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Introduction: Individual di�erences in social learning impact many important

decisions, from voting behavior to polarization. Prior research has found that

there are consistent and stable individual di�erences in social information use.

However, the underlying mechanisms of these individual di�erences are still

poorly understood.

Methods: We used two complementary exploratory machine learning

approaches to identify brain volumes related to individual di�erences in social

information use.

Results and discussion: Using lasso regression and random forest regression

we were able to capture linear and non-linear brain-behavior relationships.

Consistent with previous studies, our results suggest there is a robust positive

relationship between the volume of the left pars triangularis and social

information use. Moreover, our results largely overlap with common social brain

network regions, such as the medial prefrontal cortex, superior temporal sulcus,

temporal parietal junction, and anterior cingulate cortex. Besides, our analyses

also revealed several novel regions related to individual di�erences in social

information use, such as the postcentral gyrus, the left caudal middle frontal

gyrus, the left pallidum, and the entorhinal cortex. Together, these results provide

novel insights into the neural mechanisms that underly individual di�erences in

social learning and provide important new leads for future research.

KEYWORDS

social information use, decision-making, pars triangularis, MRI, machine learning, brain

structure

1 Introduction

Most of our everyday decisions are influenced by social information. This information

is gathered from, for instance, observing another individual spending money on a new car,

advice from a peer for a nice holiday location, or a group of friends who all vote for the

same political party. Although everybody relies on social information, some individuals

prefer individual learning whereas others put more weight on the opinion of others.

Social learning is driven by several contextual factors, including how certain individuals

are about their decision (Morgan et al., 2012), task difficulty, and environmental change

(Toelch et al., 2009). However, besides these contextual factors, prior studies have found

that there are consistent individual differences in social learning strategies (Molleman

et al., 2014) and social information use (Toelch et al., 2014b; Molleman et al., 2019), and

these differences are consistent over long periods (e.g., 9 months; Molleman et al., 2019).

This means that, within a given context, some individuals consistently use more social

information than other individuals. Although individual differences in social information

use affect many important social dynamics, such as the rate of polarization and cooperation
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in society, the underlying mechanisms of these individual

differences in social learning are still poorly understood.

A more thorough understanding of which neural areas are

involved in social information use would generate more insights

into the cognitive mechanisms and computations that are recruited

in this process (Olsson et al., 2020; Hofmans and van den

Bos, 2022). Some previous functional neuroimaging studies have

already looked into potential aspects of social information use. For

example, areas that have been implicated in subjective confidence

and the exploration of additional information, including the medial

prefrontal cortex and the anterior cingulate cortex (De Martino

et al., 2013; Lebreton et al., 2015), might be important in deciding

if information provided by others would be of additional value.

Furthermore, regions important for social cognition, including the

temporo-parietal junction (Saxe and Kanwisher, 2003; Rushworth

et al., 2013) and the medial prefrontal cortex (Amodio and

Frith, 2006; Hampton et al., 2008; Mahmoodi et al., 2023) might

be involved in deciding whose information to use, whereas the

orbitofrontal and dorsolateral prefrontal regions have been found

to play a role in the integration of information (Krawczyk,

2002; Bowman et al., 2012; Filimon et al., 2013; Pedersen et al.,

2015; Nogueira et al., 2017). However, functional MRI measures

have mediocre to poor test-retest reliability, rendering them

suboptimal for researching individual differences (Elliott et al.,

2020). In contrast, technological developments in the field of

neuroimaging allow us to accurately and reliably quantify brain

structure, with measures such as cortical volume showing high

test-retest reliability (TRC = 0.88) (Iscan et al., 2015). Although

the brain’s structural-functional relationships are not yet fully

understood, linking structure to behavior is an essential first

step in constructing a fully interpretable neural phenotype (Llera

et al., 2019). Importantly, we can also reliably measure individual

differences in social information use. For example, the BEAST

(see Figures 1A–C) has shown high test-retest reliability (r =

0.60) after nine months (Molleman et al., 2019). The availability

of two reliable measures, brain structure and behavior, facilitates

exploratory machine learning analyses to uncover previously

hidden relationships between brain and behavior (Poldrack and

Farah, 2015).

The current study aims to identify the structural neural

phenotype that relates to individual differences in social

information use. Given the long-term stability of individual

differences in social learning, we hypothesize that different

structural brain features, specifically regional variation in

gray matter volume, are related to these consistent individual

differences in social learning. Social information use is measured

using a behavioral task in which participants can adjust their

responses based on the responses given by others (Figures 1A–C).

