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Introduction: Microstate analysis enables the characterization of quasi-stable

scalp potential fields on a sub-second timescale, preserving the temporal

dynamics of EEG and spatial information of scalp potential distributions. Owing

to its capacity to provide comprehensive pathological insights, it has been

widely applied in the investigation of schizophrenia (SCZ). Nevertheless, previous

research has primarily concentrated on di�erences in individual microstate

temporal characteristics, neglecting potential distinctions inmicrostate semantic

sequences and not fully considering the issue of the universality of microstate

templates between SCZ patients and healthy individuals.

Methods: This study introduced a microstate semantic modeling analysis

method aimed at schizophrenia recognition. Firstly, microstate templates

corresponding to both SCZ patients and healthy individuals were extracted from

resting-state EEG data. The introduction of a dual-template strategy makes a

di�erence in the quality of microstate sequences. Quality features of microstate

sequences were then extracted from four dimensions: Correlation, Explanation,

Residual, and Dispersion. Subsequently, the concept of microstate semantic

features was proposed, decomposing the microstate sequence into continuous

sub-sequences. Specific semantic sub-sequences were identified by comparing

the time parameters of sub-sequences.

Results: The SCZ recognition test was performed on the public dataset for both

the quality features and semantic features of microstate sequences, yielding

an impressive accuracy of 97.2%. Furthermore, cross-subject experimental

validationwas conducted, demonstrating that themethod proposed in this paper

achieves a recognition rate of 96.4% between di�erent subjects.

Discussion: This research o�ers valuable insights for the clinical diagnosis of

schizophrenia. In the future, further studies will seek to augment the sample size

to enhance the e�ectiveness and reliability of this method.

KEYWORDS

schizophrenia, microstate analysis, semantic features, quality features, dual-microstate

templates

1 Introduction

Schizophrenia (SCZ) is a severe and debilitating mental disorder, the etiology

and pathogenesis of which remain incompletely understood (Sekar et al., 2016).

Electroencephalography (EEG) captures dynamic changes in electrical signals within the

cerebral cortex, providing insights into brain functional states (Barros et al., 2021). Due
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to its non-invasive nature, high temporal resolution, cost-

effectiveness, and the ability for continuous monitoring, EEG

holds a significant position in the fields of neuroscience and the

diagnosis of neurological disorders (Hamilton and Northoff, 2021).

Investigating EEG features closely associated with schizophrenia is

of paramount significance as it can deepen our comprehension of

its etiology and enhance the accuracy of SCZ diagnosis.

Existing research in cognitive neuroscience has demonstrated

the existence of electrical microstates in the brain. Scalp voltage

distribution maintains a semi-stable state within a brief temporal

window (typically 80–150 ms). This means that the topological

structure of brain maps remains relatively stable for a certain

duration, then rapidly transitions to another state before stabilizing

again, displaying discontinuity. During the stable state, the strength

of the scalp potential may increase or decrease, but the topography

remains stable (Lehmann et al., 1987; Pascual-Marqui et al.,

1995; Khanna et al., 2014). To investigate the evolving overall

functional patterns of the brain across time, Lehmann and his

colleagues introduced the concept of Microstate. They defined

four microstates (labeled A, B, C, and D), corresponding to

resting-state networks associated with the auditory network, visual

network, salience network, and attention network in the brain.

They transformed the raw EEG data into a sequence of these

four states that alternate (Lehmann et al., 1987). Scholars usually

categorize resting-state EEG waves into four microstates based on

their topological structures. These microstates are: right frontal-

left posterior (labeled as A), left frontal-right posterior (labeled as

B), midline frontal-occipital (labeled as C), and midline frontal

(labeled as D). Michel and Koenig (2018) discussed in their review

of the current and future directions of microstate analysis that

these microstates account for 65–80% of the original data’s features.

These brain maps exhibit high similarity across healthy individuals,

patients with various conditions, and distinct mental states, such

as rest and sleep (Koenig et al., 2002). Microstate analysis has

the capability to characterize quasi-stable scalp potential at a sub-

second scale while preserving the temporal dynamics of EEG and

the spatial information of scalp potential distribution. This method

represents an innovative approach to quantifying brain electrical

signals with potential neurophysiological significance (Khanna

et al., 2014).

Microstate sequences are widely employed in the investigation

of SCZ due to their rich pathological and semantic information

(Lehmann et al., 2005). Research indicates that different

psychological states and thought categories may have underlying

correlations with different microstate topologies. Therefore,

researchers consider microstates as “thought atoms," the basic

units constituting emotions and cognition (Lehmann et al., 1998).

Normal and abnormal cognitive states may manifest varying

patterns in microstate sequences. Based on this conceptual

framework, the frequency, duration, and sequence patterns of

microstates can be used to explain the occurrence of psychological

abnormalities and specific behavioral symptoms in individuals

with SCZ, thereby mapping their cognitive states within a

relatively brief time frame (Yan et al., 2023). Among the four

microstate classes, the temporal dynamics of Microstate C and D

are regarded as potential endophenotypes of SCZ (Chang et al.,

2022; Lin et al., 2022; Chen P.-H. et al., 2023). Researchers have

found that, compared to the control group, SCZ patients exhibit

continuous increases in the time coverage and occurrence rate

of Microstate C, while the time coverage and average duration of

Microstate D significantly decrease (da Cruz et al., 2020). Studies

also utilize source localization algorithms to investigate cortical

layer activations corresponding to the topologies of microstate,

revealing significant activation in the left inferior parietal lobule

and left temporal gyrus in the brains of SCZ patients (Soni et al.,

2018; Chen P.-H. et al., 2023). This effectively reveals the temporal

dynamics of SCZ pathology. Leveraging changes in microstate

parameters in SCZ patients, scholars have utilized microstates as

crucial neural imaging biomarker in the automated identification

of schizophrenia (Baradits et al., 2020; Luo et al., 2020; Wang et al.,

2021). For instance, Baradits et al. (2020) used four microstate

time parameters as features for SCZ classification and achieved

82.7% recognition accuracy. Kim et al. extracted 19 microstate

features and 31 traditional EEG features from the resting-state

EEG of SCZ patients, combining them with machine learning

for identification. The results demonstrated that microstate

features (76.62%) outperformed traditional EEG features

(68.89%) in SCZ identification, displaying better classification

performance. This suggests the potential of microstates as

valuable neural imaging biomarkers for brain disorders, enabling

a more effective representation of patients’ abnormal states

(Kim et al., 2021).

