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Toward diffusion tensor imaging 
as a biomarker in 
neurodegenerative diseases: 
technical considerations to 
optimize recordings and data 
processing
Hans-Peter Müller * and Jan Kassubek 

Department of Neurology, Ulm University, Ulm, Germany

Neuroimaging biomarkers have shown high potential to map the disease 
processes in the application to neurodegenerative diseases (NDD), e.g., diffusion 
tensor imaging (DTI). For DTI, the implementation of a standardized scanning 
and analysis cascade in clinical trials has potential to be further optimized. Over 
the last few years, various approaches to improve DTI applications to NDD have 
been developed. The core issue of this review was to address considerations 
and limitations of DTI in NDD: we  discuss suggestions for improvements 
of DTI applications to NDD. Based on this technical approach, a set of 
recommendations was proposed for a standardized DTI scan protocol and an 
analysis cascade of DTI data pre-and postprocessing and statistical analysis. In 
summary, considering advantages and limitations of the DTI in NDD we suggest 
improvements for a standardized framework for a DTI-based protocol to 
be applied to future imaging studies in NDD, towards the goal to proceed to 
establish DTI as a biomarker in clinical trials in neurodegeneration.
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1 Introduction

Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) provides 
information on the microstructural processes of the central nervous system’s white matter 
(WM) in vivo (Pierpaoli and Basser, 1996). This technique has been used in different 
neurodegenerative diseases (NDD), e.g., in Alzheimer’s disease (AD) for both the early 
diagnosis and for monitoring disease progression (Oishi et al., 2011). Previous DTI studies 
in Parkinson’s disease (PD) have demonstrated alterations in multiple WM regions, 
particularly in the dopaminergic pathways (Zhang and Burock, 2020). DTI has shown 
microstructural abnormalities in patients with Huntington’s disease (HD) and is a tool to 
characterize how these abnormalities change with disease progression (Zhang et al., 2018). 
Furthermore, DTI plays a key role in cross-sectional and longitudinal imaging of WM 
alterations in motor neuron diseases (MND) like amyotrophic lateral sclerosis (ALS) 
(Basaia et  al., 2019); cross-sectional DTI studies in patients with ALS identified the 
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corticospinal tract as the major WM tract demonstrating 
microstructural alterations (Agosta et  al., 2010; Kassubek et  al., 
2014; Müller et al., 2016; Braak et al., 2017).

Longitudinal DTI studies showed progression of WM 
degeneration, that way targeting a propagation-based biomarker in 
NDD (e.g., Gregory et al., 2015 – HD; Basaia et al., 2019 – MND; 
Kalra et al., 2020 – ALS; Torso et al., 2022 – AD; Hu Z. et al., 2023 – 
PD) and demonstrated the utility of DTI to monitor disease 
progression in NDD in a mono-or multicenter setting.

Based on these data, the aim was to reflect on suggestions for 
improvements of the scanning protocol as well as for the 
standardization of analysis (without focus on specific analysis software 
solutions) in order to provide a framework for future clinical trials 
regarding DTI scan protocol, analysis, and effect sizes.

2 Scanning protocol-related 
contributions to results of DTI studies 
in NDD and options of optimization

2.1 Analysis of microstructural alterations 
by DTI

As a basis for DTI data analysis, it has to be noted that WM 
tracts in the central nervous system consist of densely packed 
axons in addition to various types of neuroglia and other small 
populations of cells (Nieuwenhuys et  al., 2019). The axonal 
membrane as well as the well-aligned protein fibers within an axon 
restrict water diffusion perpendicular to the fiber orientation, 
leading to anisotropic water diffusion in brain WM (Moseley et al., 
1990). Myelin sheaths around the axons may also contribute to the 
anisotropy for both intra-and extracellular water (Mori and van 
Zijl, 2002). Diffusion anisotropy is mainly caused by the orientation 
of fiber tracts in WM and is influenced by its micro-and 
macrostructural features. Of the microstructural features (Basser 
et al., 1994; Mattiello et al., 1994), intraaxonal organization appears 
to be  of greatest influence on diffusion anisotropy, besides the 
density of fiber and cell packing, degree of myelination, and 
individual fiber diameter. On a macroscopic scale, the variability 
in the orientation of all WM tracts in an imaging voxel influences 
its degree of anisotropy (Pierpaoli and Basser, 1996). DTI provides 
two types of information about the property of water diffusion: 
first, the orientation-independent extent of diffusion anisotropy 
(Pierpaoli and Basser, 1996) and second, the predominant direction 
of water diffusion in image voxels, i.e., the diffusion orientation 
(Pajevic and Pierpaoli, 1992). Since there are several challenges in 
displaying tensor data, the concept of diffusion ellipsoids has been 
proposed (Basser et  al., 1994). The Eigendiffusivities of these 
ellipsoids represent the unidimensional diffusion coefficients in the 
main direction of diffusivities of the medium, i.e., the main axis of 
the ellipsoid represents the main diffusion direction in the voxel 
which coincides with the direction of the fibers, while the 
eccentricity of the ellipsoid provides information about the degree 
of anisotropy and its symmetry. Therefore, diffusion anisotropy 
metrics such as the fractional anisotropy (FA) could be defined for 
the parameterization of the voxel tensors (Le Bihan et al., 2001). 