The measurement of social information use is then calculated

by the shift from participants’ first response toward the social

information, which has been shown to be a robust measure of

social learning (Molleman et al., 2019). By exploring the underlying

structural volumes of these behavioral individual differences, we

aim to partly reveal the brain-behavior relationship and contribute

to building the neural phenotype of individual differences in

social learning. The underlying structural brain regions that relate

to individual differences can provide an interesting foundation

for future research investigating how social learning relates to

functional brain activity.

To identify cortical and sub-cortical volumes that show

consistent variability with social information use, we trained two

distinct types of exploratory machine learning models, Lasso

regression and Random Forest regression, in combination with

cross-validation (Figure 1). We believe an exploratory approach, in

this case, is preferred to the typical confirmatory volume of interest

(VOI) approach for several reasons. First, there are currently no

neuroimaging studies that have focused on individual differences

in social information use with sample sizes that would allow for

reliable individual differences analyses. In addition, VOIs are often

selected based on group-level results that are often not an accurate

representation of the individual VOIs (Genon et al., 2017). Finally,

the VOI approach is restricted and may result in missing out on yet

unknown brain-behavior relationships. We used a cross-validated

approach to prevent overfitting, and therefore increase reliability

and generalizability. The Lasso and Random Forest regression are

chosen to include a linear and non-linear model in our analysis.

Adding the Random Forest regression allows us to capture possible

interaction effects between different brain areas and other non-

linear brain-behavior relationships, addressing the complexity of

the brain. Therefore, our results are not limited to linear brain-

behavior relationships.

2 Materials and methods

2.1 Participants

In this study, 188 students (mean age = 20.77, SD = 3.86,

50.5% female) from the University of Amsterdam participated.

All participants were able to understand and communicate with

a professional proficiency in English and were either Dutch or

international students. Ethical approval was obtained from the

Ethics Review Board of the Faculty of Social and Behavioral

Sciences of the University of Amsterdam (ERB number: 2019-DP-

10814). After giving informed consent, participants completed the

computer task online and were subsequently asked to come to the

Spinoza Centre for Neuroimaging for theirMRI scan. Data cleaning

(see Section 2.2) resulted in 141 participants (mean age= 20.18, SD

= 1.83, 53.2% females) to model the data. Participants were paid

e25 (this includes a monetary reward for two other computer tasks

and questionnaires that are not part of the current study) plus up to

e1 bonus.

2.2 Social information use task

Social information use was measured using the Berlin Estimate

AdjuStment Task (the BEAST; Figures 1A–C) (Molleman et al.,

2019). Participants performed the task online, which took

∼5min to finish. To increase participants’ motivation to perform

well on the task, participants received a performance-based

monetary bonus of up to e1, based on a random trial (first or

second estimate).
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FIGURE 1

Methods pipeline. (A) During the BEAST (Molleman et al., 2019) participants viewed a number of animals on the screen for a period of 6 seconds. (B)

Participants entered their first estimate (E1). (C) Participants are shown social information (X) and entered a second estimate (E2). (D) Gray matter

volume parcellation of cortical and subcortical regions according to the Desikan/Killiany atlas (Desikan et al., 2006) are extracted with Freesurfer. (E)

A lasso regression (linear) and random forest regression (non-linear) are trained using leave-one-out cross-validation to predict social information

use. (F) Distribution of social information use excluding participants who never used social information (n = 141, mean = 0.2415, SD = 0.1164,

median = 0.2366).

During the BEAST, participants saw a number of animals for

6 s, after which they entered their first estimate (E1) of the number

of animals. Afterward, participants saw the estimate given by a

previous participant, the social information (X). The targeted value

of the estimate of the other participant (X) that was shown was

calculated as follows:

X = E1 × (1 ± 1)

The value of1was kept at 0.20, such that the social information

was always 20% toward the true number of animals. Thus, the value

of1was added to 1 if the first estimate (E1) was lower than the true

number of animals and subtracted from 1 if E1 was higher than

the true number of animals. If participants accurately estimated

the exact true number of animals, the direction of the social

information was chosen randomly. Note that it was not always

possible to show social information that deviated exactly 20% from

the first estimate, because the social information stemmed from real

previous participants (from prior experiments using the BEAST).

In these cases, the estimate of another participant that was closest to

the targeted social information was shown, which deviated mostly

one or two animals away from the 20% point. The absolute error

of the first estimate was calculated by taking the absolute difference

between the first estimate and the real number of animals. After

viewing the social information, participants gave a second estimate

(E2). Social information use per trial was calculated using the

following formula:

strial =
E2 − E1

X − E1

All participants completed 5 trials. Social information use (S)