However, there are still some problems that need to be solved

in the identification of SCZ by microstate analysis.

(1) An important consideration is the transferability of

microstate templates between healthy individuals and SCZ

patients, specifically, whether the same set of templates

can effectively model EEG signals in both groups. At

present, there is no publicly available research exploring this

specific issue. Due to the similarity of microstates under

different conditions, researchers typically model the EEG

signals of healthy individuals and SCZ patients uniformly.

Although this method can effectively reduce computational

complexity, it overlooks the quality characteristics of

microstate sequence.

(2) The present research is limited to analyzing the statistical

characteristics of the temporal parameters of individual

microstate, but does not consider the temporal parameters

when the microstate combination appears. This limitation

may affect the comprehensive understanding of microstate

sequence.

(3) Determining the appropriate length of microstate sequences

is imperative for efficient feature extraction and recognition

and warrants further investigation. Sequences that are too

short may not accurately capture certain microstate features,

thus impacting the accuracy, while sequences that are too

long may increase the computational burden and processing

time.

Therefore, there is a compelling requirement for a more systematic

exploration of the application of microstate analysis techniques

in the identification of SCZ, along with the need to further

substantiate the reliability and biological significance of the
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findings. This will serve to enhance the provision of enhanced

clinical decision support for the prevention, treatment, and

rehabilitation of SCZ.

The main contributions of this work are summarized as

follows:

1. This study introduced the concept of microstate semantic

features into traditional microstate research and identifies

microstate semantic sequences highly correlated with SCZ.

2. The study proposed a dual-template microstate construction

strategy to effectively capture differences in microstates

between SCZ patients and the healthy group. Additionally,

microstate quality features based on these differences were

proposed.

3. The study validated the new features on the Warsaw

database for SCZ recognition to assess the effectiveness

of microstate semantic features and quality features. The

results demonstrated that the method proposed in this paper

achieves optimal SCZ recognition accuracy.

The overall research content of this paper is illustrated in

Figure 1.

The rest of this paper is organized as follows. Materials and

methods are explained in Section II. Experimental results and their

corresponding discussions are found in Sections III and, followed

by the conclusion in Section IV.

2 Materials and methods

2.1 Dataset

We utilized a publicly available EEG dataset for our study, and

the study protocol received approval from the Ethics Committee of

the Institute of Psychiatry and Neurology in Warsaw (Olejarczyk

and Jernajczyk, 2017). Prior to their participation, all individuals

received a written explanation of the study protocol and provided

written consent. The dataset comprised data from 14 patients

diagnosed with schizophrenia and 14 healthy control subjects.

The patients’ group consisted of seven males (with an average

age of 27.9 ± 3.3 years) and seven females (with an average

age of 28.3 ± 4.1 years) who were diagnosed with paranoid

schizophrenia in accordance with the International Classification of

Diseases (ICD)-10-CM criteria (F20.0) and exhibited pronounced

positive symptoms. Inclusion criteria also necessitated a washout

period of more than one week, with early-stage patients, including

those experiencing their first episodes, being excluded. Exclusion

criteria encompassed conditions such as pregnancy, organic brain

pathology, severe neurological diseases (e.g., epilepsy, Alzheimer’s,

or Parkinson’s disease), and the presence of a general medical

condition. The patient and control groups were matched for

both age and gender. EEG data were recorded using a nineteen-

channel setup, adhering to the International 10/20 EEG system, at a

sampling frequency of 250 Hz, during a 15-minute session of eyes-

closed resting state. Further details regarding the dataset can be

accessed at the repository and its corresponding article (Olejarczyk

and Jernajczyk, 2017).

2.2 EEG data preprocessing

Standard EEG pre-processing techniques were employed

to eliminate mixed noise, including electrooculograms (EOG)

and electromyograms (EMG). The primary pre-processing steps

included:

(1) Manual removal of obvious noises through visual inspection.

(2) Re-referencing EEG signals to the average reference.

(3) Applying a band-pass filter (FIR, 0.1–40 Hz) to EEG signals.

(4) Utilizing Independent Component Analysis (ICA) to

eliminate artifact signals, such as EOG and EMG.

Following the pre-processing, EEG signals were segmented using a

sliding window approach. Depending on the length of the sliding

window, the original dataset was transformed into various new

datasets. Detailed information about data segmentation will be

presented in the experimental section.

2.3 Microstate model analysis

The microstate model analysis regards the multichannel EEG

signal as a time series composed of topographies representing

instantaneous potential distributions. Assuming that V =

(V1,V2, ..Vt , ...VT , ) denotes a segment of N-channel EEG signals

of duration T, where V ∈ RN×T ,Vt ∈ RN×1. Then the microstate

sequence o can be constructed as follows.

(1) The Global Field Power (GFP) of the EEG was computed

at each time point. The topography at the peak point of the GFP

has the strongest signal strength and the highest signal-to-noise

ratio, and the potential distribution at the localized peak of the GFP

remains stable.

GFP(t) =

√

∑N
i=1(vi(t)− v(t))2

N
(1)

whereN denotes the number of electrodes, vit denotes the potential

value of the i-th electrode at time t, and vt denotes the average value

of the potential of all electrodes at time t.