Advanced techniques like Q-ball imaging (Tuch, 2004) may 
provide more sensitive white matter descriptors in single patients 
and lead to generalized measures of fractional anisotropy (Corbo 
et  al., 2014). Thus, the clinical role of DTI in various disease 
processes, especially NDDs, is emerging (Tae et al., 2018).

These DTI-based metrics have shown to map age-related 
alterations over the life span in the human brain; such age-dependent 
changes also seem to exhibit regional differences with respect to the 
brain anatomy (Salat et al., 2005; Westlye et al., 2010). Furthermore, a 
regional tract-specific age dependency which requires also non-linear 
corrections for different age ranges has been demonstrated (Behler 
et  al., 2021). Based on these findings, DTI also acts as a cross-
validation technique for age-dependent cerebral blood flow alterations 
in the human brain (Damestani et al., 2024).

2.2 DTI protocol

Standardized DTI protocols will, at least currently, be performed 
at 1.5 T or 3.0 T clinical scanners, because scanners with higher 
magnetic field (ultrahigh field scanners) would provide better signal-
to-noise ratio but are still rare and hardly available for multicenter 
trials. The protocols include full-brain coverage using a 2-D echo 
planar imaging sequence; about axial 70 slices, slice thickness 2.0 mm, 
voxel size 2.0 × 2.0 × 2.0 mm3, field of view 256 × 256 mm2, matrix 
128 × 128, five b0 images, and 30 or more diffusion gradient directions 
with a b value of 1,000 s/mm2. The recording of more than one b0 
image could help to improve the signal-to-noise-ratio (SNR). Good 
examples of standardized prospective multicenter protocols are 
provided in (Hobbs et al., 2015 – HD; Nir et al., 2015 – AD; Kalra 
et  al., 2020 – ALS). However, a major drawback of DTI is that it 
assumes a single water pool with Gaussian diffusion in each voxel and 
does not account for structural heterogeneity which reduces the 
specificity of the derived indices (Alexander et al., 2001; Basser and 
Jones, 2002), neurite orientation dispersion and density imaging 
(NODDI) is a multishell diffusion technique (Zhang et al., 2012) that 
assumes further types of microstructural environments and could 
easily be added to a standardized DTI protocol, if b-values of 2000 s/
mm2 are available.

For the application of fiber tracking (Mori and van Zijl, 2002), 
differently oriented fiber bundles inside one voxel are incorrectly 
modeled by a single tensor. High Angular Resolution Diffusion 
Imaging (HARDI) aims at using more complex models, such as a 
two-tensor model, for estimating two fiber bundles (Caan et  al., 
2007). Although standard DTI is an established default tool, 
acquisition with stronger diffusion weightings beyond the DTI 
regimen is now possible by NODDI, that way enabling even more 
detailed characterization of tissue microstructures, e.g., in the early 
diagnosis of AD (Takahashi et al., 2024) or tau deposition in AD 
(Weston et al., 2023).

The schedule of visits could be optimized taking possible costs and 
patient burden into account. Repeated DTI scans during one given 
subject’s visit could significantly improve the effect size (Behler et al., 
2022a). Thus, it is recommended to increase the number of DTI scan 
repetitions at one visit. Note that the scans should be independent, i.e., 
subject repositioning in the scanner is recommended.

https://doi.org/10.3389/fnhum.2024.1378896
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Müller and Kassubek 10.3389/fnhum.2024.1378896

Frontiers in Human Neuroscience 03 frontiersin.org

For longitudinal studies in NDD with a rapidly progressive disease 
course, e.g., ALS, one baseline and two follow-up visits were advised 
over a total observation period of about 12 months (time interval 
between baseline and follow-up 2) to monitor the course of disease 
(e.g., Cardenas-Blanco et al., 2016; Kassubek et al., 2018; Kalra et al., 
2020). For longitudinal studies in NDD with a slowly progressive 
disease course, multiple follow-up scans are possible and could even 
be spread over several years, e.g., in PD with one baseline and two 
follow-up visits 6 years apart (Shih et al., 2023).

Independent of the progression rate, it has to be noted that, if one 
baseline and two follow-up scans are recorded, the first follow-up visit 
is suggested to balance observing change and minimizing attrition so 
that the individual schedule should be  such that the timing of 
follow-up 1 does not bisect the entire observation period between 
baseline and follow-up two. The unfavorable choice of a symmetrical 
bisectioning of the observation interval was demonstrated in a cohort 
of HD patients with one baseline and 2 follow-up scans (Müller et al., 
2021). The shortcoming with splitting the observation time into two 
identical periods is that regression models, due to their intrinsic 
properties, underweight follow-up visit 1, with the result that the 
progression slope is mainly determined by baseline and follow-up 2.