measured by the BEAST shows low variability between trials and

maintains consistency over months (Molleman et al., 2019). Trials

with a value for social information use (strial) smaller than 0 or

bigger than 1 were excluded (Molleman et al., 2019) because this

type of behavior does not capture weighing their estimate with

the presented social information. On top of that, trials with a

reaction time of 20 s or longer for entering the first estimate were

excluded, because in these trials, accuracy was often either very

high or very low. A very high accuracy raises the possibility that

those participants might have taken screenshots and counted the

number of animals, whereas a very low accuracymight indicate that

participants with such a long reaction time were distracted during

that trial. These exclusion criteria resulted in some participants

having fewer than 5 trials. Therefore, we set a minimum of 3 trials

for participants to be included (Gradassi et al., 2023). This resulted

in the exclusion of 17 participants. The mean social information

use (S) and the mean absolute error per participant were then

calculated by taking the mean of all trials left. After removing age

outliers (2 standard deviations from the mean), 159 participants

were left. Of those 159 participants, 18 participants did not use any

social information in any of the trials. This caused the data to be

not normally distributed (mean S = 0.2141, SD = 0.1340, median
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= 0.2133), differing from the distribution of S in the research of

Molleman et al. (2019). Therefore, the data of these 18 participants

were considered to be unreliable and were excluded from the main

analysis (an analysis including these participants can be found in

the Supplementary material). This resulted in a final number of 141

participants (mean S = 0.2415, SD = 0.1164, median = 0.2366,

Figure 1F).

2.3 MRI data acquisition

Structural imaging data were collected using a 3 Tesla MRI

scanner (Philips Achieva DS, 32 channel head coil) at the Spinoza

Centre for Neuroimaging. The scan included two high-resolution

T1-weighted anatomical scans (voxel size= 0.70× 0.81× 0.70mm,

FOV = 256 × 256 × 180mm, matrix size = 368 × 318 × 257

slices, TR= 11ms, TE= 5.2ms, flip angle= 8◦, parallel acquisition

technique= SENSE), which were averaged.

2.4 MRI data preprocessing

The MRI data were automatically pre-processed using

fMRIPrep 1.5.4 (Esteban et al., 2018a,b; RRID:SCR_016216),

which is based on Nipype 1.3.1 (Gorgolewski et al., 2011, 2018;

RRID:SCR_002502) in combination with Freesurfer (http://

surfer.nmr.mgh.harvard.edu/). A more detailed description

of the preprocessing with fMRIPrep can be found in the

Supplementary material.

2.5 Gray matter volume extraction

Gray matter volumes of all brain areas of both hemispheres

(cortical and subcortical) corresponding to the Desikan/Killiany

(DK) atlas (Desikan et al., 2006) and Freesurfer’s Aseg atlas were

extracted (Fischl et al., 2002) using Freesurfer. Subsequently, the

gray matter volumes of all brain areas (89 areas) were scaled

to account for brain size using the SupraTentorialVolNotVent

parameter, which includes gray matter and white matter volumes

of the brain (excluding cerebellum, brain stem, ventricles, CSF, and

choroid plexus). Ventricles were subtracted from the total brain

volume as the size of the ventricles influences white and gray matter

volume. Moreover, the cerebellum was not taken into account

because, during the scanning procedure, the cerebellum was often

cut off the scan when trying to fit the entire brain into the field of

view. Brain areas that occur in both hemispheres were averaged into

one brain area if the volume of both areas of the hemispheres had

a Pearson’s correlation of 0.7 or higher. This was done to prevent

collinearity between the brain regions, which is important for the

interpretability of the regression model. Moreover, it is likely to

assume that bilateral brain regions that highly correlate with each

other share the same predictability toward social information use.

Because of this criterium, 6 brain areas were reduced, resulting in a

final number of 83 brain areas.

For our main analysis, we chose to use an atlas-based ROI

approach to increase statistical power and reduce the multiple

comparison problem that is associated with voxel or vertex-wise

approaches, and for the possibility of including subcortical regions

(Backhausen et al., 2022). Collinearity can decrease the reliability of

the relative importance of certain features (Dormann et al., 2013),

which we are particularly interested in. Furthermore, due to the

sheer number of vertices or voxels, such approaches are currently

not feasible for the machine learning techniques used for feature

extraction (see Supplementary material for vertex-based single-

order correlations1). For the same reason, we chose to use the DK

atlas instead of other atlases with more fine-grained parcellation,

such as the Destrieux atlas (Destrieux et al., 2010) or the Glasser

atlas (Glasser et al., 2016).

2.6 Feature extraction

We modeled a Lasso regression (linear) and Random Forest

(RF) regression (non-linear) to explore which brain areas play a role

in the neural processing of social information use. To identify the

brain regions related to social information use, the coefficients from

the Lasso regression and feature permutation importance from the

RF regression were used. The volumes of 83 regions, as well as the

control variables age and sex, were included as features (predictors).

