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Introduction: Adaptation and learning have been observed to contribute to the

acquisition of new motor skills and are used as strategies to cope with changing

environments. However, it is hard to determine the relative contribution of each

when executing goal directed motor tasks. This study explores the dynamics of

neural activity during a center-out reaching task with continuous visual feedback

under the influence of rotational perturbations.

Methods: Results for a brain-computer interface (BCI) task performed by

two non-human primate (NHP) subjects are compared to simulations from a

reinforcement learning agent performing an analogous task. We characterized

baseline activity and compared it to the activity after rotational perturbations

of di�erent magnitudes were introduced. We employed principal component

analysis (PCA) to analyze the spiking activity driving the cursor in the NHP BCI

task as well as the activation of the neural network of the reinforcement learning

agent.

Results and discussion: Our analyses reveal that both for the NHPs and the

reinforcement learning agent, the task-relevant neural manifold is isomorphic

with the task. However, for the NHPs the manifold is largely preserved for

all rotational perturbations explored and adaptation of neural activity occurs

within this manifold as rotations are compensated by reassignment of regions

of the neural space in an angular pattern that cancels said rotations. In contrast,

retraining the reinforcement learning agent to reach the targets after rotation

results in substantial modifications of the underlying neural manifold. Our

findings demonstrate that NHPs adapt their existing neural dynamic repertoire

in a quantitatively precise manner to account for perturbations of di�erent

magnitudes and they do so in a way that obviates the need for extensive learning.

KEYWORDS

brain-computer interface, neural manifold, reinforcement learning, neurofeedback,

adaptation, dimensionality reduction

1 Introduction

Understanding how new motor skills are acquired and lost is crucial for the

development of effective neuroprosthetic devices for mitigating the impacts of aging

and neurodegenerative conditions, as well as for improving neurofeedback tasks for

rehabilitation (Krakauer and Mazzoni, 2011; Stealey et al., 2024). Both adaptation and de

novo learning have been observed to contribute to the acquisition of new motor skills and

are used as strategies to cope with changing environments or conditions (Costa et al., 2017;

Gallego et al., 2017). Although these two modalities have characteristic timescales over

which they vary (Krakauer and Mazzoni, 2011; Gallego et al., 2017), it is hard to determine

the relative contribution of each when executing motor tasks. For this purpose, brain-

computer interfaces (BCIs) have been successfully employed to understand the evolution
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of neural dynamics when subjects are presented with a diverse

range of visuomotor tasks. These tasks often involve introducing

perturbations that enable researchers to directly measure which

changes in neural dynamics are concomitant with the recovery of

task proficiency (Jarosiewicz et al., 2008; Ganguly and Carmena,

2009; Chase et al., 2012; Costa et al., 2017; Golub et al., 2018; Zippi

et al., 2022).

BCIs are particularly well suited to understanding the

contributions of adaptation and learning in acquiring and

modifying motor tasks. In particular, studying neural recordings

from the lens of dynamics and neural manifolds has indicated that

adaptation often occurs within stable manifolds, whereas learning

can result in new dynamics that diverge from the original low-

dimensional manifold (Ganguly and Carmena, 2009; Shenoy et al.,

2013; Sadtler et al., 2014; Gallego et al., 2017; Vyas et al., 2018;

Oby et al., 2019; Yang et al., 2021; Deng et al., 2022; Mitchell-

Heggs et al., 2023). For instance, it has been shown that in

BCI center-out reaching tasks low-dimensional representations of

neural activity are isomorphic with the task itself. Namely, activity

corresponding to reaches to radially distributed targets is clustered

in low-dimensional space in a circular configuration (Santhanam

et al., 2009; Vyas et al., 2018).

Along with insights from BCI studies, reinforcement learning

(RL) agents have been proposed as analogs to biological agents

(Doll et al., 2012; Lubianiker et al., 2022) as they can be

trained to perform similar tasks. Reinforcement learning has been

used with considerable success in elucidating the role of reward

prediction error in binary decision-making. Indeed this approach

has contributed to the development of the reward prediction error

theory of dopamine (Montague et al., 1996; Doll et al., 2012).