(2) The potential topography at the GFP peak was extracted to

construct the sample set. The construction process can be expressed

by Equation (2).

S = {Vt|1 < t < T ∧ Gt−1 < Gt > Gt+1} (2)

(3) The microstate template Ŵk can be expressed in

Equation (3).

Vt =

K
∑

k=1

aktŴk + Et (3)

where K denotes the number of microstate templates, Ŵk ∈ RN×1

is the k-th microstate template, akt ∈ {0, 1} denotes the intensity of

the k-th microstate at moment t, and Et is the fitting error.
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FIGURE 1

Framework of the proposed scheme for identifying SCZ patients using EEG signals.

(4) Themicrostate templateŴk can be computed byminimizing

the Equation (4).

loss =
1

Ts(N − 1)

T
∑

t=1

δt

∥

∥

∥

∥

∥

Vt −

K
∑

k=1

aktŴk

∥

∥

∥

∥

∥

2

δt =

{

1, if Vt ∈ S

0, if Vt /∈ S

(4)

where Ts denotes the number of elements in the set S. The

microstate template Ŵk can be obtained by solving the above

equation by clustering algorithm or Lagrange multiplier.

(5) The distance between the corresponding brain topology

map and the microstate template is calculated for each moment,

and the brain state at thatmoment is labeled as the nearest template.

Label allocation can be represented by Equation (5).

Lt = argmin
k

{∣

∣

∣
VT
t Vt − VT

t Ŵk

∣

∣

∣

}

(5)

Up to this point, the multichannel EEG signal has been

decomposed into a time sequence comprising K alternating

microstates.

2.4 Dual-template microstate model

Conventional microstate analysis usually mixes the EEG signals

from the SCZ patients and the healthy individuals to generate a

set of microstate templates for subsequent analysis and feature

extraction. However, according to neuroimaging studies, SCZ

patients exhibit significant difference in brain structure and

function, which may result in different topographies of scalp

potential. Therefore, employing the same template for modeling

both datasets may overlook these differences. In response to this

concern, this paper introduces a novel approach, the dual-template

microstate model method, designed to more accurately capture the

microstate differences between SCZ patients and healthy subjects.

The workflow of the dual-template microstate modeling approach

is illustrated in Figure 2.

(1) Conduct clustering for each individual and extract the

microstate template as a candidate template. In this process,

DBSCAN clustering algorithm was employed. DBSCAN is a

density-based clustering algorithm known for its ability to cluster

dense datasets with arbitrary shapes and its resilience to anomalies

within the dataset. It effectively avoids the impact of singularities in

the EEG signal on the clustering outcomes. The steps are outlined

as follows:

a. According to Equation (1), Calculate the global field power

(GFP) of the subject at each time point, and extract the

topography corresponding to the GFP peak to construct a set

of topographies.

b. Initialize the parameters of the DBSCAN clustering

algorithm, including radius r and density threshold minPts.

The radius r defines the size of the neighborhood around the

sample, while the density threshold minPts determines the

minimum number of samples required to form a set. During

this process, Euclidean distance was used as the distance

metric.

c. For each sample in the set of topographies, calculate the

number of samples in its neighborhood. If the number of

samples exceeds the density threshold minPts, the sample is

labeled as a core point.

d. Form a new set of each core point and all points within its

neighborhood. If two sets intersect, merge them into one set.

e. If the total number of formed sets is not equal to 4, adjust r

and minPts of the DBSCAN algorithm, and repeat steps c to e

until the total number of sets reaches 4.

f. Calculate the average value of samples in each set as the

microstate template.

(2) The candidate templates obtained from all subjects were

divided into healthy and SCZ groups based on task-related

information. The topographies within each group are subsequently

re-clustered by the K-means algorithm. Given the absence of

singularities in the candidate templates resulting from the initial
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FIGURE 2

Overview of dual-template microstate modeling method. SS: The SCZ template was used to model the EEG of SCZ patients. SH: Model EEG of

healthy subjects using SCZ templates. HS: EEG signals of SCZ patients were modeled using healthy subject templates. HH: Modeling EEG of healthy

subject using healthy subject template.

TABLE 1 Di�erent microstate sequence type.

Type Meaning

SS Modeling the EEG of SCZ patients by the SCZ templates

SH Modeling the EEG of healthy individuals by the SCZ templates

HS Modeling the EEG of SCZ patients by the healthy templates

HS Modeling the EEG of healthy individuals by the healthy templates

clustering in step (1), and the high similarity among topographies

within the same microstate class, the K-means algorithm is

employed for rapid clustering in this stage. The steps are outlined

as follows:

a. Randomly select four topographies from the health group as

initial clustering centers.

b. Calculate the spatial similarity between the remaining

topographies and the initial clustering centers. Assign each

topography to the class associated with the clustering center

exhibiting the highest spatial similarity.

c. Calculate new clustering centers based on the topographical

maps within each class.

d. Repeat the procedure until the clustering centers are no

longer changed, at which time the resulting four clustering

centers are the microstate templates for the health group.

e. Repeat the above process to calculate the microstate templates

for the SCZ group.

(3) After calculation, the healthy group and the patient group,

respectively, obtained corresponding microstate templates, each

template containing four microstates. Assign the most relevant

microstate labels based on the spatial correlation between the

topology of the EEG at each time point and the four microstates.

For EEG signals with known labels, the dual-template-based

microstate construction strategy can transform the original EEG

signals into four types of microstate time series, as outlined in

Table 1. As for the samples with unknown labels, there are two

possibilities for these two microstate sequences, (1) SS and HS, and

(2) SH and HH.

2.5 Microstate features

In this section, microstate feature extraction will be performed

for these two microstate sequences, and these features will be used

for the identification of SCZ in the subsequent sections. A total of

39-dimensional microstate features were extracted as inputs to the

classifier in this paper, including 16-dimensional quality features,

21-dimensional semantic features, and 12-dimensional traditional

temporal features.

