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Introduction: Numerous modes or patterns of neural activity can be seen 
in the brain of individuals during the resting state. However, those functions 
do not persist long, and they are continuously altering in the brain. We have 
hypothesized that the brain activations during the resting state should themselves 
be responsible for this alteration of the activities.

Methods: Using the resting-state fMRI data of 63 healthy young individuals, we 
estimated the causality effects of each resting-state activation map on all other 
networks. The resting-state networks were identified, their causality effects on 
the other components were extracted, the networks with the top 20% of the 
causality were chosen, and the networks which were under the influence of 
those causal networks were also identified.

Results: Our results showed that the influence of each activation component 
over other components is different. The brain areas which showed the highest 
causality coefficients were subcortical regions, such as the brain stem, thalamus, 
and amygdala. On the other hand, nearly all the areas which were mostly under 
the causal effects were cortical regions.

Discussion: In summary, our results suggest that subcortical brain areas exert a 
higher influence on cortical regions during the resting state, which could help in 
a better understanding the dynamic nature of brain functions.
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1 Introduction

The human brain mapping studies have mostly relied on one of the two functional brain 
organization principles: functional segregation or functional integration. Functional 
segregation is based on the idea that spatially specific neuronal structures, such as certain brain 
regions, are responsible for processing the target functions, whereas functional integration 
refers to dispersed interactions among regions that are functionally distinct. Functional 
integration research seeks to understand how connections across brain regions govern regional 
responses, and how these connections alter in response to experimental interventions or illness 
(Friston, 2009).

Functional connectivity is defined as the temporal correlations among spatially distinct 
neurophysiological events (Büchel and Friston, 1997), which is traditionally calculated using 
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correlation or partial correlation. Functional Connectivity (FC) in the 
brain is defined as a statistical link between the activation signals of two 
brain regions, after removing the influence of all other areas (Tognoli, 
2014). Undirected functional connectivity (FC) measurements and 
directed effective connectivity (EC) metrics are the two types of 
connectivity measures, and they could be well tested on the fMRI data. 
Static FC is a common name for the correlation between brain voxels or 
regions during the whole duration of the scanning session. On the other 
hand, dynamic functional connectivity (FC) refers to non-instantaneous 
connections throughout time-series from a set of brain areas (Park 
et al., 2021).

The activations of brain areas may be correlated; however, these 
correlations are sometimes only a statistical outcome, whereas in certain 
circumstances this is due to the causal influence of one brain region over 
another. In other words, the brain areas may show excitatory or 
inhibitory effects on each other (Danks and Davis, 2023). Despite the 
properties of the fMRI, including low temporal resolution, and low 
signal to noise ratio, estimation of causality between the brain areas and 
during fMRI is an established and active field of research, and several 
models have been developed to address this challenge (Bielczyk 
et al., 2019).

Effective connectivity is defined as one neural system’s impact over 
another (Büchel and Friston, 1997). Because it tracks the direction of 
information flow throughout time, EC is inherently directional 
(Bielczyk et al., 2019). To evaluate effective connection, a model of how 
one region influences on another is required. Analyses of effective 
connectivity then attempt to quantify coupling in terms of the 
connectivity model’s characteristics. The two most utilized methods for 
estimating the EC between brain areas are the DCM (Dynamic Causal 
Modeling) (Friston et al., 2003) and GCM (Granger Causality modeling) 
(Goebel et al., 2003; Valdes-Sosa, 2004), which both appeal to causation 
and rely on time-series models of fMRI data. DCM attempts to model 
how activity in one brain area is affected by activity in another, whereas 
GCM seeks the signature of these influences by looking for correlations 
in the activity of two or more regions over time. The models used by 
DCM are more complex and domain-specific, but the GCM is more 
straightforward and generic, and is built under the assumption that any 
statistical dependencies across brain areas may be approximated by a 
(usually linear) mapping over time lags.

The brain uses a surprisingly high amount of energy, even at rest; it 
is reported that the brain uses 60–80% of its total energy for intrinsic 
activity, or communication between neurons and the cells that support 
them, and just 0.5–1% for evoked activity (Raichle and Mintun, 2006). 
For almost 50 years, philosophers have debated brain states, but no one 
has provided a clear description of what they are (Brown, 2006). Brain 
states are synchronized neuronal firing patterns that reflect the electrical 
face of the brain, and there is evidence on a wide range of brain states 
through distinct patterns of activity. The state of brain activity correlates 
to various degrees of consciousness, and therefore customized variants 
of the networks produce wakefulness, REM sleep, slow-wave sleep, 
various types of anesthesia, and other unresponsive states.