However, the use of RL agents to determine correlates of animal

behavior for continuous tasks has remained much more limited.

RL agents have yet to be explored as analogs of NHPs performing

continuous feedback tasks with perturbations.

The artificial neural networks encoding the policies of RL

agents may yield insights into how modifications in activity and

connectivity can account for task acquisition and adaptation. Even

though RL agents can produce qualitatively similar behavior to

animal subjects, it can do so via substantially different architectures

and with simplified neural units. Studying which features of the

natural and artificial neural dynamics are preserved in response

to perturbations in both animal subjects and RL agents can help

to establish the validity of the analogy between the two. Moreover,

this helps to highlight the different mechanisms operating in both

in response to a changing environment.

Here we explore how deformations within a low-dimensional

manifold of neural activity can directly account for strategies

that compensate for imposed perturbations in a BCI center-out

reaching task with rotational perturbations. We compare results

from two NHP subjects and a RL agent trained in a virtual

center-out reaching task. Our results indicate that there is a

distinctive signature for adaptation in the NHP subjects, as the low-

dimensional manifold is preserved and the deformations within

this manifold directly compensate for the imposed rotational

perturbations.

In this paper we demonstrate that rapid NHP adaptation is

achieved via exact compensation by geometric rotation of the

underlying neural activity. We show that ANN-based RL agents

can leverage the same low-dimensional isomorphic structure as

NHPs when performing the same task. In comparing how, we

establish that, in spite of the shared isomorphism in NHPs and

RL agents, maximizing reward with very similar trajectories after

perturbations can proceed by very different mechanisms. This

in turn is suggestive of the very limited role that plasticity

needs to play for short-term adaptation. Namely, the RL agent

changes connection strengths substantially to maximize rewards,

which leads to modifying the underlying manifold. In contrast,

the preserved manifold of the NHPs suggests that neural

connection strengths largely remain unchanged after adapting to

the perturbation. We describe experimental and computational

methods in the following section. Section 3 describes and compares

the results from experiments and simulations, and Section 4

discusses the results with emphasis on the interplay between

adaptation and learning. Finally, we offer concluding remarks as

well as potential future research directions.

2 Methods

2.1 Non-human primate neurofeedback
task

Two male Rhesus macaque (Macaca mulatta) monkeys were

trained in a BCI center-out reaching task. The cursor was controlled

by volitional modulation of action potential (“spiking”) activity

from a population of recorded neurons. We recorded spiking

activity using a chronic microelectrode array (MEA) comprising

of tungsten wires (diameter 35µm) (Innovative Neurophysiology,

Inc., Durham NC) into the primary motor (M1) and pre-motor

(PMd) cortical areas of the left hemisphere. Subject A was

implanted with 64 electrodes and Subject B with 128 electrodes.

The number of independent recorded units varied in the ranges 22–

50 and 51–136 for Subjects A and B, respectively. A more detailed

description of surgical and training procedures can be found in

previous work by Stealey et al. (2024).

The center-out reaching task consisted of driving the cursor

from a central location to one of eight different targets radially

distributed with a uniform angular separation of 45 degrees and

fixed distance from the center target. Successful “hold” periods after

movement of the cursor to the cued peripheral target, referred to as

a “reach,” was reinforced with a fluid reward. The recorded neural

activity was mapped to a control signal that updated cursor velocity

in each time bin (100 ms) using a Kalman filter paradigm that can

be expressed mathematically as (Equation 1):

xt+1 = Axt + Kyt (1)

Where the vector x comprises the cursor position, velocity and

a constant term, the vector y contains the temporally averaged

spiking activity over 100 ms windows, the matrix A represents

a dynamics matrix that remains constant across experimental

sessions, and the matrix K, called the Kalman gain, directly

maps neural activity to cursor dynamics and is estimated at the

beginning of every experimental session. The Kalman filter is fit

using neural activity recorded during passive observation of the

cursor moving along straight trajectories to each of the peripheral

targets. This neural activit is obtained at the beginning of each BCI

session. This procedure has been extensively described in previous
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work (Gowda et al., 2014; Stealey et al., 2024 and references

therein). Mathematically, the Kalman filter approach formulates

spiking activity as linearly dependent on the state of the cursor

(Equations 2, 3):

xt+1 = Ãxt + wt ; wt ∼ N (0, W) (2)

yt = Cxt + qt ; qt ∼ N (0, Q) (3)

The matrix Ã gives prescribed cursor kinematics and the

matrix C is fit from data collected at the beginning of each

session (when the cursor is moving along prescribed trajectories).

