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Gender e�ect in
human–machine
communication: a
neurophysiological study

Yi Ding, Ran Guo*, Wei Lyu* and Wengang Zhang

School of Economics and Management, Anhui Polytechnic University, Wuhu, China

Purpose: This study aimed to investigate the neural mechanism by which virtual

chatbots’ gender might influence users’ usage intention and gender di�erences

in human–machine communication.

Approach: Event-related potentials (ERPs) and subjective questionnaire

methods were used to explore the usage intention of virtual chatbots, and

statistical analysis was conducted through repeated measures ANOVA.

Results/findings: The findings of ERPs revealed that female virtual chatbots,

compared to male virtual chatbots, evoked a larger amplitude of P100 and

P200, implying a greater allocation of attentional resources toward female virtual

chatbots. Considering participants’ gender, the gender factors of virtual chatbots

continued to influence N100, P100, and P200. Specifically, among female

participants, female virtual chatbots induced a larger P100 and P200 amplitude

than male virtual chatbots, indicating that female participants exhibited more

attentional resources and positive emotions toward same-gender chatbots.

Conversely, among male participants, male virtual chatbots induced a larger

N100 amplitude than female virtual chatbots, indicating that male participants

allocated more attentional resources toward male virtual chatbots. The results

of the subjective questionnaire showed that regardless of participants’ gender,

users have a larger usage intention toward female virtual chatbots than male

virtual chatbots.

Value: Our findings could provide designers with neurophysiological insights

into designing better virtual chatbots that cater to users’ psychological needs.
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1 Introduction

Virtual chatbots, which are machine conversation systems equipped with chat

interfaces, facilitate natural language interactions between humans and machines (Shawar

and Atwell, 2005). With the application of more advanced and intelligent interfaces,

chatbots enable users to engage in real-time communication and interaction with service

providers (Xu et al., 2020; Adam et al., 2021). Since the invention of the world’s first chatbot,

ELIZA, by Joseph Weizenbaum in the 1960’s, chatbots have revolutionized our modes

of communication and found wide-ranging applications in fields, such as healthcare, e-

commerce, retail, insurance, and customer service (Kasilingam, 2020; Mogaji et al., 2021).

In the wake of the COVID-19 pandemic, the emergence of virtual chatbots has aided the

logistics and supply chain services industry inmaintaining communication with customers
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and providing uninterrupted services (Viola et al., 2021). This

development has also propelled significant growth in the global

virtual chatbot market. According to a report by Statista (2021), the

market value of virtual chatbots is projected to reach $6.83 billion.

The constituent elements of a virtual chatbot include human

figures (i.e., visual clues), names (i.e., identity cues), and chat

dialogues (i.e., conversation clues; Go and Sundar, 2019). Among

these, visual clues can affect consumers’ intentions and decisions

(Filieri et al., 2021). Particularly, gender, as part of the visual cues of

virtual chatbots, significantly influences users’ initial impressions,

attitudes, and willingness to interact with chatbots (Calvo-Barajas

et al., 2020; Zogaj et al., 2023). However, the role of users’

own gender in this perception and interaction has also garnered

attention. Studies have indicated that the design and presentation

of gender can evoke emotional responses from users, thereby

influencing their usage experience and satisfaction. Moreover,

users’ own gender can also influence their responses to gender cues

presented by chatbots.

Therefore, this study aims to explore not only the impact of the

presentation of gender on the design of virtual chatbots but also its

interplay with users’ gender. We can provide valuable insights into

designingmore humanized and effective chatbots by understanding

the role of gender in human–machine communications.

1.1 The e�ects of virtual chatbots’ gender

Gender is a central dimension of individuals’ self-concept

and identity, making it a key human attribute that significantly

influences how people form connections with others (Freimuth

and Hornstein, 1982). Gender-related social cues can minimize the

need for extra information-seeking during interactions (Tay et al.,

2014). The gender of robots fosters a sense of shared understanding

between users and robots, leading to more natural and intuitive

human–robot interactions (Powers et al., 2005; Eyssel and Hegel,

2012). Some studies have shown that the gender of chatbots may

affect consumer behavior (Seo, 2022; Zogaj et al., 2023).

When exploring the role of gender in human–machine

interaction, one aspect that cannot be overlooked is gender

stereotypes. Individuals generally believe that women are more

suitable for taking care of children or older adults and that

male surgeons are more capable than female surgeons (Eagly,

2013; Ashton-James et al., 2019). This phenomenon reflects the

existence of gender stereotypes. In reality, gender stereotypes are

an enduring concept that emphasizes social consequences arising

from gender cues (Tay et al., 2014). The study by Master et al.

(2021) demonstrated gender stereotypes, indicating that girls are

less interested than boys in computer science and engineering.