The intrinsic dynamics of the brain in the absence of any sensory or 
cognitive stimulus, which may be quantified as spatially and temporally 
segregated networks, are created by spontaneous brain activity (Deco 
et al., 2011). Several different networks usually manifest in the human 
brain during resting-state, and some of them are well known; examples 
include the salience network, auditory network, basal ganglia network, 
higher visual network, visuospatial network, default mode network, 

language network, executive network, attentional network, precuneus 
network, primary, ventral, and dorsal visual networks, and sensory 
motor network (Nishida et al., 2015; Smitha et al., 2017). The seed-based 
approach and independent component analysis (ICA) are the two main 
computational methods used to find such RSNs.

It is important to note that the brain’s networks during resting state 
are constantly changing. In other words, not all RSNs remain coherent 
for several minutes (Damoiseaux et al., 2006), and there are reports that 
they can be activated simultaneously or one at a time, and then they can 
also become deactivated and make way for other networks. These 
network shifts between brain states affect activities of the brain, and they 
are associated with the appearance of different cognitive functions. The 
dynamic switches between brain states have been shown in resting state 
acquisitions (Meer et al., 2020), and even some studies have illustrated 
that the temporal dynamics of brain states are reshaped during some 
active tasks, such as movie viewing (Meer et al., 2020). The spontaneous 
dynamics of the brain modulate its function from moment to moment, 
shaping neural computation and cognition; functional MRI, while 
classically used as a tool for spatial localization, is increasingly being 
used to identify the temporal dynamics of brain activity. The alteration 
of brain states during conditions is well illustrated; however, much less 
is known on the causal influences on this pattern.

The human brain functions using both bottom-up and top-down 
mechanisms. Bottom-up processing involves stimulus shaping 
perception, while top-down processing uses background knowledge 
and expectations. Soma major functions such as visual selection 
(Theeuwes, 2005), attention allocation (Folk et al., 1992), and working 
memory content (Olivers et al., 2006) follow either mechanism. Some 
studies suggest an integration of both mechanisms, with early 
bottom-up processing followed by later top-down processing 
(Hochstein and Ahissar, 2002). Similarly, the intrinsic activities of the 
brain during resting state which results in the alteration of the networks 
could follow one of those two mechanisms; it might be the subcortical 
brain regions which are more influential over the cortical regions (being 
interpreted as a bottom-up approach), or the cortical areas being more 
causal over the subcortical brain regions (a top-down mechanism).

The predictive-coding model highlights the interdependence of 
bottom-up and top-down processes, while both theoretical reasoning 
and empirical data have presented challenges to the bottom-up and 
top-down paradigms. For example, in Tscshantz et  al. (2023) it is 
mentioned that the debate on top-down and bottom-up signals in visual 
perception persists, due to conflicting findings. Also, the brain’s 
processing strategies shift adaptively between bottom-up and top-down 
dominance based on task demands and environmental context (Engel 
and Fries, 2010). It is also necessary to mention that bottom-up and 
top-down processes dynamically interact, creating feedback loops that 
are challenging to model theoretically (Friston, 2005). According to a 
study (Rauss and Pourtois, 2013), predictive coding (and active 
inference) frameworks do not assume that neural pathway directionality 
must match an association with bottom-up or top-down processes. 
Predictive coding in neocortex areas uses a hierarchical model learned 
from sensory inputs to understand perception, action, and neocortical 
architecture. The Rao-Ballard model suggests cortical circuits use 
Bayesian inference, with predictions of lower-level activities transmitted 
via top-down feedback loops. In turn, the feedforward, bottom-up 
connections communicate the discrepancies between the actual 
activities and the top-down predictions (Jiang and Rao, 2022). 
Consequently, in this context, it could be said that our hypothesis can 
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be included in the bottom-up connections of the brain, but more studies 
and researches are definitely needed.