2.5.1 Microstate temporal features
In this paper, the traditional temporal parameters (Lin et al.,

2023) were extracted on two microstate sequences as temporal

features of the sequences, including:

(1) Mean duration (MD): mean duration (in ms) is the average

time that a given microstate was uninterruptedly present.

(2) Occurrence per second (OPS): occurrence is the mean

number of times a given microstate is occurring per second.

(3) Time coverage ratio (TCR): time coverage (in %) is the

percentage of the total analysis time spent in a given

microstate
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2.5.2 Microstate semantic features
Current research on microstates regards individual microstates

as isolated states and focuses on the association of parameters such

as occurrence and duration of individual states with mental illness.

However, this approach may not adequately capture the dynamic

evolution and interactions between microstates and analyze the

sequential patterns, trends, or periodicity of microstates, which

could overlook important information embedded in the time

series. Therefore, this study introduced the concept of semantic

characterization of microstates. This approach provides new

possibilities for exploring the association between microstates and

SCZ by decomposing microstate sequences into subsequences, and

extracting subsequences imbued with specific semantics through

a comparative analysis of diverse time parameter statistics among

various subsequences. The microstate sequence encapsulates a

wealth of physiological and pathological information, intricately

mirrored by the variability and randomness inherent in different

states and subsequences within the microstate sequence, which is

the theoretical basis for using this method.

Given a microstate sequence of length Ns, the sequence

contains a total of K kinds of microstate. For this microstate

sequence, there are a total of K l kinds of subsequences of length

l. For this sequence, the following features were extracted:

(1) Subsequence frequency: the frequency of occurrence of a

subsequence with length l in the microstate sequence is calculated

as shown in the Equation (6).

fi =
Occi

Ns − l+ 1
, i ∈

[

1,K l
]

(6)

where Occi denotes the number of times the subsequence appears

in the whole sequence.

(2) Average duration of subsequence: the average duration of a

subsequence with length l in a microstate sequence is calculated as

shown in the Equation (7).

di =
Tti

l× Occi
, i ∈

[

1,K l
]

(7)

where Tti denotes the length of time that the subsequence appears

in the whole sequence.

Computing temporal parameters for subsequences of different

lengths achieves a deeper understanding of the relationship

between microstates and SCZ. The introduction of this approach is

expected to provide additional insights into microstate analysis and

enhance the methodology and theory in the field of SCZ research.

2.5.3 Microstate quality features
As mentioned earlier, SCZ patients exhibit substantial

structural and functional alterations in the brain, which can result

in variations in the topography of potential distribution on the

scalp surface. Consequently, differences in data expressiveness and

spatial correlation are observed in microstate sequences modeled

by different microstate templates. In other words, the fitting

quality of SS (same class) and HH (same class) sequences should

be significantly higher than that of SH (different class) and HS

(different class) sequences.

Therefore, in this paper, the quality of two sequences were

evaluated in terms of spatial correlation, data explanatory, residual

and dispersion. The ratio of the quality parameters between the two

sequences was extracted as microstate quality feature.

(1) Spatial correlation: the average spatial correlation of all

potential topographies in each class of microstates with the

microstate template. This feature is calculated as Equation (8).

msc =

T
∑

t=1

∣

∣VT
t Ŵt

∣

∣

‖Vt||||Ŵt‖
(8)

where Ŵt denotes the microstate template assigned to the EEG

signal at time t, and ||a|| denotes the Euclidean norm of the vector

a.

(2) Global explanatory variance: this parameter is used to

measure the percentage of data that can be explained by microstate

classes. The more accurate the microstate template, the higher

the value of GEV. The calculation of this feature is shown as

Equation (9).

gev =

∑T
t=1

(

Gt ×

∣

∣VT
t Ŵt

∣

∣

‖Vt ||||Ŵt‖

)2

∑T
t′=1 Gt

(9)

(3) Residual: this parameter is used to estimate the residual

margin after transforming the EEG signal into a microstate

sequence. The more accurate the microstate template, the lower the

value of the residual margin. The Equation (10) is the calculation

method for this feature.

err =

∑T
t=1

(

VT
t Vt −

(

ŴT
t Vt

)2
)

NT
(10)

(4) Dispersion: this parameter is a measure of the average

distance between members of the same class. It is calculated as

Equation (11).

w =

K
∑

k=1

∑

Vt∈Sk

∑

Vt′∈Sk

‖Vt − Vt′‖
2

Tk
(11)

where Sk denotes the set of EEG data labeled as microstate k,

and Ŵk denotes the number of elements in the set Sk.

3 Experiment and results

3.1 Microstate quality analysis

The brain topography resulting from microstate clustering

is shown in Figure 3. The figure illustrates that the microstate

distributions of the SCZ patients and the healthy individuals

(Healthy Control, HC) exhibit a general similarity, with localized

differences in microstates B and D.

This article evaluates the quality of microstate sequences from

four aspects: spatial correlation, data expression ability, residual

margin, and dispersion. The average quality evaluation results of

the four microstate sequences are shown in Table 2.
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FIGURE 3

Microstate clustering results. (A) Healthy templates from 14 healthy subjects. (B) SCZ templates from 14 patients with schizophrenia. (C) Spatial

correlation between healthy templates and SCZ templates).

TABLE 2 Average quality assessment results of microstate sequences.

Parameters HH SS HS SH

Correlation 92.8% 93.9% 80.6% 82.1%

Explained 85.5% 88.5% 74.4% 78.9%

Residual 0.63 0.47 0.87 0.85

Dispersion 0.22 0.21 0.45 0.34

According to the table, it can be observed that in the

combination of template and data consistency, the GEV of

SCZ patients reached 88.5%, while the GEV of HC was 85.5%.