The matrices W and Q define the covariances of Gaussian noise

processes. After obtaining said matrices, the cursor position can

be estimated from neural observations and compared to its actual

(prescribed) position. The Kalman gain, K, then determines the

weight given to a model relative to the weight given to observations

in updating predictions of the state x. The gain is computed

from prediction error covariance, the measurement matrix, C,

and the measurement noise covariance (Simon, 2006). The new

dynamics matrix can then be readily computed as A = (I− KC)Ã.

A schematic view of the cursor control is depicted in Figure 1A.

After the Kalman gain is estimated the subjects complete

a baseline block during which they proficiently reach all the

targets. Subsequently, a visuomotor rotation (VMR) perturbation

is introduced by multiplying the Kalman gain by a block diagonal

matrix (Equation 4). Said matrix has two blocks describing

an imposed rotation of angle θ (Equation 5) corresponding to

rotations of position and velocity components of the vector x.

xt+1 = Axt + R(θ)Kyt (4)

R(θ) =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

(5)

We imposed both clockwise and counter-clockwise decoder

rotations with magnitudes ranging between 50◦ and 110◦. After the

rotation was imposed in the decoder both subjects compensated

and were able to complete the task (Stealey et al., 2024). Time to

complete successful reaches were comparable across the different

conditions (Figure 1B).

2.2 Reinforcement learning agent virtual
center-out reaching task

To better understand the underpinnings of the adaptation

achieved by the NHP subjects we created a RL analog to

the center-out reaching task. We used a Proximal Policy

Optimization (PPO) algorithm as implemented by the stable

baselines 3 library (https://stable-baselines3.readthedocs.io/en/

master/modules/ppo.html) (Schulman et al., 2017). The policy

network contained two fully connected layers with 128 units

each and was trained to optimize for output velocities to drive

the cursor toward the targets (Figure 1C). The reward function

penalized increases in the distance to the target and rewarded

decreasing the distance to the target. Additionally the square of the

magnitude of the policy velocities was penalized so as to enforce

smooth motion. Finally a large reward was granted upon reaching

a target. Mathematically, the update (Equations 6, 7) and reward

(Equation 8) can be expressed as follows:

vcursort+1 = 0.1 · vcursort + action (6)

xcursort+1 = xcursort + 1t · vcursort (7)

reward =

{

20− 0.5 · 1dct − |action|2 if reached target

−0.5 · 1dct − |action|2 otherwise
(8)

Where, xcursor and vcursor are the cursor’s position and velocity,

respectively; and 1dct is the change in the distance between the

cursor and the target given the action generated by the RL agent,

with euclidean norm |action|. In our implementation 1t = 1.

This function rewards getting closer to the target for each action

and provides a substantial reward once the target is reached, while

also penalizing large changes in velocity. This serves to promote

smoother trajectories and avoid the agent just shooting to the target

in one step.

We subsequently emulated the effect of the visuomotor

rotation for the NHP subjects by creating an alternative rotated

environment whereby the velocities computed by the agent where

multiplied by a rotation matrix like the one in Equation 5. The

agent’s artificial neural network was retrained to complete the task

in the new rotated environment for a sufficient number of epochs

as to achieve reliable success for all targets (Figure 1D).

2.3 Low-dimensional manifold extraction
via principal component analysis (PCA)

We extracted the low-dimensional activity for both the NHPs

and the RL agent via principal component analysis (PCA). PCA is

done by performing the singular value decomposition on the data

matrix where each column is an observation either of firing rate

(activation) at a time point after substracting the mean observation

for the NHP (RL) neural activity. PCA can provide a linear

manifold spanned by a subset of the principal component vectors.