The dynamic nature of brain networks is crucial for various 
cognitive functions, including learning, memory, attention, and 
adaptation to new environments (Bassett and Sporns, 2017). As a result, 
this is important to fully understand the brain’s neuroplasticity, which 
is its ability to reorganize itself in response to various factors (Mateos-
Aparicio and Rodríguez-Moreno, 2019). This is especially important to 
study when the brain is at rest and not involved in a particular task. As 
a result, our aim in this study was to identify the causal drivers of 
distributed activity during the resting state. In other words, there should 
be a cause for this pattern of alteration. We hypothesized that some of 
the brain activation networks of the resting state should themselves 
be influential in the switching of the brain states during rest. To address 
this aspect of functional integration, we collected resting state fMRI data 
using a 3 T MRI scanner and a 64-channel head coil from 64 young 
individuals who were meticulously checked for their mental and 
physical health. Using robust data analysis methods and utilizing the 
Granger Causality approach, we estimated the causality of each brain 
state on all other resting state networks, in search of the higher causal 
networks. The switching of the brain states takes place while the brain 
is at rest and partially subconscious, and this is related to a phenomenon 
known as unconscious free will. This area has a complex basis of 
philosophy, and we hope our endeavor here could partly reveal the 
mysteries of brain states dynamics during resting state.

2 Methods

2.1 Participants

The Iranian Brain Imaging Database (IBID) (Batouli et al., 2021) 
was established to enable the study of human brain function, assist 
clinicians in researching disease diagnosis, and connect Iranian 
researchers with an interest in the brain. Its goal was to provide a 
standard MRI data set of physically and mentally healthy participants 
across different age groups, and to develop a database of brain MRI 
along with cognitive tests. Multiple MRI protocols and numerous 
cognitive tests, mental health, lifestyle, and clinical assessments were 
performed on over 300 individuals from age 20 to 70 years old, with 
an equal number of participants (#60) for each decade of age. Each 
participant’s physical health status was clinically assessed by three 
different general practitioners, based on published criteria (Sah and 
Sisakhti, 2020), and each participant completed the assessments on 
two consecutive days. The ethical approval code for this study was 
IR.NIMAD.REC.1396.319, issued by the National Institute for Medical 
Research Development, in agreement with the Declaration of Helsinki, 
and informed consent was obtained from all participants.

In our study here, we used the data of group 1 of IBID dataset that 
included 64 subjects (33 male and 31 female) between 20 and 30 years 
old. For each subject, one T1 weighted image and one fMRI timeseries 
in the resting state was used.

2.2 Imaging

The MRI machine used in this study was a Siemens 3.0 Tesla 
scanner (Prisma, 2016), devoted to research, at the Iranian National 

Brain Mapping Lab.1 A few characteristics of this machine included 
50-cm FOV with the industry best homogeneity; whole-body; 
superconductive zero helium oil-off 3 T magnet; and head/neck 20 
direct connect. We used a 64-channel head coil in our study. The MRI 
protocols were selected to match the international projects, such as the 
UK Biobank or the ENIGMA consortium. The MRI protocols were 
as follows:

2.2.1 Resting-state fMRI
Total time = 6 min; TR = 2,500 ms; Time-points = 144; TE = 30 ms; 

flip angle = 90 degrees; voxel size = 3.0 × 3.0 × 3.0 mm; #slices = 40; 
matrix size = 64 × 64 × 40; distance factor = 0%; phase encoding 
direction = anterior > > posterior; averages = 1; delay in TR = 0 s; multi-
slice mode = Interleaved.

2.2.2 T1-weighted MP-RAGE
TA = 4:12 min; TR = 1800 ms; TE = 3.53 ms; TI = 1,100 ms; flip 

angle = 7 degrees; voxel size = 1.0 × 1.0 × 1.0 mm; multi-slice 
mode = sequential; FOV read = 256 mm; #slices = 160; phase encoding 
direction = anterior > > posterior; matrix size = 256 × 256 × 160; 
averages = 1.

2.3 Quality check and preprocessing

All MRI data were visually checked for good quality, based on 
previous methods (Sisakhti et  al., 2021, 2022). This step included 
image information such as matrix and voxel sizes, the number of time-
points (for resting-state fMRI), and checking the images to be right-
to-left oriented. Besides, the visual check was performed to spot 
possible macroscopic artifacts and vibration/motion evidence in 
images and to check head tilt and head positioning, signal loss, 
ghosting, or other possible artifacts in the data. During the visual 
check, one male participant was excluded from the dataset, as his 
fMRI data was inaccurately collected. This resulted to including 63 
participants in total (32M and 31F).