2.3 Quality control

In addition to common MRI artifacts (truncation, aliasing, 
chemical shift, banding, pile-up, blurring, spikes, etc.) (Krupa and 
Bekiesińska-Figatowska, 2015), there are specific challenges that one 
may encounter when using MRI scanner gradient hardware for 
diffusion MRI, especially in terms of eddy currents and sensitivity to 
motion (Le Bihan et al., 2006). According to an established quality 
control protocol (Dubois et al., 2014; Müller et al., 2014), corrupted 
gradient directions as well as motion artifacts could be excluded and 
corrupted slices or volumes could be resampled from further analysis 
prior to correction of eddy current-induced geometric distortions 
(Shen et  al., 2004). In particular, if the analysis focuses on one 
parameter like FA, the omission of single GD has only little effect on 
the result and thus the omission of corrupt GD allows a more precise 
determination of the resulting values.

2.4 Subject samples

2.4.1 Effect size and sample size calculations
The effect size is estimated by Cohen’s d, i.e.,

 
d NDD controls

NDD controls
=

−µ µ
σ ,  

(1)

with

 

( ) ( )σ σ
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− + −
=

+ −

2 2
2
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2
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Sample size calculations usually were based on a two-sided 
significance level (α) of 5% and a power (1-β) of 80%. Then, the 
sample size n could be calculated by Kadam and Bhalerao (2010)

 
n Z Z da= +( )−2 1

2 2
β /

  
(2)

and with Za  = 1.96 and Z1-β  = 0.84, the sample size could 
be approximated to

 n d=15 7 2. /   (3)

Effect size and sample size calculations for cross-sectional 
comparisons yield an estimation of baseline effects in a clinical study, 
whereas estimates for longitudinal comparisons yield effect sizes and 
sample sizes required to observe time-dependent changes.

To obtain maximum effect sizes [high values of d (Eq.  1)] in 
clinical trials, high differences between the mean values (of any 
quantity) of NDD patients and controls should be obtained. It is of 
high relevance, however, to obtain minimum standard deviations [σ 
(Eq.1)]. This minimization is discussed in the following.

2.4.2 Selection of subject samples for clinical 
trials

In order to be able to identify a disease-specific alteration (in a 
given parameter), an optimized and representative control sample 
should be  used. Both inter-subject variability, scanner and 
environmental noise as well as subject motion or ad hoc scan specific 
noise contribute to the DTI signal (Müller et al., 2014).

The averaged recorded signal of a group of N subjects (each with 
one scan) can be split into (Note: in the following, N >>1  is assumed)

 µ = + +F L G∆  (4)

with.
µ σ µ= = −( )∑ ∑1 12 2

N
S

N
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N
i i

N
i;

Si are the individual measured signals for the respective subject.

L
N

Li
N

i= ∑1 ; Li are the individual system noise values for a 

single scan including partial volume effects due to different 
subject positioning.

∆ ∆G
N

Gi
N

i= ∑1 ; ΔGi are the individual disease related 

alterations for the respective subject; ΔGi = 0 for controls; for NDD 
patients ΔGi are assumed to be  considerably larger than the 
age-related alterations.

F
N

Fi
N

i= ∑1 ; Fi are the individual values of a parameter for the 

respective subject.
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Fi can be split into a mean value (representing the “normal” value 
of a parameter) and the individual variability ΔFi

 
F F

N
Fi

N
i= + ∑1

∆
 

(5)

F F Fi i+ =∆ are the individual values of a parameter for the 
respective subject.

Now, the effect size of a two sample (NDD patients and controls) 
study is
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That way the noise and inter-individual variability are contained 
N Ncontrols NDD+( ) times.

Coherent signal averaging can be expressed by Rompelman and 
Ros (1986)
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with a root mean square value of the noise of σN, i.e., after N averages 
(normally distributed values), the SNR scales as

 SNR NSNRN =  (9)

Based on studies in a completely different field of research, 
that is the optimization of averaged heartbeats, there are 
techniques that allow an optimized representative data collective 
to be selected from a larger data collective of controls (Mühler and 
von Specht, 1999; DiPietroPaolo et  al., 2005). That way, the 
variability of any parameter from the control sample could 
be reduced. This reduction of variability includes inter-subject 
variability as well as scanner and environmental noise. The 

simplest technique is to use median and two-sided 80% percentile, 
more effective is the use of a categorized clustering (DiPietroPaolo 
et  al., 2005) (schematic illustration in Figure  1) to obtain a 
maximum SNR.