These stereotypes can even extend to non-human agents (Tay et al.,

2014). Apple’s Siri and Amazon’s Alexa typically use female voices

(Chin and Robison, 2023), and Samsung’s Sam is presented with a

female avatar. Abdulquadri et al.’s (2021) also found that chatbots in

emerging market banks are frequently branded and associated with

female gender identification. On the contrary, Behrens et al. (2018)

conducted a limited study, which indicated a tendency to trust male

robots more than female robots. Likewise, Ahn et al. (2022) found

that participants give higher competence scores to male rather than

female AI agents. After reviewing existing studies on the effects

of gender on human–machine communication, the perception of

robots’ gender remains controversial. Thus, this study aims to

further explore how the gender of virtual chatbots influences users’

usage intention.

This research not only discusses the impact of gender on virtual

robots but also explores the influence of human gender differences

on human–machine communication. Previous research has shown

that human gender differences can influence perceptual experiences

of things (Gefen and Straub, 1997; Qu and Guo, 2019; Denden

et al., 2021). For instance, in a study by Nissen and Krampe (2021),

an examination was carried out regarding how users consciously

and unconsciously (neural) evaluate e-commerce websites. They

found that unconscious effects influence gender-related differences

in the perception of e-commerce websites. Huang and Mou (2021)

discovered that, within current online travel agency websites,

women exhibit more usability requirements than men. Relevant

research frequently cites the similarity-attraction paradigm, which

suggests that as the similarity to a target increases (i.e., similar

attitudes, personality traits, or other attributes), the target’s

attractiveness also increases (Byrne, 1997). This study explores how

men and women treat the gender of virtual chatbots in human–

machine interaction and also delves into the gender preferences of

virtual chatbots among different gender users.

1.2 Event-related potentials’ method of
revealing usage intentions of virtual
chatbots’ gender

Currently, research on the relationship between the gender

of virtual chatbots and users’ usage intentions is limited. Most

studies evaluating users’ intentions regarding the gender of virtual

chatbots rely on questionnaires and interviews, which may not

completely capture users’ true emotions and are susceptible to

various influencing factors. The intention to use, as a latent

psychological activity, is difficult to articulate verbally (Ding et al.,

2016), while cognition and emotion, as products of brain neural

activity (Kim et al., 2022), play an important role in usage

intentions (Kang et al., 2015). Therefore, event-related potential

(ERP) methods are needed to measure users’ intrinsic intentions,

including unconscious formations.

ERPs, arising from postsynaptic potentials during

neurotransmission, travel passively through the brain

and skull to the scalp, thereby contributing to a broader

electroencephalogram (EEG; Luck et al., 2000). The EEG can

measure the neurophysiological data of users experiencing the

information system objectively and in real time (Liu et al., 2022).

ERPs offer insights into participants’ brain responses to certain

cognitive events and, ultimately, into their psychological activities

(Luck, 2014; Sun et al., 2022). Therefore, they can be employed to

investigate neural activities related to virtual chatbots. Research

has shown that some ERP components can effectively increase

individuals’ attentional resources and emotional arousal (Ding

et al., 2016; Liu et al., 2022). Current ERP research on attention is

primarily focused on three key components: N100, P100, and P200

(Luck et al., 2000; Ding et al., 2016; Cao et al., 2021).
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1.2.1 The N100 component
The N100 component, as a crucial constituent of ERPs, peaks

at∼100ms post-stimulus presentation and manifests as a negative-

going potential (Li et al., 2022). It is related not only to physical

features in the reflection of people’s attention allocation at an early

stage (Luck et al., 2000) but also to attractiveness in the reflection

of the capacity of stimuli to attract and maintain the participant’s

attention (Carretié et al., 2004). Stimuli perceived to have high

attractiveness evoked an increased amplitude of N100 (Righi et al.,

2014). Many previous studies have reported that N100 reflects

attention allocation and attractiveness (Luck et al., 2000; Li et al.,

2022; Liu et al., 2022). For example, Liu et al. investigated the impact

of users’ first impressions of websites on their subsequent behaviors

and attitudes, utilizing ERP techniques to analyze users’ evaluative

processing. The study found that webpages higher in complexity

and order evoked larger N100 amplitudes than those that were

lower in complexity and order (Liu et al., 2022). Guo et al. examined

visual attention toward humanoid robot appearances and observed

that users devoted greater attentional resources to their preferred

robots than to non-preferred ones (Guo et al., 2022).