In this study we focus on the two-dimensional linear subspace

since the task under consideration is two-dimensional and in this

subspace activity is isomorphic with task.

3 Results

3.1 Low-dimensional representations of
neural activity are isomorphic with the
center-out reaching task

We obtained low-dimensional representations of the neural

activity during the reaching task using principal component

analysis (PCA). As was observed in previous works (Santhanam

et al., 2009), the neural activity in a low-dimensional space is

isomorphic with the center-out reaching task (Figures 2A, B, 3A,

B). This isomorphism is maintained even in the presence of the

rotation perturbation (Figures 2E, F, 3E, F). Even though the reach
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A B

C D

FIGURE 1

Experimental approach schematic. (A) Schematic of the BCI center-out reaching task. Spiking activity recorded from M1 and PMd areas is used to

control the cursor. The recorded spikes are decoded via a Kalman filter to control the cursor velocity. (B) Trial durations for the NHPs for the imposed

rotations. (C) Schematic of the policy network for the RL agent. The value network has the same architecture. The activity of the last hidden layer,

highlighted by the green ellipse, is used for the manifold analysis as an analog to the firing rates driving the cursor in the NHP task. (D) Trial steps for

the RL agent for the imposed rotations. Error bars represent standard deviation with NA = (21,080; 10,559; 9,593; 8,968; 12,032), NB = (25,050; 9,420;

6,710; 10,100; 4,255; 10,716; 9,886), NRL = (100; 1,000; 1,000; 1,000; 720; 154; 88; 680; 931; 1,000; 1,000), where the subscripts indicate the subject.

trajectories are visibly affected by the imposed rotation (Figures 2A,

E, 3A, E), the PCA representation remains isomorphic with the

task (Figures 2B, F, 3B, F). The PCA was performed over all data

(with and without rotation) so that the PCA basis is the same

in all conditions. Interestingly, in the two-dimensional space the

centroids of the PCA clusters for each target are rotated in the

opposite direction of the imposed rotation.

We then compared the underlying neural manifolds for the

NHP subjects and the artificial neural network (ANN) of our RL

agent. We performed a similar PCA analysis for the activations

of the last fully connected layer of the RL policy network. We

obtained trajectories that were qualitatively similar before and after

imposing a rotation to those from the NHP subjects (Figures 2C,

G, 3C, G). As was the case for the NHP data, the ANN activations

have a low-dimensional PCA representation that is isomorphic

to the task geometry (Figures 2D, 3D). However, after imposing

the rotation, the geometry of the low-dimensional representation

of the activations is substantially different from before imposing

the rotations, in stark contrast to the results from the NHP data

(Figures 2F, H, 3F, H).

For both the NHP data and the RL simulations, the angles

between adjacent PCA centroids approximate the angles between

the targets (Figure 4). Substantial differences in the standard

deviations were observed, with the tightest distribution being the

one for the RL agent and the broadest for Subject A (who had

fewer spiking units in the decoder). Thus, we see that projection of

neural activity into low-dimensional PC space not only preserves

the geometry of the task but also approximately preserves the

angular distances for the different reaching directions.

3.2 Rotations in a low-dimensional space
compensate for imposed decoder rotations

As can be noted qualitatively in Figures 2B, D, the imposed

decoder rotations shift the PCA clusters corresponding to each

target. We quantified the angular displacement of each cluster

over all experimental sessions revealing that it is of opposite sign

and equal magnitude to the imposed decoder rotation (Figure 4).
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A B C D

E F G H

FIGURE 2

The low-dimensional neural activity for Subject B is isomorphic with the task geometry. (A) Representative trajectories from one session for Subject B

before rotation, and (B) the corresponding PCA representation of the driving spiking activity. (C) Representative trajectories for RL agent before

rotation, and (D) the corresponding PCA representation of the last fully connected layer of the ANN. (E–H) Results after a –50 degree rotation is

imposed, plots follow the same sequence as in (A–D). The circles represent the target locations, the PCA values are colored by the corresponding

target and the centroids of each of the clusters are depicted by the rhombi.

