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Human postural control system is inherently complex with nonlinear interaction 
among multiple subsystems. Accordingly, such postural control system has 
the flexibility in adaptation to complex environments. Previous studies applied 
complexity-based methods to analyze center of pressure (COP) to explore 
nonlinear dynamics of postural sway under changing environments, but 
direct evidence from central nervous system or muscular system is limited in 
the existing literature. Therefore, we  assessed the fractal dimension of COP, 
surface electromyographic (sEMG) and electroencephalogram (EEG) signals 
under visual-vestibular habituation balance practice. We combined a rotating 
platform and a virtual reality headset to present visual-vestibular congruent or 
incongruent conditions. We asked participants to undergo repeated exposure 
to either congruent (n  =  14) or incongruent condition (n  =  13) five times while 
maintaining balance. We  found repeated practice under both congruent and 
incongruent conditions increased the complexity of high-frequency (0.5–20  Hz) 
component of COP data and the complexity of sEMG data from tibialis anterior 
muscle. In contrast, repeated practice under conflicts decreased the complexity 
of low-frequency (<0.5  Hz) component of COP data and the complexity of EEG 
data of parietal and occipital lobes, while repeated practice under congruent 
environment decreased the complexity of EEG data of parietal and temporal 
lobes. These results suggested nonlinear dynamics of cortical activity differed 
after balance practice under congruent and incongruent environments. Also, 
we found a positive correlation (1) between the complexity of high-frequency 
component of COP and the complexity of sEMG signals from calf muscles, 
and (2) between the complexity of low-frequency component of COP and the 
complexity of EEG signals. These results suggested the low- or high-component 
of COP might be related to central or muscular adjustment of postural control, 
respectively.
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FIGURE 1

(A) An illustration of the laboratory instruments used in the present experiment. The direction of the rotating platform was clockwise. (B) An illustration 
of the visual scene and the rotating platform. The visual scene and the rotating platform was synchronized through the Unity3D program in the present 
study. The visual scene in the VR headset was rotated counterclockwise in the congruent condition (Con) (i.e., natural visual environment) and 
clockwise in the incongruent condition (InCon) (i.e., conflicting visual environment).

1 Introduction

Individuals need to constantly maintain upright standing balance, 
responding to complex and dynamically changing environments. This 
intricate process is known as postural control. The dynamics of human 
postural control are inherently complex (Ting et al., 2009; Ivanenko 
and Gurfinkel, 2018), and such complexity of the postural control 
system arises from the nonlinear interaction among multiple 
subsystems over multiple time scales, including musculoskeletal, 
sensory and neural systems (Shumway-Cook and Woollacott, 2014).

Thus, recent studies applied nonlinear methods [such as entropy, 
fractal dimension (FD) and recurrence quantification analysis] to 
explore the dynamic characteristics of center of pressure (COP) 
oscillations, as an important measure of postural sway, when facing 
different perturbations [see the review (Kędziorek and Blażkiewicz, 
2020)]. Physically speaking, higher value of entropy or FD reflects 
increased complexity of time series. In context of postural control, 
when facing perturbations such as vibrations on the calf, the 
complexity of COP oscillations in both young and older participants 
decreased initially before gradually increasing with such sustained 
vibrations (van den Hoorn et  al., 2018). Also, absence of visual 
information in young and older participants decreased the complexity 
of COP data (Ramdani et al., 2011). The results suggested that the 
lower complexity of sway translates into lower flexibility of postural 
control, and the increased complexity interpreted as improved self-
organization and effective strategies in postural control (Kędziorek 
and Blażkiewicz, 2020). Furthermore, numbers of studies used these 
complexity-based nonlinear methods to study the decrease in postural 
stability caused by aging, and suggested that, compared to young 
adults, the decreased postural sway complexity among elderly people 
reflected lower flexibility and adaptive capacity of postural control 

system (Manor et al., 2010; Zhou et al., 2017; van den Hoorn et al., 
2018). These results are consistent with the theory of complexity loss 
in aging, suggesting that the adaptive abilities reduce with aging 
(Goldberger et al., 2002).

