observed very clear 
modulations with the car’s x position in the Passive Steering 
condition that largely coincided for both roles. In detail, grand-
average signals in the Desikan-Killiany atlas revealed shared 
activity in the bilateral pericalcarine cortices, lingual gyri, the 
isthmus of the cingulate cortices, precunei, and the superior 
parietal gyri.

We interestingly observed stronger overall activity within the 
Passive Steering condition compared to other conditions in the 
Observers than in the Executors; however, we  report increased 
activity in the posterior cingulate cortex for the Executors that was 
not found for Observers. As in the steer zero time-lock, little 
activity was found within the Proactive Steering condition; however, 
both roles showed increased engagement of the bilateral posterior 
and caudal anterior cingulate cortices, as well as the 

FIGURE 5

Steer zero time-lock. Total information outflow per channel as 
obtained from the Directed Transfer Function (DTF) for Passive, 
Proactive, and Reactive Steering (Dist./Indist.) conditions (f.t.t.b.) in 
four frequency bands of interest for Execution.

FIGURE 6

Passive Steering, car zero time-lock. Grand average topographical maps at the time-lock (car zero, light orange) and maximum car deviation from the 
road (car max, dark orange). Pairwise significant differences to the other conditions are shown as black circles in the adjacent topographical maps 
(Friedman-Nemenyi test, FDR-corrected at 0.05). Grand-average sorted and interpolated trials at electrode position Pz, time-locked to zeros in the car 
x position (car zero, black line). Time points of maximum car deviation from the road (car max) per trial are indicated with a red line; participant 
averages (grey) of the steering wheel signal and car x position with their corresponding grand averages (black) are shown on top. ERD/ERS patterns, 
time-averaged across the epoch length as described, in four frequency bands of interest. All results are shown for (A) Execution and (B) Observation.
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parahippocampal gyri, and temporal regions within both Reactive 
Steering conditions.

To estimate directional connectivity between distinct brain 
regions, we utilized the standardized participant averages of the form 
X RM N S∈ × ×  in the car zero time-lock for both roles, with M = 55 
channels, N =1601 time points [(−2,6)s epoch], and S = 26  
participants. The optimum model orders per condition and role were 
again exclusively found to be  popti ∈{ }21 22, . Topographical maps 
displaying the total information outflow per band (target-averaged 
DTF results) in the different paradigm conditions are shown in 
Figures 10A,B for Observers and Executors, respectively. As in the 
steer zero time-lock, we observed large-scale information outflow at 

central and parietal regions during the Passive Steering condition in 
all frequency bands, whereas the total information outflow within the 
other conditions increasingly condensed toward fronto-central sites 
with decreasing frequency.

3.3 Differences between observed and 
executed driving

To analyze differences between observed and executed car driving 
within error-free and erroneous steering conditions at moments of 
zero and maximum car deviation from the center of the screen (car 

FIGURE 7

Reactive Steering (Dist.), car zero time-lock. Grand average topographical maps at the time-lock (car zero, light orange) and maximum car deviation 
from the road (car max, dark orange). Pairwise significant differences to the other conditions are shown as black circles in the adjacent topographical 
maps (Friedman-Nemenyi test, FDR-corrected at 0.05). Grand-average sorted and interpolated trials at electrode position Cz, time-locked to zeros in 
the car x position (car zero, black line). Time points of maximum car deviation from the road (car max) per trial are indicated with a red line; participant 
averages (grey) of the steering wheel signal and car x position with their corresp. Grand averages (black) are shown on top. ERD/ERS patterns, time-
averaged across the epoch length as described, in four frequency bands of interest. All results are shown for (A) Execution and (B) Observation.

FIGURE 8

Observation, car zero time-lock. Grand-average cortical activity at 68 regions defined within the Desikan-Killiany atlas for Passive, Proactive, and 
Reactive Steering (Dist./Indist.) conditions (f.l.t.r.). Pairwise significant differences (Friedman-Nemenyi test, FDR-corrected at 0.01) are shown as dark 
red patches on the cortical maps.
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zero and car max), a Wilcoxon test along with FDR correction at a 
significance level of 0.05 was consulted. Considering these two time 
points of interest in four conditions and 55 EEG channels, we corrected 
for a total of N = 440 tests. Interestingly, no significant differences 
arose for a comparison between Observer and Executor data in the 
Passive Steering condition for either time point of interest (see 
Figure  11, leftmost topographical maps). However, within the 
Proactive and Reactive Steering conditions, we observed significant 
differences between the roles at fronto-central electrode sites. 
Specifically in the Reactive Steering (Dist.) condition, an area of 

significance around the electrode position FCz emerged, which 
similarly arose for the Reactive Steering (Indist.) condition as well.