This indicates that the two microstate templates can effectively

express the corresponding original brain topographic. However, in

inconsistent combinations, the average GEV of the HS sequence

was only 74.4%, while the average GEV of the SH sequence

was 78.9%. This means that inconsistent combinations exhibit

significantly lower quality while expressing the original data. Other

quality evaluation indicators have also produced similar results,

emphasizing that the combination of template and data consistency

exhibits higher quality in constructing microstate sequences. These

results have important implications for the accuracy and reliability

of microstate analysis.

In order to deeply evaluate the role of the quality features

in the identification of SCZ, this paper plots the distribution

of data under different quality features by taking the quality

features of microstate sequences constructed by SCZ templates as

the horizontal coordinates and the quality features of microstate

sequences constructed by HC templates as the vertical coordinates.

The specific results are shown in Figure 4. This distribution plot

helps us to understand the influence of different quality features on

SCZ identification and provides an important reference for further

research.

From the figure, it can be clearly observed that the quality

features are significantly discriminative in the identification of

SCZ. In terms of Correlation and Explanation, the values are

significantly higher when the template is consistent with the data

than in the inconsistent combination. In contrast, the residual

and Dispersion were significantly lower in consistent combinations

than in inconsistent combinations. These results provide an

important reference for the application of microstate sequence

quality features in the identification of SCZ, as well as a beneficial

reference for future research and clinical applications.

3.2 Microstate semantic analysis

This article focuses on the semantics expressed by the

frequency of microstate subsequences. Figure 5 shows the

frequency distribution of subsequences with different lengths.

It can be seen from the Figure 5 that when the length of

the subsequence was 1 (as shown in Figure 5A, the frequency

distribution of the subsequence with the length of 1 is equivalent

to the microstate time parameter OPS), the frequency of microstate

C andD in SCZ patients is significantly different from that of HC, in

which the frequency of microstate C increases significantly and the

frequency of state D decreases significantly. This is consistent with

the results of da Cruz et al. (2020). When the subsequence length

was 2, the frequency of BA, BC, DA, DB, and DC sequences in SCZ

patients increased significantly, while the frequency of CA and CB

sequences decreased significantly. When the subsequence length

was 3, the frequency ABA, BAB, BCB, and CBC, was the highest in

SCZ patients, which was much higher than that of healthy subjects.

This suggests that there are specific subsequence patterns in the

EEG signals of SCZ patients, and these subsequences express the

semantics of the disease in SCZ patients.

It has been shown that microstate A is associated with

phonological processing, microstate B with attention, microstate

C with vigilance, and microstate D with visual processing (Britz

et al., 2010). Thus, these high-frequency patterns of subsequences

may reflect abnormalities in phonological processing, attention,

and vigilance in SCZ patients. These abnormalities may be related
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FIGURE 4

Distribution of data series quality features. From left to right: correlation, explained, residual, dispersion; blue points in the figure indicate HC data, red

points indicate SCZ data.

FIGURE 5

Frequency distribution of subsequences of di�erent lengths. (A) Distribution of subsequences (l = 1). (B) Distribution of subsequences (l = 2). (C)

Distribution of subsequences (l = 3).

to cognitive and affective disorders common to SCZ patients, such

as attention deficit, impaired working memory, and emotional

instability. In addition, these subsequence patterns may provide

important clues for the diagnosis and treatment of SCZ patients.

By analyzing the occurrence of these subsequence patterns in

microstates, it can help clinicians diagnose SCZ patients more

accurately.

3.3 Classification performances

3.3.1 Microstate feature extraction
According to the experimental results in the previous section, a

total of 39-dimensional microstate features were extracted as inputs

to the classifier in this paper, including 16-dimensional quality

features, 21-dimensional semantic features, and 12-dimensional

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1372985
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnhum.2024.1372985

TABLE 3 Classifier parameters.

Classifier Parameters

SVM
Kernel: Gauss

Kernel Scale: 6

KNN
Distance: Euclidean

Number Neighbors: 10

MLP
Layers: 42*32*16*2

Activation function: Tanh

traditional temporal features, and the feature distribution is shown

in Table 2.

3.3.2 The duration of EEG
This section focuses on the effect of microstate sequence

length on SCZ recognition. For this purpose, the study introduces

a sliding window approach, in which the original EEG data

is segmented into EEG segments of length T, each with the

same label as the original data, by setting a sliding window

with window length T and window move 0. The goal of this

approach is to systematically explore the effects of different

microstate sequence lengths on the SCZ classification task. The

optimal window length can be determined to improve the

classification performance of SCZ. In addition, the application of

the sliding window helps to increase the number of samples in

the training and testing set, which is conducive to training the

classifier more adequately. Specifically, the length of the sliding

window ranges from 1 to 30 s, 30 datasets of different lengths

were constructed at intervals of every 1 s, and 10-fold cross-

validation was applied to each dataset to divide the training

and testing sets. This approach can synthesize the classification

performance under different window lengths, while effectively

increasing the data samples to improve the performance of the

classifier.

The samples are classified and validated using three classifiers,

Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and

Multilayer Perceptron (MLP), the hyperparameters of the three

classifiers are shown in Table 3 and the recognition results are

shown in Figure 6.

The experimental results show that at EEG segment lengths

lower than 20 s, the recognition accuracies of SCZ all grow with the

growth of EEG segment lengths, and the highest recognition rate of

97.2% is reached at 20s. When the EEG segment length is >20 s,

the classification performance of the classifier falls into a bottleneck

and starts to oscillate. In this paper, we analyze the reasons for the

bottleneck and oscillations as follows: (1) The microstate sequence

constructed when the EEG segment is 20 s already contains enough

SCZ disease information, and the newly added EEG segment will

not lead to the increase of SCZ disease information, but instead

introduces additional noise and error. (2) Since the sliding windows

used in this paper for EEG segmentation do not overlap, the total

number of samples decreases as the length of the EEG segment

increases (the total number of samples is 1,430 when the length of

the EEG segment is 20 s), and the classifier is not sufficient to learn

the features of the class from the existing samples, which leads to a

decrease in the accuracy rate.