Previous studies typically perturbed single sensory inputs to 
examine their effects on multisensory inputs for postural sway. For 
example, recent studies used virtual reality (VR) technology to create 
different visual flow patterns and found that the visual flow in VR 
induced postural instability and activated neuromuscular regulation 
in postural control (Kabbaligere et al., 2017; Luo et al., 2018). Besides, 
VR has also been used to understand how the brain select and 
organize multiple sensory information (Wright et al., 2014), since VR 
allows us to manipulate two sensory inputs synchronously. For 
example Nguyen et  al. (2020) used a rotary chair for vestibular 
manipulation and used a visual moving scene for visual manipulation 
to present the visual-vestibular conflict when sitting. However, the 
effect of such visual-vestibular conflict on standing postural control 
still remains unclear. Thus, our present study combined a rotary 
platform and a visual rotary scene in the VR headset to present visual-
vestibular conflicts (Figure 1).

Although postural control system consists of multiple subsystems, 
previous studies did not explore how the dynamics of neural or 
muscular system adapt to complex environments such as the sensory 
conflicting environment to maintain balance. For example, the central 
nervous system and the muscular system are both fundamental for 
postural control; thus, we can use electroencephalography (EEG) and 
electromyography (EMG) to underline the different cortical and 
muscular activities under complex environments (Merletti et al., 2010; 
Edmunds et al., 2019; Barollo et al., 2022; Stehle et al., 2022).

Therefore, our first aim was to investigate the dynamic 
characteristics of subsystems of postural control system during 
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repeated balance practice under visual-vestibular congruent or 
incongruent environments in conjunction with EEG, surface EMG 
(sEMG) and COP signals. Previous studies found that the complexity 
of EEG data was lower in standing than walking in response to a 
perturbation (Pakniyat and Namazi, 2021), which suggested that the 
lower EEG complexity in the frontal lobe may indicate a lower 
cognitive load or a lower attention level (Ke et al., 2014; Gupta et al., 
2021). Accordingly, we hypothesized that the complexity of EEG data 
would decrease after repeated balance practice. Previous studies found 
that when the difficulty in balance tasks increased, the lower limb 
muscle activity increased (Gebel et al., 2019) and the complexity of 
sEMG data from calf muscles decreased (Murillo et al., 2012; Pakniyat 
and Namazi, 2021). Since these results suggested that higher sEMG 
complexity probably reflect an effective strategy in postural muscles 
when facing perturbations, we hypothesized that the complexity of 
sEMG data of calf muscles would increase after repeated 
balance practice.

On the other hand, the dynamics of COP oscillations reflected the 
activity of different neuromuscular components during postural 
control in different time scales (Manor et al., 2010; Federolf et al., 
2015), as suggested in previous studies where low- and high-frequency 
variations of COP might be  related to central adjustments and 
peripheral adjustments, respectively (Zatsiorsky and Duarte, 1999; 
Tahayori et  al., 2012). Furthermore, recent studies analyzed the 
nonlinear dynamics of low- and high-frequency components of COP 
oscillations when performing different levels of task difficulty and 
found that the complexity of low-frequency component of COP was 
related to a better task performance, rather than high-frequency 
component of COP (Caballero Sánchez et al., 2016; Moreno et al., 
2022). These results further explore the potential relationship between 
complexity of COP and neuromuscular adjustments. However, these 
studies did not explore the potential relationship between low- or 
high-components of COP and neuromuscular adjustments based on 
the sEMG or EEG data.

Thus, our second aim was to investigate whether the dynamics of 
low- and high-frequency COP oscillations differ since previous studies 
suggested that low- and high-frequency components of COP might 
be related to peripheral adjustments (i.e., evidence from EMG signals) 
or central adjustments (i.e., evidence from EEG signals) (Zatsiorsky 
and Duarte, 1999; Moreno et al., 2022). We hypothesized that the 
complexity of low-frequency COP data would decrease while the 
complexity of high-frequency components of COP data would 
increase after repeated balance practice. We also hypothesized that the 
complexity of low- or high-frequency components of COP data would 
be  positively related with the complexity of EEG or sEMG data, 
respectively.

2 Materials and methods

2.1 Participants

We used F-test model with ANOVA in G*Power software (Version 
3.1 for Mac) to calculate the sample size with a significant level of 0.05, 
an effect size of 0.25 and a statistical power of 0.8. The total required 
sample size was 24. Thirty-one university students participated in this 
study, and were randomly divided into two groups (i.e., congruent or 
incongruent). All participants had no neurological, skeletal, or 

muscular problems with normal or corrected vision. They signed a 
written informed consent form before the experiment. The Ethics 
Committee of Zhejiang University Psychological Science Research 
Center permitted our experiment.