Lasso regression was chosen based on its characteristics to discard

features (reduce them to zero) that do not contribute to the model

prediction. We initially ran a more computationally costly elastic-

net regression, which combines Lasso with Ridge regression (which

sets features to near zero rather than exactly zero). However,

because the elastic-net regression kept leaning toward a full Lasso

regression, we ultimately decided to perform Lasso regression.

The RF regression was chosen based on its robustness and ability

to capture non-linear relationships (Breiman, 2001), while Lasso

regression is restricted to identifying linear relationships. The

RF regression uses an ensemble of decision trees and different

bootstrapped samples of the data and a different set of features for

each decision tree. All the trees of the forest produce a prediction,

which is averaged into one final prediction.

The Lasso and RF models were trained using scikit-learn

version 0.24.2 (Pedregosa et al., 2011) in Python. Before training

the model, all features were scaled between 0 and 1 to make

them comparable. We applied a Leave One Out Cross-Validation

(LOOCV) outer loop, where one participant in each loop was

used to evaluate the model, which was trained on the remaining

participants (n – 1). This resulted in 1 model per participant (n

= 141). We preferred this method over lower-fold cross-validation

(e.g., 5-fold or 10-fold) because the current dataset was relatively

small compared to regular datasets used within machine learning

algorithms, which often consist of at least 10,000 instances. Using

LOOCV, the number of data points to fit the model was increased

compared to lower-fold cross-validation, and therefore the bias of

the model and the chance of overfitting were reduced. Moreover,

each subject in the dataset contributes to the estimation of the

model performance. Of note, because each training set is so similar

1 See “Vertex-wise analysis of the relationship between social information

use and cortical brain volume” in our Supplementary material, including

Supplementary Figure S6.

Frontiers inHumanNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1383630
https://scicrunch.org/resolver/RRID:SCR_016216
https://scicrunch.org/resolver/RRID:SCR_002502
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


de Groot et al. 10.3389/fnhum.2024.1383630

(differing n – 2 instances), the models resulting from LOOCV are

mutually dependent which could be a risk for overfitting.

For the Lasso regression, we additionally applied a 5-fold

inner loop for a grid search to finetune the hyperparameter alpha

that controls the L1 regularization, which regulates how readily

coefficients of features are set to zero. Values of alpha ranging

between 0.001 and 0.999 with a step size of 0.001 were searched

to find the optimum value of alpha. For the RF regression, we

increased the number of decision trees to 1000 to increase reliability

and robustness but kept other hyperparameters at default to

reduce computational costs. RF regression produces a measure

of importance per feature, meaning how important they are in

explaining the dependent variable, here social information use.

As the standard measure of feature importance, based on feature

impurity, is not always reliable (Strobl et al., 2007), we assessed

another metric called permutation importance (Breiman, 2001;

Altmann et al., 2010). This was computed using the difference in

model performance, mean squared error (MSE), between including

the actual vs. permuted (random) values for a feature. Permutation

importance was averaged over five permutations to account for

random values being meaningful by chance. MSE should increase

when permuting important features, resulting in high permutation

importance. The coefficients (Lasso), permutation importance

(RF), and model performance (MSE) of each model were stored,

resulting in a distribution of these measures resulting from each

loop of the LOOCV.

2.7 Comparison with baseline

A baseline feature “RANDOM” was computed. The values

of this baseline feature consisted of random numbers between

0 and 1 and should thus not be relevant for predicting social

information use. The relevance of other features (brain areas) can

therefore be derived based on a comparison with the baseline

feature. To make sure this randomized feature was not accidentally

important by chance, its values were newly computed for each

loop within the LOOCV. The distributions of the Lasso coefficients

and RF permutation importance are visually compared with the

baseline feature. We did not test for significant differences as the

observed coefficients and importance scores are not independent

observations, making statistical testing of relative importance

unreliable. Furthermore, due to the exploratory nature of our

analysis, no confirmatory conclusions can be drawn upon statistical

significance. Therefore, we believe a visual inspection of the

differences of the coefficients and importance scores of the brain

regions with the baseline feature is an appropriate method to derive

meaningful leads for future confirmatory research.

Moreover, although it is not expected that machine learning

models can precisely predict behavior solely on brain volumetric

measures, and the machine learning models in this study are

used rather exploratorily, it is still interesting to put the model

performance in perspective. Therefore, we additionally created a

baseline model that solely included the average social information

use from the train data to predict the evaluation data. This way,

we could compare the MSE for the simple, but not meaningless,

baseline model with the more complex Lasso and RF models.