1.2.2 The P100 component
The P100 component (peaking around 90–100ms post-

stimulus presentation), as an early ERP, exhibits sensitivity to

attention allocation (Liu et al., 2022). When more attention is

directed to a visual stimulus, the amplitude of the P100 component

increases, providing a direct indicator of attention (Smith et al.,

2003), and it is typically related to physical stimulus characteristics

(Perri et al., 2019). The role of P100 in reflecting attention capture

has been widely reported in previous research (Perri et al., 2019;

Yen and Chiang, 2021). Yen and Chiang used ERPs to explore the

relationship between trust and purchase intention in the context

of chatbots (Yen and Chiang, 2021). In addition, in their study on

the attention allocated to app icons, Liu et al. utilized the early

P100 component and found that complex icons elicited a higher

amplitude of P100 than simple icons (Liu et al., 2024).

1.2.3 The P200 component
P200, another positive-going potential that peaks around

200ms post-stimulus presentation, is associated with the initial

exogenous “attention capture” of the affective content of a stimulus

(Carretié, 2014). Stimuli arousing positive or negative feelings

elicited an increased P200 amplitude (Carretié et al., 2004; Liu et al.,

2022). As the most conspicuous and widely used “attention” ERP,

P200 was found in a number of attention-related studies (Carretié

et al., 2004; Liu et al., 2022; Wang et al., 2023). For instance,

Wang et al. (2023) used ERP techniques to explore consumers’

emotional experiences and consumer trust when interacting with

chatbots (vs. humans). The results revealed that the amplitudes

of P200 were larger for chatbots than for humans. Guo et al.

(2022) utilized 20 humanoid robot pictures as experiment stimuli

to investigate users’ preference for the appearance of humanoid

robots. The research indicated that, in the early stage, the preferred

humanoid robot appearances elicited larger P200 amplitudes than

the non-preferred appearances.

Existing literature provides evidence for effectively applying

ERPs, particularly N100, P100, and P200, in the research

of the neural time course of attention to different stimuli.

Hence, this study will first examine differences in the allocation

of attentional resources among participants toward virtual

chatbots of different genders. Second, it will investigate how

the gender of the participants themselves contributes to these

differences in attentional resources allocated to virtual chatbots of

different genders.

1.3 Research hypotheses

Female roles in the service domain are more popular and

predominant (Seo, 2022). However, the impact of gender on

users’ attention and willingness to use virtual service agents in

human–machine communication remains unclear. The literature

on gender stereotypes suggests that gender can serve as a direct

categorization cue, influencing users’ perceptions during service

encounters (Macrae and Martin, 2007). Gendered service robots

can evoke emotional responses such as attractiveness and likability

(Macrae and Martin, 2007). The attractiveness bias effect suggests

that perceived attractiveness tends to elicit positive evaluations due

to attractiveness biases. Moreover, this effect is amplified when

service roles are designated as female (Hosoda et al., 2003). Indeed,

the research findings by Stroessner and Benitez on gendered

humanoid robots support this notion, which revealed that female

humanoid robots elicited more positive evaluations and a greater

desire for engagement among consumers (Stroessner and Benitez,

2019). Therefore, the research hypothesizes the following:

H1: Participants exhibit a higher willingness to use female

virtual chatbots than male virtual chatbots; additionally, female

virtual chatbots elicit greater N100, P100, and P200 amplitudes in

the participants than male virtual chatbots.

Given the influence of gender congruence on interpersonal

relationships in fields such as human resource management

and organizational behavior (Crijns et al., 2017), the similarity-

attraction paradigm (Byrne, 1997) posits that attraction toward

a target increases with greater similarity to the target, such

as similarity in attitudes, personality traits, or other attributes.

Individuals find it easier to engage with robots when they possess

gender and personality characteristics (Vecchio and Bullis, 2001).

In the field of human–machine communication, existing research

(Tay et al., 2014) suggests that individuals are more likely to

accept robots that align with their own gender and personality

traits. This implies that as similarity increases, intention to use and

accept robots in social contexts also increases. Therefore, this study

hypothesizes the following:

H2: Participants may be more inclined to use virtual chatbots

of the same gender. Specifically, for female participants, there

is a greater inclination to use female virtual chatbots than

male virtual chatbots; conversely, for male participants, there is

a greater inclination to use male virtual chatbots than female

virtual chatbots.

Gender congruence may influence participants’ attention.

Previous research has shown that female participants are more

likely to accept female robots than male participants; male
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participants show a higher acceptance level for male robots than

for female robots (Nass et al., 1997). This finding aligns with

the similarity-attraction paradigm (Byrne, 1997) and suggests that

gender congruence can lead to users’ positive perceptions of

robots, psychological closeness, and potentially further increase

attention allocation to robots (Eyssel et al., 2012). Given that

attention-related EEG indicators such as N100, P100, and P200

can reflect users’ attention allocation, this study hypothesizes

the following:

H3: For female participants, female virtual chatbots evoke

larger N100, P100, and P200 amplitudes than male virtual

chatbots; conversely, for male participants, male virtual chatbots

evoked larger N100, P100, and P200 amplitudes than female

virtual chatbots.