The data from one participant in the incongruent group was 
excluded because of stepping during the experiment. Also, the data 
from three participants was excluded due to the severe body swaying 
(i.e., spread their arms or use the hip strategy) during the experiment 
(one in incongruent group, two in congruent group). Therefore, 14 
participants (5 females) were included in the congruent group (mean 
age 22.93 ± 2.28 years, height 172.21 ± 8.80 cm, body mass 
64.78 ± 11.24 kg) and 13 participants (6 females) were included in 
the incongruent group (mean age 24.85 ± 2.57 years, height 
169.35 ± 7.05 cm, body mass 63.38 ± 12.45 kg) for the present study.

2.2 Procedure

We combined a rotating platform and a VR headset with the 
visual scene to manipulate vestibular and visual inputs, respectively. 
Also, we used the Unity3D program to synchronize the control of the 
rotating platform and the visual scene to set “congruent” (i.e., natural 
visual stimulation) and “incongruent” (i.e., conflicted visual 
stimulation) experimental conditions (Figure 1).

In the congruent condition, the rotating platform was accelerated 
at 4°/s2 for 10s to the right (clockwise) and kept rotating at 40°/s for 
27 s, and then decelerated at 4°/s2 for 10s, with no additional control 
in the visual scene. Thus, the visual scene moved counterclockwise 
relative to the participant. In the incongruent condition, the rotating 
platform was set to the same parameters as in the congruent condition. 
In this case, the visual scene moved clockwise relative to the 
participant, providing visual information that was opposite to the 
actual motion (Figure 1).

Before the experiment, demographic data (e.g., age, height, body 
mass, dominant side) was recorded for each participant. Participants 
were asked to stand on the stable platform and to cross their arms on 
the chest for 30 s (baseline) followed by 47 s of “congruent” or 
“incongruent” condition (rotation) and finally again on the stable 
platform for 30 s (recovery). Each participant was asked to complete 
five repeated tasks, either congruent or incongruent, with 5-min rest 
between each standing task. During the standing task, each participant 
was asked to cross their arms on the chest.

2.3 Data collection

We recorded COP data, surface EMG (sEMG) data and EEG data 
from participants during the experimental tasks. A Wii balance board 
was placed in the center of the rotating platform and the BrainBlox 
program software was used to collect COP data with a 100 Hz sample 
frequency (Cooper et al., 2014). A 16-channel sEMG system (Trigno 
Wireless System, Delsys, United States) was used to collect the sEMG 
data of the left and right Tibialis anterior (TA) and Medial 
gastrocnemius (MG) with a 2,000 Hz sample frequency. The skin was 
shaven, abraded, and cleaned with alcohol prior to placing the 
electrodes. A double-sided tape was used to fix the electrodes. Also, 
an ANTNeuro EEG device containing 32 channels in the 10–20 
standard regime was used to collect EEG data. The impedance of all 
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electrodes remained below 5 k ohms throughout the experiment with 
a 1,000 Hz sampling frequency.

2.4 Data analysis

In the present study, we used the rotating platform to manipulate 
the vestibular information since the semicircular canals within the 
vestibular system are responsible for detecting the angular acceleration 
information. Thus, we divided raw data of COP, sEMG and EEG into 
two phases for further analysis: acceleration (0–10 s after platform 
start) and deceleration (37–47 s after platform start).

Since the postural control system is inherently dynamically 
nonlinear (Ivanenko and Gurfinkel, 2018) and previous studies 
showed that COP, sEMG, and EEG signals all have the positive 
Lyapunov exponent (Sbriccoli et al., 2001; Kannathal et al., 2005; 
Liu et al., 2015), complexity-based nonlinear methods can be used 
to identify mechanisms underlying variability in postural control 
(Ting et al., 2009; Kędziorek and Blażkiewicz, 2020). In the present 
study, fractal dimension (FD) analysis with the Higuchi’s algorithm 
was used for providing an indication of the complexity of a signal 
and quantifying the self-similarity of a pattern over multiple time-
scale (Higuchi, 1988). Higher FD value suggest higher complexity 
of time series. Higuchi’s algorithm for FD calculation was shown 
below (Cui et al., 2017): first, construct k new signals from a given 
COP signal to a newly constructed signal Smk ; then, calculate the 
length L km � � of Smk  and compute the mean of L km � � over m called 
L(k); finally, plot L(k) against k (ranging from 1 to kmax ) on a 
double logarithmic scale and calculate the slope of this line as the 
FD index. To choose an appropriate kmax , each FD index was 
plotted against the kmax . The point at which the plateaus is 
considered a saturation point, and the kmax  should be  chosen 
(Doyle et al., 2004).