3 Results

3.1 Lasso regression

Using Lasso regression, 14 brain regions, the baseline

feature RANDOM, and sex had non-zero mean coefficients

(Supplementary Figure S1A, Supplementary Table S1). The lasso

regression showed peaks at zero because the lasso regression is

sensitive to interference between brain regions. Therefore, the

lasso regression was rerun with only the features that had a non-

zero mean coefficient (referred to as the “winning model”). This

reduced the noise of unimportant features and reduced possible

interference between brain regions. The distributions of the seven

biggest mean coefficients as a result of the winning lasso model

are shown in Figure 2A, a figure and table containing coefficients

of all features can be found in the Supplementary Figure S1B,

Supplementary Table S2. The brain areas that had a non-zero mean

coefficient are visualized in Figure 3. The gray matter volume of

the left pars triangularis had the highest absolute mean coefficient

(mean β = 0.1109, SD = 0.0280), followed by the gray matter

volume of the right entorhinal cortex (mean β = 0.0720, SD

= 0.0196), and the left caudal middle frontal gyrus (mean β =

−0.0672, SD= 0.0181). The baseline feature had a mean coefficient

of−0.0006 (SD= 0.0216).

3.2 Random forest regression

RF regression revealed 24 brain regions with a higher mean

permutation importance (i) than the RANDOM baseline feature

(Supplementary Figure S2A, Supplementary Table S3). These brain

areas are visualized in Figure 3. The distribution of the top seven

brain areas with the highest permutation importance is shown

in Figure 2B. The brain area with the highest mean permutation

importance was again the left pars triangularis (mean i = 0.0016,

SD = 0.0002), followed by the left postcentral gyrus (mean i =

0.0009, SD= 0.0001) and the left pallidum (mean i= 0.0006, SD=

0.0001). The baseline feature had a mean permutation importance

of 0.0002 (SD = 0.0001). In line with the robust character of

the RF regression, running the model again with only features

with a higher mean permutation importance than the baseline

feature (the winning model) did not change the order of the

feature importance, but only increased the overall importance value

(Supplementary Figure S2B, Supplementary Table S4).

3.3 Model performance

The Lasso (MSE = 0.0143, SE = 0.0014) and RF model (MSE

= 0.0141, SE = 0.0014) resulted in lower model performance

than the simple baseline model (MSE = 0.0136, SE = 0.0013).

We argued that this might be due to a high level of noise

resulting from the multitude of included features. Indeed, when

looking at the winning Lasso model which only included those

features with non-zero mean coefficients, model performance

is increased relative to the baseline model (MSE = 0.0128,

SE = 0.0013). Similarly, the winning RF model, which only
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FIGURE 2

Top 7 feature importances and coe�cients distributions. (A) The distributions of the seven biggest coe�cients together with the baseline feature

(RANDOM) of the winning lasso model. This model only contains the non-zero features from the first model. Therefore, the zero-peaks are much

smaller because there is less noise from unimportant features and collinearities. The dots represent the coe�cients based on the individual loocv

runs. (B) The distributions of the importances resulting from the loocv of the random forest regression are shown for the seven features with the

highest mean importance together with the baseline feature (RANDOM).

FIGURE 3

Brain areas vary with social information use. Cortical and subcortical brain areas of which their volumes showed consistent variability with our

behavioral measure of social information use as found using Lasso regression (purple), Random Forest regression (yellow), or both (green). NB: The

left nucleus accumbens showed consistent variability according to both measures, but falls outside the depicted brain slices and is therefore not

shown.
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included those features with a higher permutation importance

than the baseline feature, performed better (MSE = 0.0123,

SE = 0.0012). Supplementary Figure S5 shows the distribution

of the MSE of all the models. Thus, both the Lasso and

RF regression do not outperform the baseline model when

including all features. However, when reducing noise by removing

non-important features, both models slightly outperform the

baseline model.

3.4 Post-hoc correlations with social
information use

To gain a better insight into the results from the Lasso

and RF models, especially because the relationships found using

RF regression are not necessarily linear, we visualized the

relationship between gray matter volumes and social information

use (Figure 4). Based on visual inspection, we did not find

any clear non-linear relationships. When investigating linear

relationships, we found a significant positive Pearson’s correlation

for the volume of the left pars triangularis (r = 0.261, p =

0.002, α = 0.05, Figure 4A), and a negative correlation for the

left caudal middle frontal gyrus (r = −0.190, p = 0.024, α

= 0.05, Figure 4B), and the left (r = −0.177, p = 0.036, α

= 0.05, Figure 4C) and right (r = −0.180, p = 0.032, α =

0.05, not visualized) postcentral gyrus with social information

use. A positive correlation was also found for the right (r

= 0.177, p = 0.035, α = 0.05, Figure 4D) and the left (r

= 0.173, p = 0.040, not visualized) entorhinal cortex. The

correlation between social information use and the volume of

the left pallidum was not significant (r = 0.164, p = 0.052,

α = 0.05).