A B C D

E F G H

FIGURE 3

The low-dimensional neural activity for Subject B is isomorphic with the task geometry after large rotations. (A) Representative trajectories from one

session for Subject B before rotation, and (B) the corresponding PCA representation of the driving spiking activity. (C) Representative trajectories for

RL agent before rotation, and (D) the corresponding PCA representation of the last fully connected layer of the ANN. (E–H) Results after a 110 degree

rotation is imposed, plots follow the same sequence as in (A–D). The circles represent the target locations, the PCA values are colored by the

corresponding target and the centroids of each of the clusters are depicted by the rhombi.
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A

B

C

D

E

FIGURE 4

Probability distributions for the angles between adjacent PCA centroids. (A) Probability distributions before imposing rotation and (B) after imposing

rotation, for NHP subjects A and B, and for the RL agent. Lines are the kernel density estimates to smooth the distributions. The distributions where

approximately gaussian with a mean of 45 degrees. Rotations in low-dimensional space compensate for imposed decoder rotation. Linear

regressions for the mean centroid angular displacement are shown for (C) Subject A (R2 = 0.95, slope = –0.927); (D) Subject B (R2 = 0.996, slope =

–1.0038); and (E) the RL agent (R2 = 0.752, slope = –0.5322). For the NHPs, the rotations in low-dimensional space are of almost the same

magnitude as the imposed decoder rotation. Error bars represent standard deviation. For all regressions p < 0.001.

Linear regressions indicate that for the NHPs the rotation in

the low-dimensional neural space almost exactly cancels out the

imposed decoder rotation. In contrast, for the RL agent the rotation

in low-dimensional space exhibits some non-linear behavior as

a function of imposed decoder rotation and the resulting slope

deviates farther from negative unity. Nevertheless, in all cases the

linear trends robustly indicate that neural activity not only has

a low-dimensional geometry that is similar to the task, but is

also transformed in a manner that directly compensates for the

geometry of imposed perturbations.

3.3 Low-dimensional manifold is preserved
after rotation for NHPs

We then investigated whether the low-dimensional PCA

manifold was preserved after rotating the decoder. The results

for the previous subsection considered the same PCA basis for

all the data (with and without rotations), but such a strategy is

sub-optimal if the underlying manifolds before and after imposing

the perturbations are distinct. Thus, we consider PCA performed

separately for data before and after rotations. The recorded neural

activity for the NHPs is remarkably stationary throughout the

session (Figure 5). The mean firing rates are quite similar before

and after the perturbation (Figure 5A). Moreover, the first and

second principal component vectors are also quite similar before

and after the rotation is imposed (Figures 5D, G). In contrast,

activations for the ANN of the RL agent have significantly different

means before and after rotation (Figure 5B), although the principal

component vectors do not deviate so markedly (Figures 5E, H). To

compare accross sessions, we normalize differences in firing rates

as follows (Equation 9):

di =
f̄bi − f̄ri

1
N

N
∑

i=1
(f̄bi )

(9)
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A D G

B E H

C F I

FIGURE 5

Low-dimensional manifold is preserved after rotation for the NHPs but not for the RL agent. Representative examples of the mean firing rate (A) the

first PC (B) and the second PC (C) scaled by their respective singular values before and after rotation for Subject B. Representative examples of the

mean activation (D) the first PC (E) and the second PC (F) scaled by their respective singular values before and after rotation for the RL agent. Bar plot

summaries of the normalized di�erences in: (G) mean activity (H) scaled first principal component (I) scaled second principal component. Error bars

represent the standard error of the mean. For the imposed rotations for which all subjects have data (50, 90, 270, and 310 degrees), the means are

significantly di�erent (p < 0.001, one-way ANOVA).

Where di is the normalized difference for unit i and f̄bi is the

temporally averaged baseline firing rate and f̄ri is the temporally

averaged firing rate after rotation, and the N is the number of units

for a given session (so that the differences are normalized by the

session mean baseline activity).