To better understand the linear and nonlinear interactions of 
postural control system, we  also calculated the traditional linear 
measures of COP, sEMG and EEG signals as complementary analysis.

2.4.1 COP data
Recorded COP data were processed offline using a custom script 

in MATLAB (R2021a, MathWorks, United  States). A filtering 
procedure was used as a method of decomposing the COP data (1,000 
points of acceleration or deceleration) into two different components 
to reveal the underlying mechanisms of postural control. A 0.5 Hz 
low-pass Butterworth filter (4th-order, zero-phase lag) was used to 
obtain the low-frequency component of the COP data (Zatsiorsky and 
Duarte, 1999; Moreno et  al., 2022). A 0.5–20 Hz band-pass 
Butterworth filter (4th-order, zero-phase lag) was used to obtain the 
high-frequency component of the COP data (Zhou et  al., 2017). 
We also filtered COP data through a 20 Hz low-pass Butterworth filter 
(4th-order, zero-phase lag) and calculated the standard deviation 
(SD). The outcome measures for COP data used in this study were the 
FD value of low-frequency and high-frequency components of COP 
time series and the SD value in the AP and ML directions.

Previous studies applied nonlinear methods to explore the 
dynamic characteristics of COP signals in response to various 
perturbations or across different groups, such as young people, elderly 
people with or without fall history, and they generally low-pass filtered 
the raw COP data with a cutoff frequency at 20 Hz (Luo et al., 2018; 

van den Hoorn et al., 2018; Hao et al., 2021). It has been found that 
perturbations decreased the complexity of COP data (i.e., lower FD 
value and lower entropy value), with a more significant effect observed 
in elderly individuals (Manor et al., 2010; Zhou et al., 2017; Kędziorek 
and Blażkiewicz, 2020). Lipsitz (2002) proposed a “loss of complexity” 
hypothesis to study the decrease in physiology function caused by 
aging. Accordingly, higher complexity of COP signal might suggest 
higher flexibility of postural control system and an effective postural 
strategy used in postural control.

2.4.2 sEMG data
Recorded sEMG data were processed offline using a custom script 

in MATLAB (R2021a, MathWorks, United  States). We  used a 
20–500 Hz band-pass, 4th-order, zero-lag Butterworth filter. Then, the 
50 Hz line noise was removed. We used the filtered sEMG data (20,000 
points of acceleration or deceleration) to calculated the integrated 
EMG (iEMG), and normalized iEMG value to the baseline activity of 
5th trial (5 s–15 s after experiment start) among muscles and across 
participants as normalized muscle activity. The outcome measures for 
sEMG data used in this study were the FD value of the time series and 
the normalized muscle activity of left and right TA and MG muscles.

The majority of previous studies using nonlinear methods on 
sEMG signals are related with muscle fatigue. For example, it has been 
reported that muscle fatigue decreased the complexity of muscle 
sEMG data (i.e., lower FD value and lower entropy value) (Rampichini 
et al., 2020). Besides, Murillo et al. (2012) found that the complexity 
of calf muscle sEMG decreased (i.e., lower entropy value) when 
standing on a more unstable surface. Accordingly, higher complexity 
of sEMG signal might suggest that muscles are more likely to respond 
flexibly to a perturbation.

2.4.3 EEG data
Recorded EEG data were processed offline using a custom script 

in MATLAB (R2021a, MathWorks, USA), and were processed based 
on a custom script in the EEGLAB toolbox (Delorme and 
Makeig, 2004).

First, the raw EEG data were filtered with a 1–48 Hz band-pass 
FIR filter and the 50 Hz line noise was removed using the EEGLAB 
Cleanline plug-in. The average of all electrodes was chosen as the 
reference. Further, to remove artifacts from body motion during 
rotation, the EEG data segments contaminated with large artifacts 
were removed using Artifact Subspace Reconstruction (ASR) (Mullen 
et al., 2015), where the threshold was set to 20 standard deviations 
(Chang et al., 2019) and ensured that at least 80 percent (Every 10s 
data is guaranteed to leave 8 s) of the data were retained. Finally, the 
EEG signal was decomposed using independent component analysis 
(ICA) with the aid of the ICLabel plug-in to remove interfering signals 
such as blinks, muscle artifacts, electrocardiogram, and linear noise 
that are not homologous to the EEG (Pion-Tonachini et al., 2019). No 
baseline removal procedures were performed on the EEG data in the 
present study.