3.3.3 Classification performances
Based on the experimental results, we found that the highest

recognition accuracy of 97.2% is achieved when the EEG segment

length is 20 s using KNN classifier. Compared with the published

results, the proposed two-template microstate modeling analysis

of schizophrenia diagnostic indicators in the identification of

SCZ achieved the best results. The comparison results are shown

in Table 4. Compared with the previous EMD decomposition

(Siuly et al., 2020), signal energy or frequency analysis methods

(Devia et al., 2019; Akbari et al., 2021), the micro-state method

adopted in this paper is significantly improved. Compared with

the existing microstate analysis techniques (Baradits et al., 2020;

Kim et al., 2021), the sensitivity of the microstate sequence to

the template is used to greatly enhance the recognition of SCZ.

The experimental results fully demonstrate the effectiveness of

the proposed indicators, which provides an effective basis for the

clinical diagnosis of schizophrenia and the realization of intelligent

diagnosis.

Further, this paper analyzes the sensitivity and specificity of

the method proposed herein when the EEG fragment length is 20

s. Sensitivity is calculated by comparing the number of persons

correctly identified as having a condition in a test population with

the true number of individuals who have the condition in the same

test population. Specificity is calculated by comparing the number

of individuals correctly identified as not having a condition in a

test population with the true number of individuals who do not

have the condition in the same population. The sensitivity of the

model was calculated to be 97.1% and the specificity was 97.3%.

The experimental results indicate that the model trained using

the microstate features proposed in this paper performs well in

the recognition task of schizophrenia, and is able to distinguish

between positive and negative cases effectively.

Finally, this study considers the generalization of the proposed

method to cross-subject problems. In the previous classification

task, we used a 10-fold cross-validation approach where the

data from all subjects were mixed and randomly disrupted to

verify the recognition accuracy. In order to more fully assess the

generalizability of the method proposed in this paper, we used

a leave-one-out method for validating the performance of the

method in cross-subject schizophrenia recognition. The dataset

used in this paper contains 14 schizophrenic patients and 14 normal

subjects. In each test of the leave-one-out method, one patient’s data

and one normal person’s data were selected as the test set, while

the remaining 26 subjects’ data were used as the training set, and

this process was repeated 14 times. The final recognition results are

shown in Table 5. This approach helps to assess the applicability

of the proposed method across subjects and provides sufficient

validation for its generalizability.

The average recognition rate of SCZ across subjects

reached 96.4%. This result suggested that the dual-template

microstate analysis method has excellent generalizability

across subjects. The method does not depend on specific

individuals or subgroups, but has broader applicability. This

has important implications for practical clinical applications,

research and diagnosis of SCZ. In addition, the results also

emphasize the importance of resting-state microstates as

potential biomarkers or shared features of SCZ. Although

schizophrenia typically exhibits a high degree of individual
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FIGURE 6

Correspondence plot between recognition accuracy and EEG length.

TABLE 4 The SCZ recognition accuracy of di�erent features and classifier.

Studies Feature sets Classifier Accuracy

Devia et al. (2019) EEG activity
Linear discriminant

analysis
71.00%

Baradits et al. (2020)
Microstate temporal

parameters

Machine learning

model
82.70%

Siuly et al. (2020) EMD features
Ensemble bagged

tree
89.60%

Akbari et al. (2021)
Phase space

dynamic
K-nearest neighbor 94.80%

Kim et al. (2021)
Microstate temporal

parameters

Support vector

machine
75.60%

Lillo et al. (2022)
Microstate and

microstate features

Convolutional neural

networks
93.00%

Chen X. et al. (2023)
Linear and

non-linear measures

Support vector

machine
89.00%

This paper K-nearest neighbor 97.20%

variability, resting-state microstates show a relatively high degree

of stability.

3.3.4 Ablation experiment
In this study, seven types of microstate features totaling 39

dimensions were extracted for classification analysis, and to further

verify the effectiveness of the proposed features, this section uses

feature importance to evaluate the importance of each feature in

SCZ recognition. The computational process is as follows: Pre-

train a KNN classifier using all features. Then set a certain type of

microstate feature to be evaluated to 1. Finally, use the pre-trained

classifier to classify the modified feature set. The amount of decay

in the model performance represents the importance of that class

of features.

The experimental results are shown in Table 6.

The results of ablation experiments in this paper show that

the extracted microstate features have a significant positive effect

on the recognition of SCZ. Among them, semantic features have

the highest percentage, which suggests that semantic features

TABLE 5 The performances of cross subject classification.

SCZ
index

HC
index

Accuracy Sensitivity Specificity

1 1 97.9% 97.9% 97.9%

2 2 94.8% 94.1% 95.6%

3 3 98.0% 98.1% 97.9%

4 4 94.5% 93.2% 95.9%

5 5 95.9% 96.3% 95.4%

6 6 99.0% 98.4% 99.7%

7 7 97.1% 96.7% 97.6%

8 8 96.0% 95.7% 96.3%

9 9 96.1% 96.3% 95.9%

10 10 94.9% 94.8% 95.1%

11 11 96.8% 96.8% 96.8%

12 12 96.0% 96.8% 95.1%

13 13 94.0% 94.0% 94.0%

14 14 97.9% 97.9% 97.8%

Average 96.4% 96.2% 96.5%

contribute greatly to understanding and classifying SCZ. It also

strongly suggests that semantic sequences may carry information

inherent to the brain states of SCZ patients. Second, the quality

features of microstate sequences also occupy an important position,

which implies that the dual-template approach proposed in this

paper is reasonable and reliable. This approach extracts the quality

features of microstate sequences based on the principle of template

data consistency to effectively distinguish SCZ patients from

healthy individuals. In contrast, traditional temporal features, such

as the frequency, duration and percentage of microstates, are

less important in SCZ identification. The results of the feature

importance experiments validate the effectiveness of the features
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TABLE 6 Results of feature importance experiments.