2.4 fMRI data analysis

In summary, the stages employed in this article are depicted in the 
Figure 1.

2.4.1 Preprocessing
We performed six steps of preprocessing in SPM 12 (statistical 

parametric mapping, last updated 13th January 2020) on the fMRI 
data, including slice timing correction, realignment, co-registration, 
normalization, smoothing, and segmentation. These steps were 
selected based on the pipeline used in the UK Biobank (Alfaro-
Almagro et al., 2018). In slice timing section, the following settings 
were applied: number of slice = 43; TR = 2,500 ms; TA = 0.9768 
(1–1/43). For realignment, the settings were: quality = 0.9; 
separation = 4; smoothing =5; and interpolation =5. The settings of 
co-registration included: for reference image, we chose T1 image 

1 www.nbml.ir
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and for source image, and all volumes of the resting state images 
were chosen. In normalization step, for the image to align 
we selected the T1 image, and for image to write, we selected all 
volumes of the resting state images that were extracted from the last 
preprocessing step (co-registration). The setting of smoothing was: 
FWHM = 6; data type = same; implicit masking = none.

The final preprocessing step was performed on the T1-weighted 
image. Since fMRI studies focus on brain tissue, in this step, 
we  removed the skull and non-brain tissues from the 
T1-weightedbrain image. FSL (FMRIB Software Library v6.0 Created 
by the Analysis Group, FMRIB, Oxford, UK.) has a tool for this called 
BET (Brain Extraction Tool), and we used BET GUI in FSL with these 
settings: fractional intensity threshold = 0.35; bias field and 
neck cleanup.

2.4.2 Melodic ICA
We used the MELODIC toolbox (Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components), FSL 
software package (FMRIB Software Library v6.0 Created by the 
Analysis Group, FMRIB, Oxford, UK.), in order to identify the brain 
activation maps during the resting state; these brain activations are 
referred to as independent components in the spatial ICA algorithm 
performed in Melodic, FSL. Independent Component Analysis is used 
to decompose a single or multiple 4D data sets into different spatial 
and temporal components.

The preprocessed data were imported into MELODIC (group ICA 
analysis, temporal concatenation approach), in order to pick out different 
activation and artifactual components without any explicit time series 
model being specified. The settings of the MELODIC analysis included: 
number of inputs = 63; slice timing correction = interleaved; motion 
correction = MCFLIRT; spatial smoothing FWHM = 5 mm; activate 

intensity normalization; multi session temporal concatenation mode of 
analysis; and Threshold IC maps = 0.9. The temporal concatenation 
approach resulted in 114 independent components for all the 63 
fMRI datasets.

2.4.3 Dual regression
Dual regression is a tool that we can use as part of a group-level 

resting state analysis to identify the subject-specific contributions to the 
group level ICA. The output of dual regression is a set of subject-specific 
spatial maps and time courses for each group level component (spatial 
map) that can then be compared across subjects/groups. As a result, in 
this way, we can extract the signal of each component for each subject.

All steps of dual regression were applied in FSL software. 
We applied dual regression on the outputs of the MELODIC ICA 
by a very simple code in the virtual machine of Linux in the 
WINDOWS environment. The Dual Regression coding was 
applied on the outputs of the MELODIC ICA step, where there 
were 114 components estimated for all the 63 participants 
together; however, by the end of this stage, a matrix with a size of 
144×114 was created for each subject (144 rows correspond to the 
number of fMRI data volumes and 114 columns correspond to the 
number of components extracted from the MELODIC ICA).

2.4.4 Effective connectivity
The matrix of Granger causal connectivity was estimated 

separately for each of the 63 participants. For each individual, we had 
a matrix with a size of 144×114, and in this matrix, obtained from dual 
regression, we separated the columns. Thus, for each subject, we had 
114 column-wise matrices with dimensions of 144*1. These 114 
matrices for each subject, resulting in a total of 63×114 fMRI signals, 
served as input for effective connectivity estimation.