3.4 Regression results

We trained separate models for all participants in each 
condition to regress the car’s x position on the screen and the 
steering wheel signal from the Executors’ EEG data, respectively. 
The training curves of both the root mean square error and 

FIGURE 9

Execution, car zero time-lock. Grand-average cortical activity at 68 regions defined within the Desikan-Killiany atlas for Passive, Proactive, and Reactive 
Steering (Dist./Indist.) conditions (f.l.t.r.). Pairwise significant differences (Friedman-Nemenyi test, FDR-corrected at 0.01) are shown as dark red patches 
on the cortical maps.

FIGURE 10

Car zero time-lock. Total information outflow per channel as obtained from the Directed Transfer Function (DTF) for Passive, Proactive, and Reactive 
Steering (Dist./Indist.), Steering conditions (f.t.t.b.) in four frequency bands of interest for (A) Observers and (B) Executors.
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Pearson’s correlation coefficient for the regression of both signals 
are provided in the Supplementary Figures S10, S11. For both 
signals, the maximum testing correlation between signal and 
prediction is shown in Figure 12 (A: car position, B: steering wheel 
signal). A Wilcoxon signed rank test revealed significantly higher 
regression performance for the Passive Steering condition 
(FDR-corrected at 0.01), and significantly decreased performance 
for the Proactive Steering condition (FDR-corrected at 0.001) when 
regression the car’s x position compared to the steering wheel 
signal. No significant differences arose between both performances 
for the Reactive Steering conditions, although we  observed 
generally higher maximum correlation values per participant when 
regressing the steering wheel signal (see Tables 1, 2). Notably, the 

performance considerably dropped for all conditions apart from 
the Passive Steering condition, where median values of 0.84 and 
0.81 for Pearson’s correlation arose.

An analysis of the importance of each channel unveiled largely 
identical grand average (normalized) saliency maps for both the 
regression of the car’s x position (Figure 12C) and the steering wheel 
signal (Figure  12D) in each condition (Passive Steering, Proactive 
Steering, Reactive Steering (Dist.), Reactive Steering (Indist.), f.l.t.r.). 
Overall, considerable feature importance lies on parietal and occipital 
channels for all conditions, with increased engagement of central 
channels during the Proactive and Reactive Steering conditions. Within 
the Reactive Steering conditions, we  further observed increased 
channel importance at electrode positions C3 and C4.

FIGURE 11

Differences between Observation and Execution, car time-locks. Absolute differences between Observation and Execution at the time points of (top 
row) zero and (bottom row) maximum car deviation from the screen’s center (car zero and car max) for Passive, Proactive, and Reactive Steering (Dist./
Indist.) conditions (f.l.t.r.). Large topographical maps indicate the difference maps, smaller topographical maps highlighted in blue and orange 
correspond to the grand-average signals per condition for Observation and Execution, respectively. Channels displaying significant differences 
between both roles are indicated with small black circles (Wilcoxon signed rank test, FDR-corrected at significance level 0.05).

FIGURE 12

Regression results, Execution. Boxplots of maximum testing correlations obtained throughout all 100 epochs of training the model when regressing 
(A) the car’s x position and (B) the steering wheel signal. Small black dots indicate single participant maxima, diamonds denote the means, large circles 
indicate outliers. Significant differences (Wilcoxon signed rank test, FDR-corrected at 0.01) are marked with two asterisks (**). Averaged normalized 
saliency maps displaying each channel’s importance for regressing (C) the car’s x position and (D) the steering wheel signal.
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4 Discussion

Within our analysis of both observation and execution data 
during a car driving simulation, we addressed three major questions. 
First, how does the brain manifest motor control across various 
steering conditions during executed car driving? Second, how do 
visual and feedback processing vary between error-free and error-
prone driving performance in both observed and executed driving, 
and how do both roles differ from each other? And lastly, which 
non-biological signal – the car’s position on the screen or the steering 
wheel signal – is best represented in the EEG?