We quantified the difference both in the mean firing rates

(activations) and in the two first principal components by using the

absolute value of the cosine similarity for the corresponding vectors

before and after rotation (Figure 6). As shown in the representative

example, for the NHPs the mean firing rate and the two first

principal components are quite similar. They show distributions

that are highly skewed toward values close to unity (Figure 6, left

and center columns). In contrast, the RL agent displays significant

differences in the mean activation value, with no values near unity

(Figure 6, right column). Distributions for the difference of the

principal components before and after rotation are skewed in a

similar fashion as those of the NHP, but with peaks closer to a cosine

similarity of 0.9 rather than unity. These results suggest that the

low-dimensional manifold is much better preserved in the case of

the NHPs than in the case of the reinforcement learner.

4 Discussion

The results are consistent with the intuitive notion that the

NHPs compensate for decoder rotation by re-aiming their reaches

at an angle that counteracts the decoder perturbation angle. Such

a strategy could be achieved by simply generating similar neural

activity as before the perturbation is introduced, but in a different

context. Namely, if a 45 degree rotation is imposed, the NHPs

could generate the same activity that helped them reach a target

located at –45 degrees under the original decoder. Such a strategy

would preserve the underlying low-dimensional manifold. We call

this approach adaptation, as it leverages existing neural pathways

displaying dynamics in a stable manifold. NHPs seem to adapt their

existing neural dynamic repertoire to the changing decoder.
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A B C

D E F

G H I

FIGURE 6

Low-dimensional manifold for baseline and perturbation activity is highly similar for the NHPs but not for the RL agent. Probability distributions of

absolute cosine similarity for the mean activity (A, D, G), first principal component (B, E, H), and second principal component (C, F, I) before and after

rotation. Results correspond to Subject A (A–C), Subject B (D–F), and the RL agent (G–I).

In contrast, reinforcement learning algorithms rely on updating

the weights between the ANN’s layers. Even though we recreated

qualitatively accurate trajectories in our virtual environment, the

trajectories generated in response to imposed rotations were

generated by a substantially different mechanism. This mechanism

changes the mean activity of the artificial neurons and modifies

the underlying manifold, rather than re-purposing the existing

dynamics. We speculate that this substantial modification of

the neural manifold is the hallmark of extensive changes in

connectivity. These changes can be understood as learning in the

sense that novel strategies and dynamics emerge.

In the absence of direct observations of the connectivity

in behaving animals, it is hard to demonstrate that adaptation

(rather than learning through synaptic changes) is the dominant

mechanism allowing NHPs to quickly, flexibly and reversibly

respond to perturbations. However, preservation of both the neural

manifold and the mean firing for each unit is suggestive of higher

level planning that directs commands through reliable and well-

established pathways. From a biological perspective, it stands to

reason that adaptation of motor tasks should not demand extensive

changes in connectivity arising from the demands of a dynamic

environment.

5 Conclusion, limitations, and future
scope

We presented evidence that the low-dimensional manifold of

the neural dynamics of NHPs during a center-out reaching task

preserves the geometry of the task and exhibits deformations

that almost exactly counteract imposed decoder rotations. The

preservation of the low-dimensional manifold is consistent with
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the adaptation of a well-established motor repertoire to novel

challenges. In contrast, a reinforcement learner agent that originally

has dynamics that are also isomorphic to the task substantially

modifies its manifold in response to imposed rotations to maximize

its reward.

For the present study, we utilized a traditional Kalman filter

approach to decode a cursor control signal from neural firing rates

and drive a cursor for real time feedback. This approach has the

advantage of being parsimonious, thus having low training data

requirements. However, recent developments in neural decoders

using deep and convolutional neural networks (Glaser et al., 2020;

Filippini et al., 2022; Borra et al., 2023) can result in improved

performance. Moreover, non-linear decoders may allow for better

reconstruction of the natural task-related manifold. Future work

could utilize these improved decoding approaches to elucidate

whether they not only improve baseline decoding but also allow for

better and more rapid adaptation.

A more complete exploration of the adaptation strategy in

NHPs would require recording from other brain regions, including

regions that are not directly used by the decoder. This would

allow us to observe where the isomorphism breaks down and what

activity can be directly correlated to the adapting strategies. In

addition, future work should focus on refining the RL approach

by exploring model-based RL algorithms that may enable higher

order planning and/or imposing constraints such as preserving the

activity manifold in some of the ANN layers.
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