2 Research measures

2.1 Participants

A prior calculation was conducted to determine the required

sample size using G∗Power3.1 (Erdfelder et al., 1996): a minimum

sample size of 12 was needed to detect a large effect size (f

= 0.4) with a recommended statistical power β of 95% and

an error probability α of 0.05. For the ERP experiment, we

recruited 33 participants (16 female and 17 male participants)

via WeChat, excluding two female participants due to power

failure. Hence, the final analysis covered 31 participants (17

male and 14 female participants). They were all students from

AHPU, of Han ethnicity, aged 19–28 years (M= 21.58, SD =

2.28); furthermore, they had normal/corrected vision, were right-

handed, and remained medication-free for a week. Before the

experiment, they ensured that they had sufficient sleep, had no

neurological/mental disorders, and signed an informed consent

form. They received RMB 70 as remuneration. The study was

approved by the Ethics Committee of the Institute of Neuroscience

and Cognitive Psychology at AHPU.

2.2 Stimuli

A stimulus set consisting of six non-target stimulus images

and two images of flowers as target pictures was assembled.

The non-target stimulus images were sourced from the Vision

China website (https://www.vcg.com), with three images featuring

men and three images featuring women. We utilized Adobe

Photoshop 2018 outlining and contouring tools to accentuate

the lines and features of the characters in the images to achieve

a humanoid robot effect. Subsequently, we adjusted the color,

contrast, brightness, and saturation of the images in Photoshop

to accentuate the mechanical feel. Next, while processing the

characters’ facial features, we conducted detailed refinement to

make them appear more robot-like. Finally, we compared and fine-

tuned the processed images with the current highly humanoid

robots, Geminoid H1-4 and Kodomoroid, to make them appear

closer to the target effect. All images were designed to have

dimensions of 1920∗1150 pixels.

2.3 Procedure

This experiment was conducted in a professional ERP

laboratory divided into a preparation room and an observation

control room (Figure 1). The preparation room provided a suitable

environment with sound insulation, suitable light, temperature

and humidity, and minimal external interference. The observation

control room allowed the experimenter to control the experiment

process and observe any abnormal conditions in the participants.

During the preparation phase, participants were instructed to wash

and blow-dry their hair, which aimed to reduce impedance between

the electrode and the scalp to ensure the accuracy and reliability

of the EEG signal acquisition. They then entered the preparation

room and sat on a chair ∼80 cm away from the computer screen,

with their gaze fixed on the center of the screen. Following the

international 10–20 system principles, the Cz electrode site was

determined by the intersection of the line connecting bilateral

earlobes and the line from the nasion to the inion. Subsequently,

an appropriate electrode cap was worn. After the preparation was

completed, the participants were informed about the instructions

of the experiment.

At the beginning of the experiment, participants were informed

that it was a scenario-based task. The scenario was as follows:

Assuming your good friend’s birthday is approaching, you want

to buy a short-sleeved shirt as a birthday gift. However, you do

not know your friend’s clothing size; you only know their height

and weight. Therefore, you open Taobao and browse a short-

sleeved shirt design that you like. To obtain sizing information,

you decide to consult with two types of virtual chatbots, William or

Lily. Lily, a female virtual chatbot, exhibits pronounced feminine

facial characteristics that mimic human features, while William, a

male counterpart, possesses distinct male facial traits that emulate

those of a real human. In the following questionnaire and EEG

experiment, all male virtual chatbots are named William, and all

female virtual chatbots are named Lily.

The EEG experiment was programmed and demonstrated by

E-prime 3.0. The experiment utilized an oddball paradigm, and the

stimulus materials included a virtual chatbot, a non-target stimulus

(180 times), and a flower target stimulus (60 times). The stimuli

were presented randomly, with each stimulus presented 30 times

for a duration of 1,200ms, with a “+” fixation point shown in the

center of the screen for 500ms between the two stimuli. There

was one rest period in the middle of the experiment (Figure 2).

Participants were instructed to remember the occurrence of all the

target stimuli.

At the end of the experiment, participants were asked to rate

their intention to use the virtual chatbots for six non-target stimuli.

The usage intention was evaluated using three questions based on

Agarwal and Karahanna’s (2000) work: “I plan to use the virtual

chatbots,” “I intend to continue using the virtual chatbots,” and

“I expect to use the virtual chatbots in the future.” The usage

intention was rated on a 5-point Likert scale, with “1” meaning

strongly disagree and “5” meaning strongly agree. After filling

out the scale, the entire experiment concluded. The overall task

required ∼40min to complete, comprising a preparatory phase of

25min,∼10min for the ERP task, and 5min for the completion of

the questionnaire.
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FIGURE 1

ERP laboratory environment.