FIGURE 1

Summary of the steps taken in this article.
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Our hypothesis in this study was that the brain networks active 
during the resting state have causal influences on each other, and in 
this study we are trying to find the networks with the highest causality 
effects. As a result, for each individual, the output would be a matrix 

with the size of 114 × 114, and each row of the matrix, for example row 
5, is showing the causal influences of component 5 on all other 
components. A graphic illustration of our proposed model is 
provided below:
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Estimation of causality was based on the Granger Causality 
algorithm, performed in the REST toolbox (The latest release is REST_
V1.8) (Song et al., 2011) and GCA (Granger Causality Analysis) part of 
that in MATLAB. For each individual participant, 114 signals were 
imported into the software one by one in the REST GCA toolbox, and 
the settings of the software were as follows: ROI-wise mode = multivariate 
coefficient mode; masking = user defined mask; and order = 1. The 
outputs of this step for each individual were a 114 × 114 matrix that 
contained the positive and negative effective connectivity coefficients.

2.4.5 Estimation of causality
In this step, the effective connectivity coefficients of the 63 

individuals were combined, to find the components with the highest 
causality effects. Combining the results of individuals could 
be performed in three approaches: (I) to separate the positive and 
negative effectivity coefficients for each individual, and then sum 
them separately among all the individuals. In this approach the 
negative values represent an inhibitory effect and the positive values 
represent an excitatory effect; (II) to sum all the effectivity coefficients 
among the individuals, regardless of the sign; and (III) to take the 
absolute values of the elements of the matrixes, and then sum them 
together among the individuals. In this work we selected the third 
approach, as we speculated it could better show the causality effect of 
a component, and there were also some prior studies which used the 
absolute values when estimating the effective connectivity between 
the brain regions (Sanchez-romero et al., 2019; Zarghami and Friston, 
2020; Shahabi et al., n.d.).

It is important to notice that the sum of the elements of each row 
is the sum of the effects of (for example) component #1 on the rest of 
the other components.

2.5 Global signal correction

Our estimations so far had not considered the effects of the fMRI 
Global Signal on the signals of each resting-state component. The 
Global Signal (GS) is the average of the time courses of all gray matter 
voxels (Li et al., 2019). We repeated our analysis by removing the 
effects of the GS on the components, and it is important as the GS 
effects may be mistakenly considered as a causal factor. This correction 
is called global signal regression (GSR) (Liu et al., 2017).

To explain how we performed the GSR, assume: Y = a.X + ε; “Y” 
is the signal of each of the 114 components, “a” is a constant, “X” is 
the global signal of each subject, and “ε” is the residuals and the 
desirable signal of each subject after clear out of global signal effect. 
But before inserting signals in the above equation, we normalized the 
Y and X signals (converted to z-value), and accordingly the “ε” signal 
will be  obtained as a normalized signal. It is well-known that to 
normalize a parameter, we  perform the following equation: 

xz value − µ
− =

σ
; “x” is the observed value (raw score), “μ” is the 

mean of the sample, and “σ” is the standard deviation of the sample.
After calculating the normalized ε for each of the 114 components 

of each of the 63 individuals, it was converted back to the normal 
values, using this equation: � � � �NEW normalized Y Y� � �� � � � ; 
“ εNEW “is our corrected signal for each component of each subject, 
" "εnormalized is the ε signal before GSR (normalized ε), " "σY  is the 
standard deviation of each component of each subject’s signal and 
" "µY  is the mean of each component of each subject’s signal.

Now, and after obtaining the signals of the components after GS 
correction, we  have 114 corrected signals for the 63 subjects, and 
we repeated all the steps above to estimate the causality coefficients 
once again. We used the REST GCA toolbox again, with the following 
settings: ROI-wise mode = multivariate coefficient mode; 
masking = user defined mask; and order = 1. The outputs of this step for 
each individual were a 114 × 114 matrix that contained the positive and 
negative effective connectivity coefficients.

We estimated the total causality effect of each component across 
all data; sorted the components based on the amount of causality, and 
selected the components with the highest effects. It should be noted 
that this process, yielded 12 causal networks.