Adapting from our previously published work (Wang et al., 2022), 
a standardized low- resolution EEG tomography software package 
(sLORETA) for source localization (Pascual-Marqui, 2002). 
Specifically, we selected the following seven cortical regions as the 
regions of interest (ROIs) defined by the Brodmann atlas: dorsolateral 
prefrontal cortex (DL-PFC; BA10, 46, 47), frontal eye field cortex 
(FEF; BA8, 9), motor cortex (MC; BA4, 6), primary somatosensory 

https://doi.org/10.3389/fnhum.2024.1371648
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Hua et al. 10.3389/fnhum.2024.1371648

Frontiers in Human Neuroscience 05 frontiersin.org

(S1; BA1, 2, 3), posterior parietal cortex (PPC; BA5, 7), temporal–
parietal junction (TPJ; BA22, 40), visual cortex (VC; BA17, 18, 19).

We used the fast Fourier transformation (FFT) analysis with a 
10% Hanning window to calculate the spectral power values at alpha 
band (8–12 Hz) for seven ROIs. The alpha-band power values were 
normalized to the spectral power values at 4–45 Hz band among ROIs 
and across participants. The outcome measures for EEG data used in 
this study were the FD value of the time series and normalized alpha-
band power values of seven cortical ROIs.

Previous studies suggested that the complexity of EEG increased 
(i.e., higher entropy value) when the attention level increased (Ming 
et al., 2009; Ke et al., 2014). Furthermore, Gupta et al. (2021) found 
that the meditation reduced the complexity of EEG (i.e., lower FD 
value), suggesting the brain improved the ability for effectively 
handling cognitive load. When there was a pull perturbation, the 
complexity of EEG signals was higher (i.e., higher FD value and higher 
entropy value) in walking than standing (Pakniyat and Namazi, 2021). 
Accordingly, lower complexity of EEG signal might suggest that the 
brain is more likely to effectively handle cognitive load or to deal with 
complex environments.

2.5 Statistical analysis

Statistical analysis was performed using SPSS software (Version 
24.0 for Mac). We combined the dependent variables from acceleration 
and deceleration phases for the further statistical analysis. Differences 
in measures were assessed through a mixed two-way ANOVA to 
examine the effect of practice (1st and 5th trial) and the group 

(Congruent and Incongruent). A series of post-hoc multiple 
comparisons with Bonferroni correction was used. To investigate the 
potential relationships between low- or high-frequency components 
of COP data and central adjustments (based on EEG data) or 
peripheral adjustments (based on sEMG data) respectively, we used 
two-tailed Pearson correlations between the complexity of 
low-frequency components of COP data and the complexity of EEG 
data, and between the complexity of high-frequency components of 
COP data and the complexity of sEMG data. Statistical significance 
was set at p < 0.05.

3 Results

3.1 Measures of COP

A two-way mixed ANOVA revealed a significant main effect of 
practice on the FD values of low- and high-frequency components of 
COP and on the SD values of COP in the AP and ML directions 
(Supplementary Table S1). However, no significant main effect of 
group or interaction effect of practice × group was observed. Post-hoc 
tests revealed that practice under the incongruent condition decreased 
FDlow values of COP in the AP and ML directions (p < 0.01) 
(Figure 2B), and decreased SD values of COP in the AP direction 
(p < 0.05) (Figure  2A). Practice under the congruent condition 
decreased SD values of COP in the ML direction (p < 0.05) (Figure 2A). 
Practice under congruent and incongruent conditions both increased 
FDhigh values of COP in the AP and ML directions (p < 0.001) 
(Figure 2B).