FIGURE 2

Flowchart for the ERP experiment with virtual chatbots.

2.4 EEG recording and analysis

EEG data were recorded using a Brain actiCHamp amplifier

(Brain Products GmbH, Munich, Germany) and a cap with 64

g/AgCl electrodes following the international 10–20 system. Cz

was used as the reference electrode. The EEG data were bandpass

filtered with a range of 0.05–70Hz and continuously sampled at

1,000Hz. The impedance between the scalp and electrodes was kept

below 5 KΩ .

Offline EEG data were analyzed using EEGLAB (version

2019.0), an open-source toolbox developed by Delorme andMakeig

(2004). The reference electrode Cz was replaced with TP9 and

TP10, and the sampling rate was reduced to 500Hz. The bandpass

filter was 0.1–30Hz. Eye movement artifacts, muscle artifacts,

and other artifacts were manually removed using independent

component analysis. EEG signal segments exceeding 75 µV were

automatically removed, and bad channels identified visually were

rejected. The rejected channels were then reinserted using a

spherical interpolation method. Then, EEG signals were computed

using EEG epochs that started from 200ms before the onset of

the target stimulus to 1,000ms after the stimulus’ onset. Moreover,

each epoch was baseline corrected using the signal during 200ms,

which preceded the onset of the stimulus. Finally, EEG signal values

related to the gender of the virtual chatbots were superimposed

and averaged to generate grand-averaged ERP waveforms and

scalp topographies.

2.5 Statistical analysis

Mean amplitude and usage intention values for ERPs and

subjective evaluation data were subjected to repeated measures

ANOVA. A 2 (virtual chatbot gender: male and female) ×

3 (brain region: central-parietal, parietal, parietal-occipital, and

occipital) repeated measures ANOVA was utilized in this study.

Additionally, to investigate the influence of participants’ gender

on ERPs and usage intention data, we analyzed male/female
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FIGURE 3

The grand-averaged waveform for virtual chatbots. (A) Shows the waveform without distinguishing the participants, (B) shows the waveform for

female participants, and (C) shows the waveform for male participants.
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FIGURE 4

The scalp topographic maps of virtual chatbots. (A) Shows the scalp topographic maps without distinguishing the participants, (B) shows the scalp

topographic maps for female participants, and (C) shows the scalp topographic maps for male participants.

participants on two factors: virtual chatbot gender and brain

sites, respectively, using repeated measures ANOVA for the

mean amplitude and usage intention. We used the Greenhouse–

Geisser correction for any violation of the sphericity assumption

(uncorrected df and corrected p-values were reported). The alpha

level was fixed at 0.05. All statistical analyses were conducted

using SPSS22.0.

3 Result

3.1 Subjective questionnaire

The reliability and validity of the scale were tested using

SPSS 22.0. The results showed that Cronbach’s alpha was 0.855,

indicating very good internal consistency. The scale’s validity

was assessed by performing exploratory factor analysis. After the

extraction of factors by using Promax rotation, the Kaiser–Meyer–

Olkin (KMO) value (KMO = 0.608) was obtained. Bartlett’s test of

sphericity was extremely significant, suggesting the suitability of the

data for factorization.

A repeated measures ANOVA was conducted to test for

differences in usage intention among virtual chatbots and

participants’ gender; the results suggested a significant main effect

of virtual chatbots’ gender [F(1.000,32.000) = 14.827, p = 0.001,

partial-η2 = 0.317]. There was a significant main effect of virtual

chatbots’ gender for female participants [F(1.000,15.000) = 7.737, p =

0.014, partial-η2 = 0.340]. The main effect of virtual chatbots was

significant for male participants [F(1.000,16.000) = 7.101, p = 0.017,

partial-η2 = 0.307]. The pair comparison results revealed that

female virtual chatbots evoked larger user usage intentions than

male virtual chatbots [participants: p = 0.001; female participants:

p= 0.014; male participants: p= 0.017].

3.2 Electrophysiology

Based on grand-averaged ERP waveforms (Figure 3), scalp

topographic maps (Figure 4), and extant studies (Ding et al., 2016;

Guo et al., 2022), we chose the central-parietal (CP1, CPZ, and

CP2), parietal (P3, PZ, and P4), parietal-occipital (PO3, POZ, and

PO4), and occipital (O1, OZ, and O2) sites for subsequent ERP
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FIGURE 5

Mean amplitudes of N100 in the central-parietal area. “***”

represents P ≤ 0.001; “**” represents 0.001 ≤ P ≤ 0.01; “*”

represents 0.01 ≤ P ≤ 0.05; and “ns” represents non-significance.

analysis. As shown in Figure 3, we selected the P100 component

in the time window of 90–105ms in the parietal, parietal-occipital,

and occipital sites. We chose the P200 component in the time

window of 170–270ms in the parietal, parietal-occipital, and

occipital sites. We selected the N100 component in the time

window of 100–110ms in the central parietal site. The 12 electrodes

were divided into four subgroups: a central-parietal group (CP1,

CPZ, and CP2), a parietal group (P3, PZ, and P4), a parietal-

occipital group (PO3, POZ, and PO4), and an occipital group (O1,

OZ, and O2).