4.1 Cortical representations of passive, 
proactive, and reactive steering

To investigate brain signals relating to the steering process, 
we time-locked the EEG data to zero-crossings of the steering wheel 
signal. Within this time-lock, we observed largely coinciding scalp 
topographies across all steering conditions (Passive, Proactive, and 
Reactive Steering, Figure  3 and Supplementary file). Significant 
differences only arose in pairwise comparisons with the largely 
attenuated signals of the Proactive Steering condition, which most 
likely traces back to the minimal steering necessary during this 
condition. For all other conditions exhibiting comparable levels of 
steering movement, no significant differences arose, indicating 
matching executive activity in the brain that presumably relates to the 

steering motion itself and disregards error-free or error-prone driving 
performance. Nonetheless, we  observed a qualitative frontal-shift 
within Reactive Steering compared to Passive Steering (large 
topographical maps, Figure  3B), substantiated by directional 
connectivity analyses unveiling increasingly focal fronto-central areas 
of the scalp as sites of highest information outflow during Proactive 
and Reactive Steering conditions. Source analysis traced these 
observations back to increased activity in the caudal anterior cingulate 
cortex (Figure 4, third and fourth panel), a region reportedly involved 
in the cognitive control of motor behavior (Holroyd et al., 2004) and 
performance monitoring (Ursu et al., 2009). In addition, increased 
activity in the bilateral parahippocampal gyrus, as well as the right 
caudal middle frontal gyrus and frontal pole arose; regions involed in 
visuospatial processing (Aminoff et al., 2013) and reorientation of 
attention (Japee et al., 2015) in humans, as well as evaluation of self-
generated decisions in monkeys (Tsujimoto et al., 2010). However, 
shared regions of cortical activity could be  found for all steering 
conditions (Figure  4). In this context, we  specifically report 
engagement of the posterior cingulate cortex, which has been linked 
to both the integration of reward processing, attention, and motor 
control systems and the dynamic modification of strategy (Pearson 
et al., 2009). Furthermore, notable engagement of temporal regions 
arose, which we however hypothesize relates to the increased noise 
generated by the wheel during the conditions involving expansive 
steering motion (Passive and Reactive Steering).

Interestingly, we additionally observed differences in event-related 
desynchronization/synchronization (ERD/ERS) between the steering 

TABLE 1 Pearson correlation values (Corr r) for car position and steering wheel signal regression on the testing set.

Observation Execution

Car x position (px) Steering signal (a.u.) Car x position (px) Steering signal (a.u.)

Mean (SD) Median Range Mean 
(SD)

Median Range Mean 
(SD)

Median Range Mean (SD) Median Range

Passive 0.66 (0.17)** 0.68 [0.15, 0.93]
0.54 

(0.20)**
0.61

[0.08, 

0.84]
0.82 (0.12)**°° 0.84

[0.53, 

0.96]
0.78 (0.12)**°° 0.81

[0.44, 

0.93]

Proactive 0.14 (0.09) 0.14
[−0.03, 

0.33]

0.12 

(0.10)**
0.12

[−0.04, 

0.27]
0.17 (0.16)°°° 0.16

[0.03, 

0.24]
0.32 (0.12)**°°° 0.31

[0.12, 

0.56]

Reactive 

(Dist.)
0.24 (0.11) 0.24 [0.09, 0.52]

0.20 

(0.09)**
0.20

[0.06, 

0.46]
0.35 (0.06) 0.32

[0.03, 

0.80]
0.36 (0.16)** 0.35

[0.05, 

0.71]

Reactive 

(Indist.)
0.23 (0.09)** 0.23 [0.05, 0.37]

0.22 

(0.12)**
0.22

[0.03, 

0.42]
0.38 (0.11)** 0.37

[0.20, 

0.65]
0.42 (0.14)** 0.41

[0.20, 

0.70]

** Significant differences between observation and execution, significance level 0.01.
°° / °°° Significant differences between car x position and steering (execution only), significance level 0.01 and 0.001.

TABLE 2 Root mean square error (RMSE) values for car position and steering wheel signal regression on the testing set.

Observation Execution

Car x position (px) Steering signal (a.u.) Car x position (px) Steering signal (a.u.)