3.5 Post-hoc correlations with task
performance

While the postcentral gyrus is, to our knowledge, not

necessarily related to social processes, it has been implicated in

visual processing (Tomasi et al., 2007; Wang et al., 2008). This

raises the speculation that the postcentral volume, and possibly

also other brain regions, might be related to performance on our

visual task, rather than the process of weighing social information

toward individual information. The volume of the right postcentral

gyrus indeed showed a significant negative correlation with the

absolute error of the first estimate (r = −0.237, p = 0.005, α

= 0.05, Figure 5A). Likewise, the volume of the caudal middle

frontal gyrus negatively correlated with the absolute error of the

first estimate (r= −0.223, p= 0.008, α = 0.05, Figure 5B). A lower

absolute error might in turn have led to less social information

use, although the direct correlation between absolute error and

social information use was not significant (r = 0.157, p = 0.062,

α = 0.05). The left pars triangularis (r = 0.030, p = 0.726, α =

0.05), the left postcentral gyrus (r = −0.101, p = 0.232, α = 0.05),

the left pallidum (r = 0.042, p = 0.624, α = 0.05), and the right

entorhinal cortex (r= 0.135, p= 0.111, α = 0.05) did not correlate

with absolute error, suggesting that they are uniquely related to

social learning.

4 Discussion

We aimed to find cortical and sub-cortical brain areas

that show consistent variability with individual differences

in social information use. Two complementary machine

learning approaches—Lasso regression and Random Forest

(RF) regression—were trained to predict social information use at

the individual level using 83 gray matter volumes of cortical and

subcortical brain areas of the DK atlas, age, and sex as predictors.

Based on these models, a small set of brain regions turned out to

be associated with social information use, including the volumes

of the left pars triangularis, the left caudal middle frontal gyrus,

the left postcentral gyrus, the right entorhinal cortex, and the left

pallidum showing in the top three of our models.

Interestingly, based on both models, the left pars triangularis

robustly appeared to be an important brain region: the gray

matter volume of the left pars triangularis was positively associated

with social information use. The left pars triangularis is part

of the left inferior frontal gyrus (LIFG), together with the pars

opercularis and pars orbitalis. In line with our results, prior

functional neuroimaging research on social learning has shown

that neural activation in the LIFG and the left pars triangularis

in particular, is related to the efficient integration of social

and individual information during a perceptual decision-making

task under uncertainty (Toelch et al., 2014a). They propose an

inhibitory role for the LIFG toward using individual information at

moments when using social information is more valuable. Another

study found that greater activity in the LIFG is related to a greater

shift in response bias during a decision-making task (Reckless et al.,

2014), thereby again being related to flexibility in decision-making.

Moreover, the IFG also seems to play a role in perceptual social

information processing, more specifically in perceptual emotion

recognition (Keuken et al., 2011) and processing information about

the self vs. the other (Kircher et al., 2000). Together, these results

provide corroborating evidence for the left pars triangularis to play

a role in valuing social information over individual information

during our experimental task.

Next, in contrast with the pars triangularis, the left postcentral

gyrus and the left caudal middle frontal gyrus both showed a

negative relationship with social information use. Prior research

has shown that neural activation in the postcentral gyrus is related

to visual processes in the brain (Wang et al., 2008), including visual

attention (Tomasi et al., 2007) and mathematical approximation

(Dehaene et al., 1999). More specifically, prior research has found

that less gray matter volume of the postcentral gyrus relates to a

better perception of numerosity in a decision-making task (Yuan

et al., 2023). A sense of numerosity may play an important role

when performing the BEAST, as participants had to estimate the

number of presented animals. Interestingly, we have observed a

negative correlation between social information use and the gray

matter volume of the postcentral gyrus, which would indicate

that a greater sense of numerosity does not necessarily relate to

lower social information use. Furthermore, activation in the caudal
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FIGURE 4

Correlation plots with social information use. The gray matter volume of (A) the left pars triangularis (r = 0.261, p = 0.002, α = 0.05) and (D) the right

entorhinal cortex (r = 0.177, p = 0.032, α = 0.05) showed a significant positive correlation with social information use. The gray matter volume of (B)

the left caudal middle frontal gyrus (r = −0.190, p = 0.024, α = 0.05) and (C) the left postcentral gyrus (r = −0.177, p = 0.036, α = 0.05) showed a

significant negative correlation with social information use. The green line in the plots shows the slope of the correlation.

FIGURE 5

Correlation plots with task performance. The gray matter volume of (A) the right postcentral gyrus (r = −0.237, p = 0.005, α = 0.05) and (B) the left

caudal middle frontal gyrus (r = −0.223, p = 0.008, α = 0.05) showed a significant negative correlation with social information use. The green line in

the plots shows the slope of the correlation.

middle frontal gyrus seems to be related to contextual control

during visual behavioral tasks (Nee and D’Esposito, 2016) and the

ability to use higher cognitive function when selecting visual targets

in a goal-directed way, using internal knowledge to implement a

beneficial visual attention strategy (Germann and Petrides, 2020).