FIGURE 2

Changes of standard deviation (A) and fractal dimension values of low- and high-frequency components of COP data (B) in the ML direction and AP 
direction. In each box plot, the box represents 1st and 3rd quartiles with the median value. The asterisk (*) indicates a significant difference (*<0.05, 
**<0.01, ***<0.001) between trials. Con and lnC0n represent congruent and incongruent conditions, respectively. AP, anterior–posterior; ML, medial-
lateral.
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3.2 Measures of sEMG

A two-way mixed ANOVA revealed a significant main effect of 
practice on the FD values and on the normalized activity of TA and 
MG muscles in sEMG data. Also, there was a significant main effect 
of group on the FD values of right TA and on the normalized 
activity of right TA and left and right MG (Supplementary Table S2). 
However, no interaction effect of practice × group was observed. 
Post-hoc tests revealed that practice under the congruent and 
incongruent conditions increased FD values of sEMG in left and 
right TA muscles (p < 0.01) (Figure 3B), and decrease the sEMG 
activity in left TA muscle (p < 0.001) (Figure 3A). Besides, the FD 
value of right TA muscle in sEMG was greater under the 5th 
congruent condition compared with the 5th incongruent condition 
(p < 0.05) (Figure 3B). Left MG muscle activity was greater under 
the 1st incongruent then 1st congruent condition (p < 0.01) 
(Figure 3A).

3.3 Measures of EEG

A two-way mixed ANOVA revealed a significant effect of 
practice on the FD values of VC, TPJ, PPC, S1 and MC in EEG and 
on the alpha-band power value of VC, and a significant effect of 
group on the FD values of VC and TPJ in EEG. However, no 
interaction effect of practice × group was observed 
(Supplementary Table S3). Post-hoc tests revealed that practice 
under the congruent condition decreased the FD values of EEG in 
MC, S1, PPC, and TPJ (p < 0.01) (Figure 4B), while practice under 
the incongruent condition decreased the FD values of EEG in MC, 
S1, PPC, and VC (p < 0.05) (Figure  4B) and decreased the 

alpha-band power value of VC (p < 0.05) (Figure 4A). Besides, the 
FD value of EEG in VC was greater under the 1st incongruent 
condition compared with the 1st congruent condition (p < 0.01), 
and the FD values of EEG in TPJ under the 5th incongruent 
condition was greater compared with the 5th congruent condition 
(p < 0.01) (Figure 4B).

3.4 Correlations

The two-tailed Pearson correlation tests found that (1) significant 
positive correlations between the complexity of high-frequency 
component of COP data in AP and ML directions and the complexity 
of sEMG data of left and right calf muscles (Table 1); (2) significant 
positive correlations between the complexity of low-frequency 
component of COP data in AP direction and the complexity of EEG 
data of VC, TPJ, and PPC (Table 2).

4 Discussion

In this study, we  analyze the dynamic changes in the cortical 
activity, calf muscle activity and postural sway after repeated balance 
practice under visual-vestibular congruent and incongruent 
environments by computing the linear measures and fractal exponent 
of EEG, sEMG and COP signals. We mainly found that (1) practice 
under congruent and incongruent conditions both increased the 
complexity of high-frequency fluctuations of COP data and the 
complexity of sEMG data of TA; (2) practice under incongruent 
condition decreased the complexity of low-frequency fluctuations of 
COP data and the complexity of EEG data of parietal and occipital 

FIGURE 3

Changes of normalized muscle activity (A) and fractal dimension values of sEMG data (B) from left and right lower limbs. In each box plot, the box 
represents 1st and 3rd quartiles with the median value. The asterisk and the sharp indicate a significant difference (***<0.001, ##<0.01) between trials 
and groups, respectively. Con and InCon represent congruent and incongruent conditions, respectively. MG, medial gastrocnemius; TA, tibialis anterior.
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lobes, whereas practice under congruent condition decreased the 
complexity of EEG signals of parietal and temporal lobes; (3) the 
complexity of high-frequency fluctuations of COP data was positively 
correlated with the complexity of sEMG data of calf muscles; (4) the 
complexity of low-frequency fluctuations of COP data was positively 
correlated with the complexity of EEG data of visual cortex and 
posterior parietal cortex. We believe that the use of complexity should 
be explored in future studies to investigate the underlying mechanisms 
of postural control.

4.1 Interpretation of complexity

Our fractal analysis of high-frequency components of COP 
signals revealed a significant increase after repeated balance practice 
under congruent and incongruent conditions (Figure  2B). This 
increased complexity of postural sway is in agreement with van den 
Hoorn et al. (2018), suggesting that increased complexity of postural 
sway indicates an improved ability to adapt to changing environments 
with effective strategies in postural control (Kędziorek and 
Blażkiewicz, 2020).