Mean 
(SD)

Median Range Mean 
(SD)

Median Range Mean 
(SD)

Median Range Mean 
(SD)

Median Range

Passive 203 (40) 205 [113, 384] 0.26 (0.17) 0.21 [0.05, 0.70] 157 (42) 154 [81, 238] 0.19 (0.11) 0.15 [0.05, 0.41]

Proactive 12 (10) 8 [4, 43] 0.02 (0.01) 0.01 [0.01, 0.04] 10 (6) 8 [4, 27] 0.02 (0.01) 0.01 [0.01, 0.04]

Reactive (Dist.) 367 (75) 364 [243, 520] 0.49 (0.16) 0.45 [0.27, 0.80] 357 (81) 359 [214, 544] 0.47 (0.14) 0.44 [0.27, 0.76]

Reactive (Indist.) 326 (74) 302 [232, 457] 0.45 (0.20) 0.45 [0.13, 0.79] 316 (73) 305 [217, 462] 0.41 (0.18) 0.39 [0.13, 0.77]

** Significant differences between observation and execution, significance level 0.01.
°° / °°° Significant differences between car x position and steering (execution only), significance level 0.01 and 0.001.
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conditions. In detail, we observed prominent alpha and especially beta 
activity at electrode positions C3 and C4 during the perfectly periodic 
pre-defined car movement within the Passive Steering condition, both 
sites situated bilaterally above the hand regions of the sensorimotor 
cortex. In contrast, activity during the Reactive Steering conditions 
moved noticeably towards occipital regions especially in the alpha 
frequency band. This indicates increased emphasis on processing 
visual information within Reactive Steering conditions compared to 
the Passive Steering condition and aligns with previous findings of 
Garcia and colleagues, who likewise reported a transition from delta 
and beta activity during proactive brain states to prominent alpha 
activity during reactive brain states (Garcia et al., 2017).

Sorting all trials at electrode position FCz with respect to their 
steering latency, we  further found clear modulations in the brain 
signals with the steering wheel signal for all conditions, with 
positivities in the EEG visibly coinciding with instances of maximum 
steering wheel deflection (image plots, Figure  3), coinciding with 
previous reports in the context of error processing by Burle et al. 
(2008) who showed similar fronto-central positivities in the EEG at 
instances of corrective button-presses.

4.2 Cortical representations of visual and 
feedback processing

Employing an additional time-lock to instances of zero crossings 
of the car’s x position on screen, we further analyzed brain responses 
phase-locked to the visual input delivered within our car-driving 
paradigms. As both Observers and Executors were exposed to the 
same visual stimulants, we investigated both the Observers’ and the 
Executors’ data within this time-lock.

Notably, the brain patterns matched closely between Observers 
and Executors within the Passive Steering condition (see Figure 6), 
substantiated by a lack of observed significant differences between the 
roles (Figure 11, leftmost topographical maps). Both roles showed 
strong modulations with the visual feedback (moving car) especially 
in parietal regions and displayed large-scale significant differences in 
fronto-central and occipital channels when compared to both Reactive 
Steering conditions (Figure 6), indicating a clear distinction between 
the processing of error-free and error-prone driving performance. 
Additionally, the ERD/ERS topographies (Figure  6, grey boxes) 
showed clear occipital engagement for both roles in the theta and 
alpha frequency bands, contrasting with the central (motor) activity 
observed in the steering time-lock (Figure 3, grey boxes).

As the error-free driving performance within the Passive Steering 
condition was entirely fake, the Executors’ steering movement within 
this condition did not correlate directly with the car’s position 
on-screen, yielding largely distinct patterns for both time-locks 
(compare Figures 3A, 6A) and thus both separate processes – motor 
activity and visual processing – in the brain. In contrast, the high-level 
correlations between steering and car position during the other 
conditions lead to matching scalp topographies in the Executors for 
both time-locks (compare Figures 3B, 7A), disallowing a separation 
of brain regions engaging for both individual processes. A comparison 
to the Observers’ data within Proactive and Reactive Steering revealed 
significant differences especially in the fronto-central areas of the 
scalp, presumably due to the slightly more attenuated and parietally 
shifted potentials during observation despite overall similar patterns 

(see Figure  11, second, third and fourth columns). The lack of a 
similarly significant difference during Passive Steering (first column) 
indicates that the observed disparities are not solely related to the 
additional motor activity within the Executors. This assumption is 
strengthened by findings of increased bilateral activity in the caudal 
anterior cingulate cortex (Holroyd et  al., 2004; Ursu et  al., 2009) 
within Reactive Steering conditions in the Executors in both the 
steering and the car position time-lock (see Figures 4, 8, 9), as well as 
more focal frontocentral sites of information outflow within out 
connectivity analyses (Figures 10A,B).