Therefore, we speculated that the volume of the postcentral gyrus

and the caudal middle frontal gyrus may be related to attention and

task performance, rather than directly to the social aspect of social

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1383630
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


de Groot et al. 10.3389/fnhum.2024.1383630

information use. Participants with high estimation accuracy—and

awareness of their accuracy—might use less social information

because they are more certain about their estimate (Morgan et al.,

2012). Our post hoc analysis of task performance indeed showed

that the right postcentral gray matter and the left caudal middle

frontal gyrus volumes negatively correlate with the absolute error

of the first estimate. However, future studies are needed to further

investigate this relationship with a task that is more directly

designed to measure performance accuracy and confidence [e.g., a

moving-dot task with different confidence levels (Moussaïd et al.,

2017)].

Our study also identified a positive relationship between the

entorhinal cortex and social information use. The entorhinal cortex

is usually related to the memory system, and more specifically to

spatial representation (Fyhn et al., 2004). Interestingly, prior work

in rodents has also found that the entorhinal cortex plays a role

in the processing of social information for social cognition (Leung

et al., 2018; Lopez-Rojas et al., 2022). Their work showed that the

lateral entorhinal cortex provides direct input that is necessary for

social cognition to the CA2 hippocampal region. Together with

our findings, it seems like the entorhinal cortex plays a role in the

processing of social information in humans. Further confirmatory

research is necessary to further investigate if and how the entorhinal

cortex might be related to processing social information in humans.

Finally, we remain agnostic as to the functional involvement

of the left pallidum. Even though the basal ganglia, including the

pallidum, have often been implicated in motivation, learning, and

action-selection (Collins and Frank, 2014; Shipp, 2017), we are

unaware of any robust direct relationships with social information

use. More research, perhaps involving functional activity, is

necessary to further understand the different roles of each brain

area within social information use processes. Interestingly, the

left pallidum was found to be an important predictor for social

information use using RF regression, but not Lasso regression. An

explanation could be that the relationship between the left pallidum

and social information use is non-linear, as indicated by their non-

significant linear correlation, or has more complex interactions

with other brain areas and is therefore not detectable by the Lasso

regression. Without using the RF regression, the left pallidum

would have been missed, highlighting the added value of using RF

models in exploring brain areas related to social information use.

Due to the complexity of an RF model, it is difficult to interpret

how the left pallidum relates to individual differences in social

information use.

Prior studies in humans and rodents, researching social

learning and cognition in the brain, have found a set of brain

areas that overlap with our results. These areas include the medial

prefrontal cortex (mPFC) (Amodio and Frith, 2006; Apps and

Ramnani, 2017; Olsson et al., 2020; Zhang and Gläscher, 2020),

the temporal parietal junction (TPJ) (Carter et al., 2012; Olsson

et al., 2020; Zhang and Gläscher, 2020), the superior temporal

sulcus (STS) (Amodio and Frith, 2006; Olsson et al., 2020), and the

anterior cingulate cortex (ACC) (Amodio and Frith, 2006; Chang

and Sanfey, 2013; Apps et al., 2016; Olsson et al., 2020; Zhang and

Gläscher, 2020). Looking at our results, the left superior temporal

cortex appears in the top seven of the RF and Lassomodel. The right

rostral anterior cingulate cortex occurs in the top seven of the lasso

regression, overlapping with the ACC and most likely the mPFC.

The right supramarginal gyrus shows up in the results of the RF

regression at place 15 and partly overlaps with the TPJ.

While the social brain network regions largely occur in our

results, the coefficients and importances of these brain areas are not

that strong and are outperformed by (some novel) areas, such as the

left pars triangularis, the left caudal middle frontal gyrus, the left

postcentral gyrus, the right entorhinal cortex, and the left pallidum.

One explanation could be that social brain network regions, such

as mPFC, STS, TPJ, and ACC, are mainly involved in the process of

tracking the context around social information, such as the mental

states of other individuals, and using this information to decide

whether to use the social information or not. During the BEAST,

participants did not have any contextual information about the

source of the social information. As a result, the current experiment

could be merely a measurement of the weight of social information

compared to individual information. This could explain why the

current study finds different more important brain areas related to

the processes of social information use, corresponding with studies

that focus on the consideration of individual vs. social information

(Toelch et al., 2014a).

Despite the goal of the current study not being to generate

the most accurate predictive model but rather to explore different

brain regions, we do want to highlight the importance of using a

simple baseline model to put model performance in perspective.