Our fractal analysis of sEMG signals showed a significantly 
increase in the fractal exponent of TA muscle after repeated practice 
under congruent and incongruent conditions (Figure  3B, top). 
According to these present results and previous findings that more 
unstable standing conditions induced lower sEMG complexity of calf 
muscles (Murillo et al., 2012), we suggest that higher complexity of 
sEMG data probably indicate the greater capacity of postural muscles 
to adapt to the perturbation. However, our present results showed no 
significant changes in the fractal exponent of MG muscle activity after 
repeated practice under congruent or incongruent condition 
(Figure 3B, bottom). Accordingly, we might suggest that TA muscles 
adapted to the perturbation in a more effective way than MG muscles. 
This is consistent with Schmid et al. (2011), who found that activity of 
TA decreased more significantly than that of MG during a 3-min 
backward and forward horizontal oscillations of the support base. It 
is reasonable to assume that muscles responsible for dorsiflexion (i.e., 
TA) and plantar flexion (i.e., MG) of the ankle play different role in 
postural control. Changes in muscle length of TA better reflect the 
changes in ankle angle, thus providing a better source of proprioceptive 
inputs; whereas MG actively contributes to stabilizing continuous 
postural sway (Merletti et al., 2010).

The changes in muscle activation and the complexity of sEMG 
signals are not always align across different tasks. For example, muscle 

FIGURE 4

Changes of normalized alpha power values (A) and fractal dimension values of EEG data (B). In each box plot, the box represents 1st and 3rd quartiles 
with the median value. The asterisk and the sharp (4) indicate a significant difference (*<0.05, **<0.01, ***<0.001, ##<0.01) between trials and groups, 
respectively. Con and lnCon represent congruent and incongruent conditions, respectively. MC, motor cortex; PPC, posterior parietal cortex; S1, 
primary somatosensory; TPJ, temporal-parietal junction; VC, visual cortex.

TABLE 1 Correlations between the complexity of high-frequency 
component of COP data and the complexity of sEMG data during visual-
vestibular congruent and incongruent conditions (measured by FD 
values).

Left TA Left MG Right TA Right 
MG

COPhigh ML 0.358*** 0.219* 0.316*** 0.145

COPhigh AP 0.323*** 0.246** 0.325*** 0.190*

* Significant differences: p < 0.05; ** Significant differences: p < 0.01; ***Significant 
differences: p < 0.001.
AP, anterior–posterior; FD, fractal dimension; MG, medial gastrocnemius; ML, medial-
lateral; TA, tibialis anterior.

TABLE 2 Correlations between the complexity of low-frequency 
component of COP data and the complexity of EEG data of ROIs during 
visual-vestibular congruent and incongruent conditions (measured by FD 
values).

VC TPJ PPC S1 MC

COPlow ML 0.089 0.038 0.054 0.035 0.023

COPlow AP 0.208* 0.230* 0.214* 0.179 0.134

* Significant differences: p < 0.05.
AP, anterior–posterior; FD, fractal dimension; MC, motor cortex; ML, medial-lateral; PPC, 
posterior parietal cortex; ROIs, regions of interest; S1, primary somatosensory; TPJ, 
temporal–parietal junction; VC, visual cortex.
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fatigue decreased the muscle activity (%MVC) and also decreased the 
complexity of sEMG data with lower FD values or lower sample 
entropy values (Rampichini et al., 2020). However, our present results 
showed that practice under incongruent condition decreased the left 
TA muscles activity but increased the complexity of left TA sEMG data 
with higher FD values. This results are consistent with previous 
studies, where showed that when balance task difficulty increased, the 
calf muscle activity increased (Gebel et al., 2019) and the complexity 
of sEMG data decreased (Murillo et al., 2012; Pakniyat and Namazi, 
2021). Besides, we also observed that practice under incongruent 
condition reduced the left MG muscle activity without any significant 
changes of fractal exponent of left MG muscle (Figure 3). Thus, when 
exploring changes in the sEMG data caused by different factors like 
muscle fatigue or postural perturbations, it is possible to 
comprehensively interpret the results from linear and 
nonlinear measures.

Although we found an increase in the fractal exponent of sEMG 
data from TA and high-frequency of COP data, the results of the 
analysis of EEG signals showed a reverse trend that repeated balance 
practice under congruent and incongruent conditions reduced the 
fractal exponent of EEG signals in different ROIs (Figure 4B). This 
reverse trend aligns with the findings in Pakniyat and Namazi (2021), 
where the complexity of EEG signals was higher in walking than 
standing in response to perturbation whereas the complexity of sEMG 
signals exhibited the opposite pattern, being higher in standing than 
walking. We  could speculate that complexity environment might 
increase the complexity of EEG (Kamal et al., 2020; Pakniyat and 
Namazi, 2021). Accordingly, the decrease of complexity of EEG signals 
after habituation balance practice in the present study might correlate 
with the decrease of level of central volitional control or level of 
attention (Ming et al., 2009).