4.3 Representation of sub-processes in the 
brain

For both Observers and Executors, the Passive Steering condition 
yielded the highest correlations in our regression, most likely due to 
the perfectly periodic modulations evoked in the brain by the strict 
periodicity of the car movement within this condition. However, the 
synchrony between visual input and motor output within this steering 
condition may additionally contribute to high regression 
performances. In detail, the participants observed a periodically 
moving car programmed to always remain perfectly on the winding 
road. As such, target (the white centerline) and feedback (the moving 
car) concurred throughout the condition, allowing the focus of 
attention to condense strictly to the moving car. Interestingly, 
we  nonetheless observed significantly higher performance for 
regressing the car position compared to the steering wheel signal in 
the Passive Steering condition within Executors, tentatively indicating 
a more prominent representation of the visual aspect of the task 
compared to the mostly automated steering (see Figure 12).

In contrast, the correlations within the Reactive Steering conditions 
merely reached half of the values for the Passive Steering, displaying no 
significance in the differences in the regression of both signals. This might 
suggest that both processes – visual feedback processing and motor 
control – commanded equal levels of related brain activity, yet the direct 
correlations between steering and car position within these conditions 
disallows a clear assessment. As the Reactive Steering conditions did not 
follow the strict periodicity of the Passive Steering condition, the observed 
drop in performance was to be expected to a certain degree. However, 
within Reactive Steering, the car continuously deviated from the road, 
constantly splitting the participants’ attention between the intended and 
the observed target (car) position, which might have additionally led to 
lower correlations. Furthermore, while a regression of the car position 
corresponded simultaneously to a regression of the intended position 
on-screen during the Passive Steering condition, it rather equaled a 
regression of the continuous feedback error (the deviation from the road) 
in the case of the Reactive Steering condition. As such, the results are 
indeed interesting despite the moderate correlations and indicate the 
feasibility of regressing continuous error signals as observed within our 
previous work (Pulferer et al., 2023) even during real-life situations.

Lastly, we observed the lowest correlations when regressing within 
the Proactive Steering condition, presumably due to both the minimal 
motor output and the barely visible deviations from the road. 
Nonetheless, we  obtained significantly higher correlations when 
regressing the steering wheel signal, implying that the minute 
deviations from the road provided less relevant information than even 
the minimal steering movement.
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4.4 Limitations

Despite the exploratory nature of the current work to analyze the 
recently reported continuous correlates to error processing in more 
detail, several limitations of the present study need to be mentioned.

First and foremost, as has been the modus operandi for most studies 
reporting on electroencephalographic correlates in the past decades 
(Larson and Carbine, 2017), prior sample size calculations were neglected. 
As a result, the exact statistical power of the observed effects cannot 
be stated; a shortcoming which needs to be alleviated in follow-up studies.

Secondly, the lengthy measurement sessions and restricting nature 
of the paradigm during revoked steering agency gave rise to various 
superimposing factors; specifically, fatigue, frustration, and boredom 
may have impacted the recorded cortical information – a recurring 
issue in neuroscientific studies which nonetheless remains 
problematic. In addition, the limited spatial resolution within source 
projection methods further demands conservative interpretation.

Thirdly, the utilized car driving paradigm was displayed in a most 
minimalistic fashion, only incorporating a bird view of the lane instead 
of immersive driving simulations. While this reduction of distractors 
proved to be necessary for interpreting our first results presented in the 
current work, future work will need to close the gap to more realistic 
driving experiences to observe similar effects in a real-world scenario.

And lastly, the approach used for investigating the feasibility of 
regressing both the steering and the car position signals via a neural 
network could serve only as a proof-of-concept. Different architectures 
would need to be consulted in future work to obtain a reliable estimate 
for the optimum performance obtainable within this research question.

5 Conclusion

We conclude that a clear separation of distinct subprocesses 
constituting car driving utilizing different time-locks is feasible, yet 
additional data of observed driving remains crucial in obtaining a clear 
distinction between motor activity and visual / higher-level cognitive 
processing. We reported both increased fronto-central brain activity 
and increasingly focal fronto-central information outflow during 
execution, as well as significant fronto-central differences between 
observed and executed driving, for error-prone driving performance, 
which traces back to increased performance monitoring within the 
caudal anterior cingulate cortex. Depending on the time-locking signal 
of either the steering signal or the car position, we further observed 
clear event related desynchronization and synchronization above the 
hand motor area (beta band) and visual cortex (alpha band), 
respectively. Lastly, we presented first results for regressing continuous 
road deviations from the EEG, indicating possible use-cases for 
investigating run-off-road scenarios. Overall, the results indicate that 
different subprocesses of car driving can be  identified via brain 
recordings during both task execution and observation, and that 
cortical information related to continuous error processing can indeed 
be detected non-invasively for possible use in more naturalistic and 
intuitive control mechanisms in future brain-computer interface designs.
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