The current study uses a simple mean score as a baseline model

to assess any added predictive value of more complex machine

learning models. The mean model assumes that all participants

have the same underlying social information use; all variance in

social information use is based on measurement error. However,

this is not consistent with the high test-retest reliability of social

information use. Still, for purposes of estimating the relative

contribution of neural data for the prediction of behavior, it can

be a useful benchmark. Often, a baseline model is not used in

neuroscientific research. Without this comparison, we have no idea

to what extent the reported brain regions contribute meaningfully

to explaining variance in behavior. Looking at the results of the

current study, we see that the model performance of both of our

complex models (lasso MSE = 0.0143, SE = 0.0014; RF MSE =

0.0141, SE = 0.0014) did not show an improvement compared

to the predictive value of the mean social information use in the

training set (our baseline model; MSE = 0.0136, SE = 0.0013).

However, when reducing the noise of the model by keeping only

those features with non-zero coefficients (Lasso) or by removing

features that were less meaningful than a random feature (RF), the

model performance of our complex models slightly improved with

respect to the baseline model (Lasso MSE = 0.0128, SE = 0.0013;

RF MSE= 0.0123, SE= 0.0012).

4.1 Limitations and future directions

As the brain volumes related to social information use found

in our results are based on an exploratory approach, further

confirmatory research is necessary to generalize the results and

investigate the precise underlying brain-behavior relationships.
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First, it is not certain that the found structural volumetric

neural individual differences related to social information use

also translate to functional differences in the brain. The precise

relation between regional volume and brain function is not

fully understood, which makes it difficult to interpret how

our findings relate to brain function. We have used structural

differences in gray matter volume to identify ROIs related to

consistent behavioral individual differences in social information

use. While static structural volume might be useful to capture the

consistent individual differences in social information use due to

its replicability (Iscan et al., 2015), static measures might not be

suitable to capture individuals’ flexibility in social information use

when it comes to specific situations. Together, further research

using functional measures is necessary to investigate how the

identified gray matter volume ROIs relate to brain function and the

flexible nature of social information use.

As we have used theDK atlas to parcellate cortical brain regions,

we are unaware of how the results would look when using a

more fine-grained atlas. As mentioned in Section 2.5, we chose

the DK atlas to increase statistical power and reduce problems

related to (multi)collinearity (Dormann et al., 2013). On the other

hand, an atlas with a more fine-grained parcellation, such as the

Destrieux atlas, or the Glasser atlas, could have offeredmore precise

insights into the specific brain areas related to social information

use. However, an increase in parcellations might also increase the

chances of collinearity between different brain areas and social

information use. Furthermore, different types of parcellations could

relate differently to social information use. Therefore, using a

different atlas might result in different insights.

While our study has shown the added value of using

a more complex model in identifying regions of interest,

the interpretation of such black box models is often more

difficult. Random forest models use a combination of multiple

randomized decision trees (Biau and Scornet, 2016), which

makes it possible to capture complex non-linear relationships

between features, such as interactions between multiple features.

Without a priori knowledge of how this complexity between

multiple features might look, it is difficult to find the precise

relationships between features within such a model, as the

interaction structure can be complex (Boulesteix et al., 2012).

The brain areas identified by our random forest model, and

not by the lasso model, might involve more complex non-linear

relationships with social information use. However, based on

our results, we are not able to unravel the nature of these

complex relationships.

Furthermore, while several tasks to measure information use

exist, we have focused only on one task, the BEAST. To validate

the generalizability of our results, it would be interesting to further

investigate whether structural brain correlates with other social

information use tasks [whose measures previously also showed

a correlation with the BEAST (Molleman et al., 2019)], such

as the moving dots task (Moussaïd et al., 2017) or bandit task

(McElreath et al., 2005). Using multiple tasks also allows us to

further investigate more precisely to what type of behavior the

found brain regions relate. For example, it would be interesting

to test whether a social information use task that involves an

understanding of the context of the presented social information

causes the social brain regions (the mPFC, STS, TPJ, and ACC) to

become stronger predictors for individual social information use

compared to the current results.

4.2 Conclusions

In sum, we find robust results that the gray matter volume of

the left pars triangularis is associated with individual differences

in social information use. While less robust than the left pars

triangularis, there are novel brain areas found that are related to

social information use, together with some common social brain

regions. Further confirmatory research is necessary to investigate

more precisely how these brain regions are related to social

information use and validate the generalizability of the current

results. To accomplish this, future research should include a

wider diversity of behavioral measurements and measurements of

connectivity and functional activity within the brain. Furthermore,

the exploratory machine learning approach used in this study to

link brain volumes with behavior can be used as a pipeline in

future research to explore associations between brain structure and

behavior and mark regions of interest.
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