3.2.1 N100
Participants engaging with two different types of virtual

chatbots exhibited varying perceptions of the neural activities

attributed to the chatbots. The main effect of the brain sites

was significant [central-parietal: F(1.383,42.869) = 9.437, p = 0.001,

partial- η2 = 0.254]. There was no significant main effect of

virtual chatbots’ gender [central-parietal: F(1.000,31.000) = 0.124, p

= 0.727, partial- η2 = 0.004] and no significant interaction effect

between virtual chatbots’ gender and brain sites [central-parietal:

F(1.124,32.540) = 1.071, p = 0.336, partial- η2 = 0.033]. During the

engagement between male participants and virtual chatbots, there

was a significant main effect of virtual chatbots’ gender [central-

parietal: F(1.000,16.000) = 4.725, p = 0.045, partial- η2 = 0.228]. The

pair comparison result showed that male virtual chatbots induced

a larger amplitude of N100 than female virtual chatbots (as shown

in Figure 5). During interactions between female participants and

virtual chatbots, there was a significant main effect of brain sites

[central-parietal: F(2,28) = 8.109, p = 0.002, partial- η2 = 0.367].

No significant effect was found on the others.

3.2.2 P100
There was a significant main effect of virtual chatbots’ gender

[parietal-occipital: F(1.000,31.000) = 4.809, p = 0.036, partial- η2 =

0.134] and brain sites [parietal: F(1.461,45.282) = 15.379, p < 0.001,

partial- η2 = 0.332; parietal-occipital: F(2,62) = 31.039, p < 0.001,

partial- η2 = 0.500]. There was no significant main effect of virtual

chatbots’ gender [parietal: F(1.000,31.000) = 0.385, p = 0.539, partial-

η2 = 0.012] and no significant interaction effect between virtual

chatbots’ gender and brain sites [parietal: F(1.440,44.631) = 0.027, p=

0.936, partial- η2 = 0.001; parietal-occipital: F(1.620,50.221) = 0.062,

p= 0.908, partial- η2 = 0.002]. The pair comparison result revealed

that female virtual chatbots evoked a larger amplitude of P100 than

male virtual chatbots [parietal-occipital: p = 0.036] (as shown in

Figure 6A). For the occipital area, the interaction effect between

virtual chatbots’ gender and brain sites was significant [occipital:

F(2,62) = 6.734, p = 0.002, partial- η2 = 0.178]. The simple effect

showed that female virtual chatbots induced a significantly larger

amplitude of P100 than male virtual chatbots [O1: p= 0.008; Oz: p

= 0.008] (as shown in Figure 6B).

In the interaction process between female participants and

virtual chatbots, there was a significant main effect of virtual

chatbots’ gender [parietal-occipital: F(1.000,14.000) = 6.094, p =

0.027, partial- η2 = 0.303] and brain sites [parietal: F(1.406,19.680)
= 6.987, p = 0.010, partial- η2 = 0.333; parietal-occipital: F(2,28)
= 17.745, p < 0.001, partial- η2 = 0.559; occipital: F(1.238,17.335) =

15.361, p = 0.001, partial- η2 = 0.201]. The pair comparison result

showed that female virtual chatbots evoked a larger amplitude than

male virtual chatbots [parietal-occipital: p = 0.027] (as shown in

Figure 7A). For the occipital area, the interaction effect between

virtual chatbots’ gender and brain sites was significant [F(2,28) =

5.292, p = 0.011, partial- η2 = 0.274]. The simple effect showed

that female virtual chatbots induced a larger amplitude of P100 than

male virtual chatbots [O1: p= 0.023] (as shown in Figure 7B).

3.2.3 P200
There was no significant difference among other brain regions

except for the occipital lobe area. However, we observed a

significant interaction effect between virtual chatbots’ gender and

brain sites [occipital: F(1.605,49.769) = 3.471, p = 0.048, partial- η2

= 0.101]. The simple effect result indicated that female virtual

chatbots evoked a larger amplitude than male virtual chatbots, and

the difference was close to significant [O1: p= 0.136; Oz: p= 0.119]

(as shown in Figure 8).

While female participants engaged with virtual chatbots, the

main effect of virtual chatbots’ gender∗brain sites was significant

[occipital: F(1.000,14.000) = 4.756, p = 0.047, partial- η2 = 0.254].