4.2 Relationship between COP and sEMG/
EEG

However, our fractal analysis of low-frequency COP signals 
revealed a significant decrease after repeated practice under 
incongruent condition (Figure 2B). Moreno et al. (2022) recently 
argued that the long-time latency changes in low-frequency of COP 
signals align with the idea that regulating the COP to the desired 
state is primarily governed by alterations in the body’s reference 
configuration linked to central volitional control. Accordingly, the 
decreased complexity of low-pass components of COP suggested a 
decreased level of central volitional control after repeated practice 
under conflicting environments. Our correlation results are 
consistent with this hypothesis, showing that the complexity of 
low-frequency component of COP data was positively related with 
the complexity of EEG data from visual cortex and posterior parietal 
cortex (Table 2). Furthermore, we also found a significantly positive 
correlation between the complexity of high-frequency component 
of COP data and the complexity of sEMG data from calf muscles 
(Table 1). These results supported the previous findings that low- 
and high-frequency components of COP might be  related to 
peripheral adjustments (such as reflex mechanisms and mechanical 
muscular properties) and central adjustments (such as cortical 
response), respectively (Zatsiorsky and Duarte, 1999; Moreno 
et al., 2022).

4.3 Cortical activity and sensory conflicts

Previous studies suggested that the increased complexity of EEG 
signals could reflect a good cortical response to stimuli (Takahashi 
et al., 2009). Accordingly, we observed that repeated practice under 
incongruent condition both reduced the fractal exponents of visual 
cortex EEG signals and the alpha-band power values of visual cortex 
(Figure  4). This result is consistent with the sensory reweighting 
theory (Peterka, 2002), suggesting that the brain probably down-
weighted the less reliable visual information in our experimental 
setting for postural control. In contrast, our results showed a 
significantly decrease in the fractal exponents of TPJ EEG signals after 
repeated practice under congruent condition rather than incongruent 
condition, while there was no significant change of alpha-band power 
value after practice under congruent or incongruent condition 
(Figure 4). Although the superior temporal lobe has both congruent 
neurons and opposite neurons (Gu et al., 2006), the complexity of 
EEG data from superior temporal lobe reduced after repeated practice 
under congruent condition whereas the superior temporal lobe 
continuously played a key role in processing conflicting sensory 
information (Wang et al., 2022). These results suggested nonlinear 
dynamics of cortical activity differed after balance practice under 
congruent and incongruent environments.

4.4 Limitations

Since the present study aimed to investigate the effect of visual-
vestibular conflicts on the dynamics of postural control, we chose the 
data from acceleration and deceleration phases, necessitating the 
stimulation of the vestibular system. Thus, one limitation is that 
we did not further explore the dynamic changes from other phases, 
such as baseline and recovery phases. However, it would be beneficial 
for further studies to investigate the dynamic changes after 
perturbations (i.e., the recovery phase) using complexity-based 
nonlinear methods, since previous studies showed that perturbations 
had a noticeable after-effect on postural control among young and 
older adults (Doumas and Krampe, 2010; van den Hoorn et al., 2018).

5 Conclusion

Our results showed the increased complexity of high-frequency 
component of COP after repeated balance practice under both 
congruent and incongruent conditions. The high-frequency 
component of COP might be  related to mechanical muscular 
properties, as evidenced by our current findings showing an increased 
complexity of sEMG data of TA following balance practice, and also a 
significantly positive correlation between the complexity of high-
frequency component of COP and the complexity of sEMG signals. 
The increased complexity of high-frequency component of COP and 
sEMG data after balance practice revealed a better ability of postural 
control system to be flexible in response to perturbations. On the 
other hand, our results showed the decreased complexity of 
low-frequency component of COP after repeated balance practice 
under incongruent condition. The low-frequency component of COP 
might be  related to central mechanisms of postural control, as 
indicated by the present findings showing a reduced complexity of 
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cortical activity of parietal and occipital lobes following balance 
practice, and also a significantly positive correlation between the 
complexity of low-frequency component of COP and the complexity 
of EEG signals. Accordingly, we believe that the use of complexity-
based nonlinear measures should be explored in future studies to 
investigate the underlying mechanisms of the postural control.
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