2.6 Causality direction

In the above, we  estimated which components showed the 
highest causality effects. In this step we  wanted to identify the 
components which were mostly under the influences of those causal 
networks. For each causal network (12 networks in total), we sorted 
its effects on the other components, and its top  20% causality 
coefficients were selected. The choice of top 20% for thresholding the 
causality coefficients is based on a previous study (Zixiang et al., 
2024). All components which met this criteria were selected, and 
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they were regarded as the networks which were mostly under the 
influence of the causal networks.

2.7 The causality values

We identified 114 regions from our ICA analysis, and therefore 
we should have 114 values (sum of the absolutes) for the causality 
effects of each component on all others.

To have a better idea of the components with the highest causality 
effect, we  sorted the brain components from the higher causality 
effects to the lower, as illustrated in Figure 2. These components are 
illustrated in red color. As is observed, the causality effects vary among 
the brain components, with values ranging from around 1,300 
(arbitrary values) to nearly 4,500. To choose the brain networks which 
are stronger in their causality, we selected the components with the 
top 20% causality effects. The highest causality coefficient was 4413.19, 
and therefore the components with a value above 3530.55 were 
selected among the top  20%. This resulted in 12 components, 
illustrated in blue in Figure 2, which included the components number 
111, 113, 102, 5, 105, 36, 82, 14, 8, 101, 38, and 76.

2.8 The causal brain networks

The brain activation components with the highest causality effects, 
are illustrated in Figure 3.

However, to identify the main brain region being active in each 
component, we used the FSL eyes toolbox in the FSL software package, 
and tried to locate the core area of each component in the brain, using 
the standard atlases. These results are provided in Table 1.

As our GS corrected results are from a more robust approach, 
we  mainly focused on those causal brain components, which 
included the brain stem, thalamus, lateral occipital, precuneus, 
frontal pole, amygdala, supramarginal gyrus, and fusiform. In the 
Melodic ICA analysis, some of the final components are relevant to 
the noises, subject motion, heart and respiratory rates, or other 
confounding factors; however, the main causal networks in our 
work were not from those undesirable components, which could 
serve as preliminary evidence supporting the reliability of 
our results.

3 Results

3.1 The networks under the causal 
influence

Our work resulted in identifying 12 main causal brain 
networks. However, a question arises that, on which brain 
networks do these causal networks are showing their influences? 
For this reason, we  identified the networks being under those 
causal influences, and these results are illustrated in Figure 4. As 
is observed there, 28 networks were mostly under the influence of 
the causal networks. Next, we estimated the amount of influence 
on each of these “affected” networks. As provided in Table 2, the 
following brain regions were mostly under the causal influences: 
middle temporal, postcentral, inferior frontal, precuneus, and 
middle frontal gyri.

This is interesting that, in our results, most of the causal networks 
were relevant to the deep structures of the brain, and on the other 
hand, most of the affected regions were in the cortical areas.

FIGURE 2

The brain components sorted based on their causality effects. The causality effects of the components are illustrated in green, and the components 
which had the top 20% causality effects are shown in orange. The numbers connected to the high causality components are the component numbers 
(That has been shown only for the top 20 percent).
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4 Discussion

4.1 Summary of the results

In this study we aimed to identify the brain areas which had the 
highest causality effects on the other brain regions during the 

resting-state. By integrating a number of previously established 
methods on estimating causality in fMRI data, we proposed a novel 
method for the analysis of causality in resting state fMRI, and 
observed that the highest causal brain regions were brain stem, 
thalamus, lateral occipital, precuneus, frontal pole, amygdala, 
supramarginal gyrus, and fusiform, distributed over 12 

FIGURE 3

The activation maps of the components with the highest causality effects. There were 12 networks in the post-GS correction. Most networks included 
the subcortical brain areas, such as the brain stem, thalamus, amygdala, and posterior cingulate cortex.
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resting-state networks (Table  1). The regions with the highest 
causality effects were observed to be the subcortical regions, as the 
sum of their causality coefficients were about 24903 (arbitrary 

values), while the cortical regions had a lower sum of 23071. On 
the other hand, when considering the areas mostly being under the 
effect (Table 2), among the 28 functional networks diagnosed as 

TABLE 1 The components of the resting brain function with the top 20% causality values.