When applying the percentile criterion or a categorized clustering 
approach, Eq. 5 is replaced by

 
F F

pN
FM i

pN
i= + ∑1

∆
 

(10)

where p is a value between 0 and 1, representing the amount of 
averaged data. Then, also the system noise is altered:

 
L

pN
LM i

pN
i= ∑1

 
(11)

That way, as the mean value of the controls is approximately stable 
and the standard deviation of controls is reduced, higher effect sizes 
could be obtained. Thus, the following recommendation can be given: 
in case of a high variability in the controls` data (also caused by 
outliers), the appropriate reduction of the control sample toward a 
more representative one leads to an increase in the effect size. In a 
given study, the careful selection of a representative controls sample 
could be  more effective in terms of effect size optimization than 
merely increasing the number of controls by an unselective inclusion 
into the study.

The same considerations apply to the patient sample, with a high 
grade of inter-individual variability particularly in brain regions that 
are affected at variable degrees by the given NDD. Nevertheless, 
attention should be directed to careful patient selection based on the 
research question, also excluding patients with additional medical 
conditions if necessary.

That way, the noise and inter-individual variability are contained 
pN qNcontrols NDD+( ) times ( 0 1< <p q, ) and the effect size (Eq. 7) 

is increased. Furthermore, σNDD controls, (Eq. 7) is also reduced, that 
way increasing the effect size.

FIGURE 1

Schematic illustration of the SNR: (i) SNR is growing with N for the 
case of identical signals and stationary, normally distributed noise. (ii) 
For non-stationary noise (i.e., high inter-subject variability), SNR 
shows a maximum for selected signals (e.g., by categorized 
clustering).
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2.4.3 What can we gain from longitudinal scans 
of controls?

Longitudinal scans of controls (when age-related alterations can 
be neglected, e.g., scans within time intervals in the range of months) 
mainly provide the following information:

 i. estimation of system noise (Eq. 4).
 ii. estimation of inter-individual variability.
 iii. longitudinal alterations of controls (at the group level) – these 

should be negligible over such a short period.

Longitudinal alterations in controls should have no impact on the 
further analysis. The comparison of longitudinal alterations in patients 
and in controls is therefore dominated by system noise (i) and inter-
individual variability (ii). Therefore, it is recommended that efforts 
should be spent in accumulating a high amount of different controls 
at baseline (rather than longitudinal scans of controls), both to 
increase the SNR and to decrease the variability in signals of controls.

As a consequence, system noise (i) and inter-individual variability 
(ii) together could be used at the group level to act as a “detection 
threshold,” i.e., only longitudinal alterations in patients that exceed 
this threshold are defined as “detectable.”

3 Postprocessing-related 
contributions to results of DTI studies 
in NDD: options of optimization

3.1 DTI data analysis

Considering the effect of experimental noise on DTI metrics 
(Bastin et al., 1998; Seo et al., 2019), statistical analysis is provided 
by several software packages [e.g., Statistical Parametric Mapping 
(SPM) (Penny et  al., 2006), FMRIB Software Library (FSL) 
(Jenkinson et al., 2012), Tensor Imaging and Fiber Tracking (TIFT) 
(Müller et al., 2007)]. Analysis could be performed as unbiased 
whole brain-based voxelwise comparison of DTI metrics (Müller 
et al., 2014), or as hypothesis-guided region of interest (ROI) or 
tract of interest (TOI) analyses [tract-based spatial statistics (TBSS) 
(Smith et  al., 2006) or tractwise fractional anisotropy statistics 
(TFAS) (Mueller et al., 2007)]. Analyses pipelines combining several 
toolboxes have also been introduced (e.g., Cui et al., 2013; Soares 
et al., 2013).

The principles of microstructural analysis by DTI have been taken 
use of in many mono-and multicenter studies in NDD:

 − AD (e.g., Nir et al., 2015 – multicenter (FSL, TBSS); Douaud 
et al., 2011; Bourbon-Teles et al., 2023; Zhang and Zhan, 2023 – 
monocenter (TBSS); Chen Y. et al., 2023 – review; Takahashi 
et al., 2024 – NODDI).

 − ALS [e.g., Canu et al., 2011 – monocenter (in house); Corbo et al., 
2014 (TBSS); Basaia et al., 2019 – review; Kalra et al., 2020 – 
multicenter (TIFT); Turner et al., 2011; Filippi et al., 2015].

 − HD [e.g., Douaud et al., 2009; Gregory et al., 2015; Zhang J. et al., 
2018 – multicenter (in house, FSL)].

 − PD [e.g., Gorges et al., 2019 – multicenter (TIFT); Zhang and 
Burock, 2020 – review; Shih et al., 2023 – monocenter (FSL)].