Types Features Dimensional Accuracy Importance

Quality

Correlation 4 93.5% 3.7%

Explained 4 91.5% 5.7%

Residual 4 91.8% 5.4%

Dispersion 4 91.9% 5.3%

Semantic
2seq frequency 7 90.7% 6.5%

2seq frequency 14 91.0% 6.2%

Temporal

MD 4 94.4% 2.8%

OPS 4 94.6% 2.6%

TCR 4 95.5% 1.7%

proposed in this paper, especially the semantic features and the

quality features of microstate sequences, which have potential

applications in SCZ recognition and research. These results provide

an important basis for a deeper understanding of the brain

mechanisms of SCZ and for improving its diagnosis.

The results of the classification experiments fully demonstrated

that the microstate sequences constructed based on the resting-

state EEG of schizophrenic populations carry relevant information

about schizophrenic symptoms, which can be used for further

schizophrenia-related research in academics, and can be used

as biomarkers for effective detection of schizophrenic states in

engineering.

4 Discussion

This study discusses the role of EEG microstates in the

classification of SCZ. In contrast to conventional microstate

features, we introduce two novel features: microstate semantic

features and microstate quality features. The classification results

suggest that the microstate features presented in this paper aid

in effectively distinguishing between individuals with SCZ and

healthy (control) subjects, yielding higher classification accuracy.

This section will specifically focus on elucidating the microstate

differences observed between individuals with SCZ and healthy

subjects.

4.1 The di�erence in microstate template

In this paper, the spatial correlations of the two microstate

templates were first analyzed in detail using the Pearson product-

moment correlation coefficient. The results showed that there were

significant differences between the SCZ patients and the HC in

terms of microstate B and microstate D, with correlations of 0.68

and 0.86, respectively. Specifically, in microstate B, the activation

of brain regions was mainly located in the left frontal lobe and the

left temporal lobe for healthy subjects, whereas left temporal lobe

activation was significantly lower for SCZ patients. In microstate

D, the activation of brain regions in healthy subjects was mainly

concentrated in the frontal and parietal lobes, and exhibits lower

left and right brain laterality. On the contrary, the activation of

brain regions in SCZ patients showed significant lateralization,

with the activation in the right hemisphere being significantly

higher than that in the left hemisphere. It has been shown that

microstate B is associated with attention and microstate D with

visual processing (Britz et al., 2010). The differences in these

microstate templates further highlight the significant changes in

the overall brain working mode of SCZ patients, and indicate that

the disease information of SCZ is reflected in the microstate. The

topography of type B andD showed a significant difference between

the two groups which is consistent with previous studies on SCZ

studies. Microstate B and D were reported by several studies and

found to be associated with positive symptoms (Lehmann et al.,

2005; Nishida et al., 2013; Kim et al., 2021).

Microstate alterations observed in SCZ seem to reflect

deteriorated connectivity, decreased functional organization, or

increased noise in brain processes that have been hypothesized

as neurophysiological bases for SCZ symptomatology (Lehmann

et al., 2005). Britz et al. (2010) discovered that microstate B

exhibited a correlation with negative BOLD activation in the

bilateral occipital cortex, while microstate D was associated with

negative BOLD activation in the right-lateralized dorsal and

ventral areas of the frontal and parietal cortices. According to

Milz et al. (2016), each microstate may correspond to a specific

function network, which corresponds to the auditory network,

visual network, salience network, and attention network of the

brain, respectively. Abnormalities in EEG microstates observed in

SCZ imply a disruption in normal network activities underlying the

pathogenesis of the disease. Altered microstate characteristics may

indicate changes in the propensity for activation of specific neural

assemblies.

We found no public study which discussed the relationships

between microstate differences and molecular changes in SCZ.

Microstate analysis mainly focuses on the macro level of brain

activity, while molecular changes occur at the micro level, lacking

direct connection bridges. Nevertheless, we can still speculate

that there may be a correlation between molecular changes

and disrupted microstate characteristics. In vivo imaging of

the dopamine system has consistently identified elevated striatal

dopamine synthesis and release capacity in SCZ (McCutcheon

et al., 2020). Disruption in the glutamatergic system due to

NMDA receptor alteration, which has been shown in schizophrenia

(Balu, 2016). Buck et al. (2022) proposed that disrupting DA-

glutamate circuitry between dopamine and glutamate, particularly

in the striatum and forebrain, is the pathophysiology that leads

to SCZ. Molecular changes may result in inefficient cortical

network synchronization, yielding different characteristic for the

corresponding microstates. However, empirical studies are needed

to gain insight into the connection between molecular alterations

and microstates disturbances.

4.2 The di�erence in microstate sequence
features

The microstate sequence MD, OPS, TCR, and TP features

were extracted and statistically analyzed. The results are shown
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FIGURE 7

Results of microstate Sequence feature analysis of four microstate sequences. (A) Mean duration (MD). (B) Occurrence per second (OPS). (C) Time

coverage ratio (TCR). (D) The results of Wilcoxon rank sum test. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.

in Figure 7. As can be seen from Figure 7, the differences of MS-

seq features mainly focus on microstate C and microstate D no

matter which microstate template was used. MD, OPS, and TCR

of microstate C increased significantly, while MD, OPS, and TCR

of microstate D decreased significantly. The time course of the

microstates contains important information about the underlying

neural generator (Khanna et al., 2015). In SCZ patients, the stability,

tendency, intensity, or coordination of neural components are

altered.