Component number Sum value Main brain region

111 4413.199227 Brain stem

113 4394.348625 Brain stem

102 4310.135885 Thalamus

5 4251.518294 Left lateral occipital

105 4236.337062 Brain stem

36 3961.601966 Precuneous

82 3930.660176 Brain stem

14 3891.952879 Frontal pole

8 3820.364736 Right lateral occipital

101 3618.445033 Amygdala

38 3603.503652 Supramarginal gyrus

76 3542.151380 Fusiform

After the GS-correction, it resulted in 12 networks. The sum values are the integrative causal values of each component on all other components. The main brain region relevant to each 
component is also provided.

FIGURE 4

The 12 most causal brain networks are illustrated in circles, and the 28 mostly affected networks are illustrated in ellipses. All the blue circles and 
ellipses represent cortical regions, while all the red circles and ellipses represent sub-cortical areas; an arrow show a causal influence of the causal 
networks over the effect networks.
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TABLE 2 The 12 higher causal networks are in the top row (C5–C113), and the amount of their causal influence on any of the 28 affected networks (provided in the first column) are provided in the table.

C5 C8 C14 C36 C38 C76 C82 C101 C102 C105 C111 C113

#C. Region Lat. 
Occ.

Lat. 
Occ.

Fron. 
Pole

Precuneus
Supra 

marginal 
Gyrus

Fusiform
Brain 
stem

Amygdala Thalamus
Brain 
stem

Brain 
stem

Brain 
stem

Sum

c80 B. Mid. Temp. 58.57 50.32 51.55 54.78 43.05 55.04 55.69 43.02 60.87 53.94 56.50 51.90 635.28

c3 B. Post central 56.22 53.89 51.97 53.19 43.10 46.05 47.94 44.60 54.11 58.58 57.76 52.34 619.80

c16 B. Post central 46.90 52.43 49.59 45.51 46.13 44.18 46.14 45.29 -- 59.39 60.36 58.59 554.56

c97
B. IFG, pars 

triangularis

--
47.72 46.87 45.10 -- 47.70 45.29 42.58 48.98 57.8 52.39 55.77 490.23

c112 B. precuneus -- 45.78 44.01 53.09 37.56 -- -- -- 51.79 -- 53.91 48.70 334.88

c65 B. Mid. Fron. -- -- 46.89 45.93 42.80 -- 47.14 38.94 -- 51.50 48.90 -- 322.12