The cross-sectional comparison of NDD patient groups to 
healthy controls aims at the definition of specific brain regions 
and the related patterns of alterations. Beyond this initial cross-
sectional research in specific NDDs, a “pseudo-longitudinal” 
analysis of DTI could be performed: cross-sectional results could 
also be  further analyzed by taking the disease status of the 
individuals as time-axis in order to map increasing alterations or 
spreading patterns during the course of ALS (Kassubek et  al., 
2014; Müller et al., 2023) or association patterns similar to the 
neuropathological Braak staging of AD (Wen et al., 2021) could 
be analyzed. Meta-analyses of DTI metrics in PD contribute to 
increasing the knowledge of PD pathophysiology by addressing 
the possibility of follow-up of the disease severity and associated 
brain structural modulations using in vivo imaging (Atkinson-
Clement et al., 2017).

3.2 Statistical analysis

In case of unequal sample sizes, the Welch-test should be used 
which is an adaption of Student’s t-test and is more reliable when the 
two samples have unequal variances. Welch’s t-test defines the 
statistic by

 
t NDD controls

NDD con rols
=

−µ µ
σ , t  

(12)

with σ σ σNDD controls NDD NDD controls controlsN N, / /2 2 2= +

Prior to statistical analysis, input data should be tested for normal 
distribution. In case of not normally distributed data, the samples 
should first be  checked with regard to their distribution and the 
contributing data (see subsection “Selection of subject samples for 
clinical trials”) and, if not normally distributed, non-parametric 
testing, e.g., Mann–Whitney U-test, should be applied.

3.3 Advantage of comparisons of 
longitudinal data with a control data set at 
baseline

Previous studies that analyzed longitudinal alterations in ALS 
patients (Zhang et al., 2016; Kassubek et al., 2018; Kalra et al., 2020; 
Shih et al., 2023) calculated the effect size of longitudinal differences 
in a given DTI metric by
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∆ ∆µ µNDD controls,  are the average longitudinal alterations in 
controls and in NDD patients at the group level. Note: in this approach 
a longitudinal time interval normalization is necessary (Kassubek 
et al., 2018).

Eq. 13 can be written as
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Now, the effect size of a two sample (NDD patients and controls) 
study is

( ) ( ) ( )

( )σ

=

 
 ∆ −∆ − ∆ + + ∆ +
 
 

∆

∑ ∑
s

,1

2 2

,

1 1
2 2

NDD control

long

N N

FUP BL i i i i
NDD controlsi i

NDD controls

d

G G F L F L
N N

 
(15)

That way the noise and inter-individual variability are contributing 
2 2N Ncontrols NDD+( ) times.

This approach also takes longitudinal alterations in controls into 
account, that way, mainly incorporating additional noise components 
due the information input of longitudinal scans of controls. Since the 
target is the detection of alterations in NDD patients (see subsection 
“What can we gain from longitudinal scans of controls?”), the alterations 
of inter-subject variability of controls ∅Fi  (as obtained from 
longitudinal scans of controls) is off target and would only lead to an 
additional noise component in the results.

An alternative approach (e.g., Cardenas-Blanco et al., 2016; Loane 
et al., 2016) is to analyze data without follow-up control visits; then, 
Eq. 15 simplifies to
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Then the noise and inter-individual variability are contained 
2NNDD times. This approach (ideally with a large control sample at 
baseline) shows a higher impact on the effect size as ∆σcontrols( ) =2 0 .

Thus

 
d dlong long, ,2 1>

 
(17)

However, this approach without follow-up of the controls is 
particularly suitable for cross-sectional comparisons of each visit 
to a (large) database of controls (Eq. 7) so that optimal effect size 
can be obtained at any visit. This is particularly suitable for a 3-D 
visualization of longitudinal alterations (unbiased whole brain-
based voxelwise analysis) or for the display of longitudinal 
changes in defined structures (e.g., Cardenas-Blanco et al., 2016). 
That means that higher effect sizes could be gained when data of 
each visit (of NDD patients) are compared to a (large and 
optimized) control sample at baseline.

3.4 Multiparametric statistics and 
application of artificial intelligence

Multiparametric or multimodal imaging has a high impact on the 
quality and reliability of results. The investigation of the relationship 
between WM alterations with further factors  (atrophy, vascular 
disease, or, e.g., amyloid burden) and clinical features increases the 
set of analyzed parameters and thus offers possibilities to apply 
methods of multiparametric analyses, e.g., in AD and Lewy body 
dementia (Donaghy et al., 2020). Recent multiparametric analyses 
showed no association between multiple biomarkers of cerebral 
microvascular function and WM connectivity (using DTI to quantify 
the number and organization of WM connections) in a large cohort 
of some thousand participants (Beran et al., 2024), however, further 
MRI techniques to assess blood–brain-barrier permeability or 
cerebrovascular reactivity and microvascular perfusion at the tissue 
level could be  combined with WM connectivity analysis  of  DTI 
(Beran et al., 2024). Multimodal association analyses of DTI with 
amyloid beta and tau positron emission tomography (PET) show 
potential to provide information relating to underlying tau deposition 
in AD (Weston et al., 2023).