The pair comparison result indicated that in the occipital area,

female virtual chatbots evoked larger P200 amplitudes than male

virtual chatbots [p = 0.047] (as shown in Figure 9). When female

participants interacted with virtual chatbots, no significant effect

was found on other sites.

4 Discussion

4.1 The e�ect of virtual chatbots’ gender
on usage intention

In terms of usage intention, we found that virtual chatbots’

gender significantly influenced users’ usage intentions. The

subjective evaluations indicated that, when the gender role of

participants is not considered, people tend to prefer using female

virtual chatbots. One plausible explanation is that virtual chatbots
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FIGURE 6

Mean amplitudes of P100 in parietal-occipital (A) and occipital areas (B). **represents 0.001 ≤ P ≤ 0.01.

FIGURE 7

Mean amplitudes of P100 from female participants in parietal-occipital (A) and occipital areas (B). *represents 0.01 ≤ P ≤ 0.05.

FIGURE 8

Mean amplitudes of P200 in the occipital area. *represents 0.01 ≤ P

≤ 0.05.

in the market are commonly associated with female voices, such

as Apple’s Siri and Amazon’s Alexa (Fischer et al., 1997). This

may lead to a more approachable quality associated with the

female appearance, thereby increasing user acceptance and users’

usage intentions. This result is consistent with gender stereotypes.

Therefore, participants’ intention to use female virtual chatbots was

higher than their intention to use male virtual chatbots. The result

supported H1.

When considering the gender factors of participants, the result

suggested that among female participants, female virtual chatbots

tend to have a higher usage intention than male virtual chatbots,

whereas male participants tend to prefer using female virtual

chatbots. The results from female participants are consistent with

FIGURE 9

Mean amplitudes of P200 in female participants.

our hypothesis and the similarity-attraction paradigm (Byrne,

1997). A reasonable speculation is that women seek resonance

and recognize the convenience of communication among the same

gender. Therefore, female participants are more willing to use

virtual chatbots of the same gender. Thus, H2 was confirmed.

However, the results from male participants contradict our

hypothesis and the similarity-attraction paradigm. One possible

reason is that societal and cultural factors may influence the

preferences of male participants, while individual differences may

play a significant role among them. Therefore, male participants

are more inclined to use female virtual chatbots. Thus, H2 was

not supported.
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4.2 The e�ect of virtual chatbots’ gender
on ERP components

Gender differences in cognition and their underlying brain

mechanisms have attracted increasing attention (Ramos-Loyo et al.,

2022). This study used ERP techniques to analyze the evaluative

process of virtual chatbots’ gender. We found that regardless of

whether participants’ gender is considered a factor, the gender of

virtual chatbots has an effect on the amplitudes of N100, P100,

and P200.

4.2.1 N100
N100 is sensitive to physical stimulus features and can reflect

the allocation of attentional resources (Luck et al., 2000; Li et al.,

2022). The results from male participants showed that, early in

the time course, the gender of the virtual chatbots influenced

the N100 amplitude, implying that the robot’s gender attracted

the user’s attention. Specifically, male virtual chatbots elicited

significantly larger N100 amplitudes than female virtual chatbots.

This finding suggested that male participants would pay more

attention to male virtual chatbots. Our results align with the

similarity-attraction paradigm (Byrne, 1997), indicating that men

are more inclined to engage with male virtual chatbots, thereby

allocating greater attentional resources to them. This finding is

consistent with those of previous studies. For instance, Bakar and

McCann (2014) investigated the human–human gender congruity

and found that gender congruity between supervisors and

subordinates results in higher job satisfaction and commitment of

subordinates. Similarly, Pitardi et al. research in the field of human–

machine communication further confirmed that gender congruity

significantly enhances the positive effects of communication

(Pitardi et al., 2023). Thus, when male participants encountered

male virtual chatbots, the larger N100 amplitude reflected their

ability to induce a positive attentional resource, potentially due to

the perceived congruity in gender. This result supported H3.

4.2.2 P100
The present data displayed that early in the time course,

female virtual chatbots enhanced a higher amplitude of P100

than male virtual chatbots in occipital and parietal-occipital

areas, suggesting that the physical properties of virtual chatbots’

gender can be detected. P100 is associated with the allocation

of attentional resources in the early stage of processing visual

stimuli (Nass et al., 1997). The results of this study suggested that

female virtual chatbots required more attention than male virtual

chatbots. One possible explanation for this observation could be

that female virtual chatbots are perceived as more engaging or

socially salient, thus capturing more attention at the early stages of

visual processing. This could be attributed to cultural and societal

biases that often associate femininity with warmth and social

connection (Spence and Buckner, 2000). Therefore, the increased

P100 amplitude may reflect a heightened sensitivity to, and the

allocation of attention toward, female virtual chatbots. Thus, H1

was confirmed.