This result is consistent with previous studies, indicating that

microstate features are stable and suitable for classification of

SCZ. A large body of prior literature found increased parameters

of class C and decreased parameters of class D in patients

with SCZ compared with healthy controls (Britz et al., 2010;

Amad et al., 2014; Milz et al., 2016). Combining the results

from the previous section, it is demonstrated that the temporal

characteristics of microstates are closely related to the topological

structure characteristics. Microstate class C was associated with the

salience network, which functions to identify the most relevant

stimulus from internal and external inputs to guide appropriate

actions (Thijssen et al., 2015). Therefore, altered parameters of class

C in SCZ may be closely related to the clinical manifestations of

SCZ patients who have difficulty distinguishing between the inner

world and the outside world. Similarly, microstate class D is related

to the frontoparietal attention network. The change of class D in

SCZ may reflect impaired cognitive functions involving attentional

processes.

When using different templates to model the same type of EEG

signal, we found that MD, OPS and TCR of microstate B were more

sensitive to microstate templates and EEG data types, that is, only

when microstate modeling was performed on healthy EEG data,

the above characteristics showed differences, while the EEG data of

SCZ patients showed no differences. In contrast, MD and TCR of

microstate A showed the opposite behavior and were only sensitive

to the microstate sequence of SCZ patients.

4.3 The di�erence in microstate semantic
features

In Section 3.2, it is noted that at a subsequence length of 2

(i.e., two microstates appearing in pairs), there is a significant

increase in the probability of occurrence of the BA, BC, DA, DB,

and DC sequences in SCZ patients. Conversely, the probability of

occurrence of the CA and CB sequences decreases significantly.

Furthermore, at a subsequence length of 3 (i.e., three microstates

appearing simultaneously in a fixed order), SCZ patients exhibit the
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highest frequency of the ABA, BAB, BCB, and CBC subsequences,

surpassing those observed in healthy subjects. These findings

suggest the presence of specific subsequence patterns in the

EEG signals of SCZ patients. The heightened occurrence of

these subsequence patterns may, therefore, reflect abnormalities in

speech processing, attention, and vigilance in individuals with SCZ.

Currently, research on microstates has predominantly

concentrated on the neural representations of individual

microstates, with limited attention dedicated to microstate

sequences. In this paper, we identify several fixed microstate

sequences in patients that exhibit significant differences compared

to healthy subjects. As previously discussed, the topological

structures of microstates B and D exhibit substantial alterations

in SCZ patients compared to healthy individuals. These changes

disrupt the transition between states. Baradits et al. (2020) found

the transition from one state to another may represent the

sequence of networks that constitute large-scale brain networks.

Disturbance in such a structure of network operations may result

in disconnection between brain networks, which thereby leads to

dysfunctional behavior.

When analyzing subsequences with a length of 3, it is

essential to consider them as a unified entity. Currently, there

is limited research exploring the correlation between microstate

subsequences and the pathology of SCZ. From Figure 7, it

is evident that abnormal subsequence states can be broadly

categorized into two types: first, those where subjects struggle

to return to their original state after a transition, and second,

transitions between states ACDs. The first type of abnormality

suggests that SCZ patients face challenges in reverting to

their original state post-transition, potentially linking to clinical

symptoms such as disjointed thinking, incoherent speech, or

compulsive thoughts commonly observed in SCZ diagnosis. These

abnormal subsequences may directly correspond to these clinical

manifestations. The second type of anomaly primarily occurs

during transitions between states ACD. According to research by

Milz et al., microstate A represents the auditory network of the

brain. Therefore, abnormalities in state ACD transitions may be

closely associated with verbal hallucinations experienced by SCZ

patients.

These subsequence patterns may offer valuable insights for

the diagnosis and treatment of SCZ patients. By analyzing the

occurrence of these subsequence patterns in microstates, clinicians

may be able to diagnose SCZ patients with greater accuracy.

4.4 Limitation

Some study limitations must also be discussed.

First, this study used publicly available data instead of data

obtained from cohort studies, and the number of subjects was small.

Although age and gender were matched, it was difficult to obtain

enough data to represent the general population. Thus, the results

of this study should be interpreted carefully.

Secondly, as the dataset used in this study is public, the analysis

did not include an examination of patients’ clinical manifestations

alongside their microstate manifestations. In our future research,

we intend to collaborate with hospitals and other organizations to

undertake a more in-depth exploration of the relationship between

clinical performance and microstates in SCZ.

Finally, due to the constraints posed by the data length, the

analysis of the semantic features of microstates in this paper was

limited to sequences of length 3. In subsequent studies, we aspire to

extend this investigation to obtain microstate markers that offer a

more comprehensive characterization of schizophrenia.

5 Conclusion

In this study, we propose a method for investigating the brain

activity of patients with schizophrenia based on the microstate

semantic modeling method. This method introduces the concept

of microstate semantic features, decomposes microstate sequences

into subsequences of varying lengths, compares their statistical

features, and successfully extracts subsequences with specific

semantics. These specific sequences characterize the distinctive

brain activity patterns of SCZ. Additionally, a dual-template

microstate construction strategy is employed to define the quality

features of microstate sequences across four dimensions: relevance,

explanation, residual, and scatter. The quality features and semantic

features of microstate sequences were tested on public datasets for

SCZ recognition, achieving an accuracy rate of 97.2%. Furthermore,

cross-subject experimental validation is conducted, demonstrating

that the method achieves a recognition rate of 96.4% between

different subjects.

The studies show thatmicrostate sequences are a valid

electrophysiological marker for the identification of psychiatric

classified disorders. However, we also need to realize that to

truly apply this technique to clinical diagnosis, more studies

of the same kind are needed to extend the research and to

conduct more in-depth analytical studies to better understand the

relationship between EEG microstate sequences and psychiatric

classified disorders in order to provide better support for clinical

practic.
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