DTI can be used to tract-wise map correlates of the sequential 
disease progression and, therefore, to assess disease stages, e.g., in 
ALS (Kassubek et al., 2014, 2018). A technical improvement in 
reliability of the analysis was reached by applying a multistage 
classifier based on Bayesian statistics (Behler et al., 2022b) with 
the significant advantage of Bayesian statistics for multimodal 
issues by incorporating prior knowledge about the patient into 
the algorithm.

A multiparametric set of variables (including the predictive value 
of microstructural integrity) could be used for association with clinical 
phenotype features like cognitive performance (Power et al., 2019), the 
improvement of diagnostic accuracy (Piersson et  al., 2021), or to 
assess the predictive value on survival (Agosta et al., 2019; Kuan et al., 
2023) in NDD.

The predictive value of microstructural integrity has been used by 
artificial intelligence (AI) as machine learning (ML) tools; especially 
convolutional neural networks (CNN), support vector machines 
(SVM), and random Forrest models (RFM) successfully contributed 
to neuroimaging studies in NDDs.

3.4.1 Convolutional neural networks
Convolutional neural networks consists of neurons in different 

layers, where the restriction of a set is defined by the number of 
neurons in the output layer. The restriction is primarily based on the 
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weights and connections of individual neurons and their 
interdependencies (Le Cun et  al., 2015). Neurons are essentially 
functions, often similar to XOR or functions and have a weight that 
can be  interpreted as a threshold potential to be  crossed by the 
input values.

Multi-Kernel CNN can accurately identify AD and mild cognitive 
impairment (MCI) features from DTI data, and the generated fiber 
probability map can represent the risk status of AD and MCI (Deng 
et al., 2023). A two-layer stacking ensemble learning framework with 
fusing multimodal features has been developed for accurately 
identifying early PD from healthy controls by combining several AI 
algorithms. This model performed an accuracy of 96.88%, a precision 
of 100% (Yang et al., 2021a).

3.4.2 Support vector machines
In SVMs, a set of parameters is divided into separate groups by a 

hyperplane (Noble, 2006). This hyperplane is generated by vectors, 
derived by differentiating parameters associated with a clinical target. 
The hyperplane is optimized as a decision boundary in a 
multidimensional space through an AI training process.

Discrimination of NDD patients from controls could 
be  performed by the application of an SVM based on ROI-or 
TOI-based FA values of previously defined NDD-associated brain 
structures (AD – Zhang et al., 2011; Houria et al., 2022; PD – Haller 
et al., 2012; Huang et al., 2023; ALS – Chen et al., 2020; Kocar et al., 
2021; Münch et al., 2022).

3.4.3 Random Forrest models
The core of the RFM is the creation of multiple decision trees 

during the training phase. Each tree is constructed using a random 
subset of the training data and features, following the principle of 
bootstrapping (Breiman, 2001); the algorithm incorporates 
randomness in two primary aspects:

(i) Data Sampling (Bootstrap Aggregating or Bagging): Each 
decision tree is trained on a randomly sampled subset of the data, 
known as a bootstrap sample. This sampling ensures diversity among 
the trees. (ii) Feature Selection: At each split in a tree, a random subset 
of features is considered. This randomness in feature helps to reduce 
variance between trees, thereby increasing the overall robustness of 
the model.

Successful applications of RFM to DTI data from NDD patients 
were performed in AD (Yang J. et al., 2022), PD (Chen B. et al., 2023), 
and ALS (Sarica et al., 2017), each discriminating NDD from controls 
with high accuracy.

3.5 Harmonization of data in multicenter 
trials

Especially in multicenter trials, different factors may 
contribute to the variability of DTI data of controls and NDD 
patients. Although the precise influence of each source of 
variation could not be  delineated, investigating group FA 
differences between patients and controls on systematic between-
center differences should be investigated prior to pooling across 
centers. Furthermore, center-specific sources of variability on DTI 
metrics, e.g., scanner-specific variability, environmental noise and 

specific factors such as scanning time, might be present in single 
center studies but will only slightly influence comparisons at the 
group level (Müller et al., 2013). Although multicenter studies 
could allow a direct merging of DTI metrics across centers (Müller 
et al., 2013), especially in case of different scan protocols, merging 
of DTI metrics requires the application of a strategy to regress out 
confounders such as field strength, echo time, or number of 
gradient directions (Müller et  al., 2016). Especially, FA is 
influenced by the voxelsize (Oouchi et al., 2007) and thus needs 
harmonization in case of different scan protocols in different 
centers. Harmonization could be  performed by 3-D voxelwise 
linear correction matrices (Rosskopf et al., 2015); recently, a post-
processing technique based on rotation invariant spherical 
harmonics features was introduced to mitigate cross-scanner 
differences in DTI metrics (De Luca et al., 2022).