The results showed that among female participants, female

virtual chatbots enhanced a higher amplitude of P100 in occipital

and parietal-occipital areas than male virtual chatbots during the

early processing stage. This suggested that female participants

allocated more attention and cognitive resources to female virtual

chatbots. One possible explanation is the concept of the similarity-

attraction paradigm, where individuals tend to be attracted to

and engage more with stimuli that are similar to themselves

(Byrne, 1997). Our findings align with Eyssel et al.’s research

(Eyssel et al., 2012), which revealed that participants developed

more favorable impressions and reported greater psychological

closeness when interacting with virtual chatbots of the same gender.

This underscores the importance of similarity in fostering positive

human–machine communication. Therefore, compared to male

virtual chatbots, female participants would allocate more attention

to female virtual chatbots. This result supported H3.

4.2.3 P200
P200 is connected to research on emotion and attention arousal

(Carretié et al., 2004; Liu et al., 2022). Our study revealed that

female virtual chatbots induced a larger amplitude of P200 in

occipital areas than male virtual chatbots. This suggested that

female virtual chatbots attracted more attentional resources and

generated more emotional arousal than male virtual chatbots. A

reasonable explanation is that the physical attributes of female

virtual chatbots, owing to their good human nature (e.g., friendly,

warm, and trusting), may be detected more easily than the

physical attributes of male virtual chatbots (Borau et al., 2021).

Previous studies have found that computers with female voices

are perceived as more attractive (Lee et al., 2000), and recent

research indicates that female systems elicit feelings of comfort,

confidence, and reduced tension among users (Niculescu et al.,

2010). Moreover, participants tended to perceive robots with

a female body shape as more communal and having more

cognitive and affective trust than those with a male body shape

(Bernotat et al., 2021). These findings are in line with those

of our study. Consequently, female virtual chatbots generated

more positive emotions than male virtual chatbots. This result

supported H1.

The data on female participants showed that female virtual

chatbots evoked a higher amplitude of P200 than male virtual

chatbots in occipital areas. This finding suggested that female

participants allocated more attentional resources when interacting

with virtual chatbots of the same gender. The result not only

aligns with the similarity-attraction paradigm (Byrne, 1997) but

also validates gender role identification. One plausible explanation

is that when female participants interact with female virtual

chatbots, they perceive an inherent consistency or similarity in

gender, fostering emotional connection and trust. This emotional

connection, in turn, makes female participants more likely to

view female chatbots as approachable and engaging partners.

Hence, the result suggested that female participants, by matching

the gender role expectations of the female virtual chatbots,

allocated more attentional resources and exhibited positive

emotional responses toward female virtual chatbots. Thus, H3

was supported.
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5 Conclusions

This study used ERP techniques to explore the neural

mechanism of usage intentions on virtual chatbots’ gender. The

observed gender effects in human–machine communication

appear to be present at the neural level, rather than being

solely reflected in subjective questionnaire responses. The

results of the subjective questionnaire revealed that users

have a larger usage intention toward female virtual chatbots

than male virtual chatbots, regardless of participants’ gender.

The result of the neural activity process was as follows: (1)

Around 100ms, an initial stage of visual perception occurred,

with participants perceiving the physical attributes of the

virtual chatbots’ gender. Female virtual chatbots attracted

more attentional resources than male virtual chatbots. Female

participants allocated more attentional resources to same-

gender partners, and male participants also exhibited greater

attention toward same-gender partners. (2) Between 170 and

270ms, an evaluation and judgment stage took place. The

physical attributes of the virtual chatbots’ gender continued

to be detected. In comparison to male virtual chatbots, female

virtual chatbots received greater attention, and the intensity of

intention to use female virtual chatbots was assessed. Female

participants allocated more attentional resources to female

virtual chatbots; likewise, male participants allocated more

attentional resources to male virtual chatbots. Our research

findings provide a foundation for designing better virtual robot

appearances. Designers can better understand users’ neural activity

regarding virtual robots’ gender, which will enable them to create

improved products.

There are some limitations in the present study that should be

noted. First, it is essential to note that the EEG recordings may have

been influenced by participants’ emotion during the interaction

with multi-style chatbots, even though two virtual chatbot groups

with three stages of age were used to mitigate monotony

during the EEG recording. Thus, future studies should investigate

different ages of virtual chatbots. Second, we recruited college

students with similar educational backgrounds and comparable

ages. However, the similarity of our participants may limit the

generalizability of our findings to individuals of different ages

and educational backgrounds. Therefore, future studies should

consider diversifying the sample to enhance the applicability of

the results.
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