The development of a Domain Shift Analyzer for MRI (DSMRI) 
which was designed explicitly for multicenter MRI datasets (Kushol 
et al., 2023a,b) allows for the identification of NDD as demonstrated 
for ALS cases (Kushol et al., 2023c), thus offering the possibility to 
investigate neuroimaging modalities like functional MRI (fMRI) and 
DTI within a similar environment.

4 Discussion

4.1 Summary of recommendations for a 
standardized DTI scan protocol and DTI 
analysis

In addition to the hardware and software already tailored to 
optimize the SNR of individual recordings by the manufacturer, 
significant improvements can be achieved in the selection of study 
participants, the design of the studies, the application of the DTI 
protocols and the data analysis in pre-and postprocessing with regard 
to the effect size and thus the sample size in longitudinal clinical 
studies/trials (Figure 2).

This summary of recommendations was conducted to set up a 
framework for a standardized DTI scanning and DTI analysis protocol 
in studies in NDD (Figure 2):

 i. The healthy control sample measured at baseline should 
be  representative, i.e., controls should be  carefully selected 
(age-and gender-matched as well as similar level of education 
and living conditions) and there should be no hesitation in 
excluding measurements of poor quality from the control 
sample. Under the condition of outliers or a high variability in 
controls data, the reduction of the control sample (to a more 
representative one) leads to an increase in the effect size.

 ii. Simulation studies showed that the statistical power of 
longitudinal DTI studies in NDD can be substantially increased 
by multiple scans of the same subject per session, especially in 
limited sample sizes. Such optimized study protocols can help 
to establish DTI metrics (like FA) as an imaging biomarker in 
NDD, especially to monitor disease progression in the 
natural history.

 iii. For longitudinal studies in NDD, one baseline and two 
follow-up visits were advised (especially for diseases with a 
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rapidly progressive disease course) with the individual schedule 
for NDD patients that the timing of follow-up 1 does not bisect 
the entire observation period.

 iv. For longitudinal analysis, efforts should be spent to an as large 
as possible control data set at baseline to obtain higher effect 
sizes by comparison of data of each visit (of NDD patients) to 
a large and optimized control sample at baseline.

 v. A standardized DTI protocol might be extended by additional 
b-values of up to 2000 s/mm2 to enable NODDI (a multishell 
diffusion technique) to enable analysis of further types of 
microstructural environments. Analysis possibilities of 
NODDI have been demonstrated to provide additional value 
for evaluation of NDD (Andica et al., 2020).

 vi. The inclusion of ML methods in the analysis cascade allows for 
improved DTI-based analysis of WM integrity and its 
affectations by NDD (also in a multimodal setting).

For neuroimaging studies as a part of clinical therapeutic 
trials in NDD, general clinical recommendations should 
be considered: first, to obtain a homogeneous study population, 
i.e., the disease progression rate and also the genetic phenotyping 
of NDD patients should be part of the inclusion/exclusion criteria. 
Second, primary endpoint and treatment duration must 
be  matched to the study population, especially for slowly 
progressive NDD patients.

4.2 Effects of data collection on results 
quality

The potential of DTI-based metrics as a non-invasive 
progression marker during the disease progression in NDD is 
influenced by sample size, scheduling of baseline and follow-up 
sessions, and measurement uncertainty on the statistical power. 
Especially for measurements with a limited SNR, for example, due 
to subject-related factors (Müller et al., 2013), the application of the 
recommendations of this review will potentially strengthen the 
reliability of the FA values, in line with SNR improvement by signal-
averaging during individual scans (Farrell et al., 2007; Seo et al., 
2019). Vice versa, the increased statistical power of a DTI protocol 
means that lower sample sizes might suffice to measure small effects 
and/or effects after a short time, respectively (Behler et al., 2022a). 
Another critical factor is the composition of the groups and the 
selection of the scans to be  included in the analysis. Prior to 
analysis, the restriction to carefully selected patients and controls 
saves costs and could increase effect sizes, that way also reducing 
patient burden and increasing subject motivation. It has to be added 
that data collection (selection of participants) as well as data quality 
have to be optimized during the process of data acquisition because 
subsequent ex post facto correction for age, different study protocols 
and quality control of movements and other artifacts can only 
partially correct for such deviations and could, thus, never reach the 

FIGURE 2

Schematic illustration of optimization options for DTI analysis to establish DTI as a biomarker in NDD. The selection of NDD patients should 
be optimized to the aim of the study and a representative and matched control sample should be collected. Extending the DTI protocol to a neurite 
orientation dispersion and density imaging (NODDI) sequence, the repetition of scans at one visit, and an optimized schedule substantially improve the 
results. Quality control and parameter comparison could lead to drop-outs with the goal to improve the SNR in a study. After (center-, scanner-or 
protocol-) harmonization, AI/ML methods (with inclusion of additional multimodal analysis parameters) potentially further improve the outcome in a 
given study. AI, artificial intelligence; CNN, convolutional neural network; FA, fractional anisotropy; GD, gradient direction; ML, machine learning; MRI, 
magnetic resonance imaging; NDD, neurodegenerative disease; RFM, random forest method; ROI, region of interest; SVM, support vector machine; 
TOI, tract of interest; WBSS, whole brain-based spatial statistics.
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data quality of optimized (standardized) recordings and 
subject selections.

The technical aspects of planning medical trials listed here can 
generally be implemented with little effort, but when implemented in 
full or in part, they have the potential for a significant improvement 
in results with a simultaneous potential reduction in costs.

4.3 DTI as a tool to distinguish between 
different NDD

Based on characteristic alteration patterns of cross-sectional 
comparison of NDD patients to controls, DTI appears to be useful at 
distinguishing frontotemporal dementia (FTD) from patients with 
AD, also at the individual level (Grossman, 2010). DTI has shown to 
be able to classify subjects diagnosed with PD, atypical parkinsonism, 
and essential tremor and to distinguish them from control subjects 
(Prodoehl et al., 2013). DTI indicators of white matter impairment 
have the potential to emerge as useful clinical tools for differentiating 
diagnostic groups in studies of AD, MCI, and normal aging (Nir et al., 
2013, 2015). ALS and FTD encompass a clinical, pathological and 
genetic continuum, and ALS could be mainly distinguished from ALS 
with frontotemporal dementia (ALS-FTD) and behavioral variant 
FTD by different white matter microstructure alteration pattern, 
especially corticospinal tract degeneration (Lillo et al., 2012).

4.4 Application of machine learning

DTI has been used to study the effects of NDD on neural pathways 
which may lead to more reliable and early diagnosis of these diseases 
as well as a better understanding of how they affect the brain. In AD, 
ML methods were applied for defining DTI metrics (Konukoglu et al., 
2016; Lombardi et al., 2020; Xu et al., 2021; Agostinho et al., 2022) to 
characterize MCI (Velazquez and Lee, 2022; Zhou et  al., 2022a,b; 
Cheng et al., 2023) and to predict AD early (Savarraj et al., 2022). The 
characterization of MCI and cognitive impairment in PD (Xu et al., 
2021; Yang Y. et al., 2022; Chen B. et al., 2023; Huang et al., 2023) or 
the investigation of progression in PD (Prasuhn et al., 2020; Yang 
et  al., 2021a,b) has also been addressed by the application of ML 
methods. Furthermore, ML was applied to the differentiation of 
parkinsonian syndromes (Haller et al., 2012; Du et al., 2017; Chougar 
et al., 2021; Talai et al., 2021). Since first applications of ML methods 
to ALS (Welsh et al., 2013; Sarica et al., 2017), ML was used to improve 
diagnostic accuracy (Kocar et al., 2021; Behler et al., 2023) and clinical 
associations (Li et al., 2021). For the evaluation of imaging biomarkers 
in HD, ML methods have been applied for many years (Klöppel et al., 
2008; Rizk-Jackson et al., 2011; Hu B. et al., 2023). Thus, ML and AI 
are exponentially improving medical imaging and diagnosis: by ML 
techniques (especially SVM or RFM), the combination of 
multiparametric/multimodal imaging data allow for a 
multidimensional analysis beyond (simple) association analysis (Tae 
et al., 2018; Weston et al., 2023; Takahashi et al., 2024). Moreover, 
CNNs might enable estimations of the risk status, and thus, prediction 
of the disease course including survival in NDDs (Agosta et al., 2019; 
Kuan et al., 2023). Altogether, it seems safe to expect that ML methods 

will help to define the future of DTI-based analysis of WM integrity 
in the brain and its affectations by NDD.

4.5 Consideration and limitations of the 
DTI in neurodegenerative diseases

Technical considerations are presented that improve the 
information contents in DTI recordings and subsequent statistical 
analysis in clinical DTI-based neuroimaging trials in NDD. In 
summary, this study and the included recommendations potentially 
might enhance the role of DTI as a biomarker in NDD by standardized 
scan protocols and analysis cascades.

Especially AI-based techniques improved the performance of 
multimodal MRI including DTI in survival prediction and the 
prognostic value in NDD (Agosta et al., 2019). Furthermore, AI-aided 
DTI analysis provides high-precision automatic diagnosis and 
simultaneously output feature probability maps to provide clinical 
auxiliary diagnosis in NDD (Deng et al., 2023). Thus, there is the 
urgent need for the translation of advanced brain MRI techniques into 
clinical practice, e.g., for an assessment of prognostic factors and a 
stratification of patients in the design of pharmacological trials 
(Agosta et al., 2019). That way, the predictive value of microstructural 
integrity by AI-based algorithms, especially in a multiparametric or 
multimodal setting, could be  developed as a non-invasive in vivo 
biomarker in NDD.
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