c57 R. Post central 47.02 43.58 -- 45.03 -- 46.66 -- 48.46 -- -- -- 47.75 278.53

c1 B. WM -- -- -- -- 38.22 -- -- 44.14 54.97 -- 57.01 47.42 241.78

c27 B. Putamen 54.02 46.21 43.51 -- -- 47.37 -- -- -- 48.08 -- -- 239.22

c60 L. Post central -- -- -- -- -- 51.35 43.55 -- -- -- 52.21 147.11

c94 B. Fron. pole -- -- 44.60 -- -- -- -- 39.02 -- -- -- 55.97 139.60

c64 R. Lat. Occ. -- -- 42.44 -- -- -- -- 41.46 -- -- -- 49.36 133.27

c4 L. Post central -- -- -- 44.07 38.76 -- -- 40.32 -- -- -- -- 123.17

c106 B. Mid. Temp. -- -- -- -- -- -- -- -- -- -- -- 50.64 50.64

c66 B. Fron. pole -- -- 50.08 -- -- -- -- -- -- -- -- -- 50.08

c39 B. Occ. Pole -- -- -- -- -- -- -- -- -- -- -- 49.72 49.72

c85 B. Fron. pole -- -- -- -- -- -- -- -- -- 49.02 -- -- 49.02

c69 B. Post central 47.12 -- -- -- -- -- -- -- -- -- -- -- 47.12

c6 B. Intracalcarine -- -- -- -- -- 44.94 -- -- -- -- -- -- 44.94

c81 B. Precentral -- -- -- -- 44.75 -- -- -- -- -- -- -- 44.75

c40 B. Tem. Pole -- -- 44.57 -- -- -- -- -- -- -- -- -- 44.57

c11 B. Sup. Fron. -- -- -- 44.32 -- -- -- -- -- -- -- -- 44.32

c52 B. SMA -- -- -- 43.99 -- -- -- -- -- -- -- -- 43.99

c50 B. Cerebellum -- -- 42.52 -- -- -- -- -- -- -- -- -- 42.52

c49 R. Cerebellum -- -- -- -- 40.00 -- -- -- -- -- -- -- 40.00

c29 B. Lat. Occ. -- -- -- -- 38.84 -- -- -- -- -- -- -- 38.84

c12 B. Med. Fron. -- -- -- -- 38.05 -- -- -- -- -- -- -- 38.05

c86 R. IFG, pars 

triangularis

-- -- -- -- 37.92 -- -- -- -- -- -- -- 37.92

The main brain region associated with any of the affected components is also provided in the second column. The final column shows the sum of all causal influences on each activation component. The values are arbitrary, and are the outputs of the software package. C, 
activation component number; B, bilateral; R, right; L, left; Mid, middle; Temp, temporal; IFG, inferior frontal gyrus; Fron, frontal; WM, white matter; Lat, lateral; Occ, occipital; Sup, superior; SMA, supplementary motor area; Med, medial.
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being the highest impressionable, 24 areas were cortical regions, 
and only 4 networks were from the subcortical areas. As a result, 
the dominant finding of our work is a causal influence of the deep 
brain areas over the cortical regions of the brain during the 
resting-state.

4.2 The causal brain networks

We identified that some subcortical brain areas showed a causal 
influence over the cortical regions. One of the major influences here 
was from the brain stem. Similar findings are observed in previous 
works. One study discovered widespread negative connections 
between the cortex and all three brainstem nuclei including locus 
coeruleus, vental tegmental area, and substantia nigra, as well as 
positive correlations between activity in these nuclei and the activity 
in other subcortical locations (Büchel and Friston, 1997). In another 
study, the peaks in the global signal coincided with the brain stem 
function (Tognoli, 2014), which is consistent with some other reports 
which discovered a negative connection between the brain stem and 
cortical regions (Park et al., 2021), or discovered positive associations 
between physically defined brain stem subdivisions and some cortical 
targets (Danks and Davis, 2023). It is also reported that the brainstem 
has an effective connectivity on cortical regions (Valdes-Sosa, 2004), 
as well as reports on the brain stem influencing the motor learning 
(Raichle and Mintun, 2006).

One study suggested that the correlation between the intrinsic 
activity of the brain stem and the cortical areas is probably due to 
shared fluctuations across neuromodulatory nuclei; in other words, 
the neuromodulatory nuclei’s fluctuating activity drives several 
cortical regions, potentially influencing the intrinsic activity 
correlations within the cortex (Friston, 2009). Five significant 
neuromodulatory systems have been found in the brain: The locus 
coeruleus and the A1/A2 brainstem regions release norepinephrine; 
the substantia nigra and the ventral tegmental area are the sites of 
dopamine release; neurons in the basal forebrain emit acetylcholine; 
serotonin is produced by the raphe nuclei; and histamine is secreted 
by the hypothalamic tuberomammilary nucleus, which projects to 
nearly the whole forebrain (Friston, 2009). It is proposed that the 
changes in the activity of neuromodulatory nuclei correspond with 
the fast fluctuations in activity state. The activation of ionotropic 
receptors by serotonin or choline is thus a way by which the 
neuromodulatory brainstem system can rapidly shift the cortical 
activity state. As a result, the neuromodulatory brainstem systems 
can influence cortical population activity via a variety of 
mechanisms, including fluctuating brainstem nuclei driving large 
regions or subcortical regions and indirectly modifying cortical 
dynamic state (Friston, 2009).

In addition to brain stem, thalamus also showed significant 
causal influences over cortical regions. There are reports on the 
association of the thalamus with the other brain structures, such as 
between the thalamus and the basal ganglia, dorsal prefrontal 
cortex, and the anterior cingulate cortex (Jagtap and Diwadkar, 
2016). In a study (Wolff and Vann, 2019), it was proposed that 
rather than simply operating as relays, thalamic nuclei contribute 
to cortical functioning and higher-order cognition as well, including 
learning and memory as well as flexible adaptation. Other data that 
supports the idea of the non-relay role of the thalamus has recently 

emerged. For example (Halassa and Kastner, 2017; Schmitt et al., 
2017) and (Nakajima and Halassa, 2017) emphasize the thalamus’s 
role in managing cortical connectivity in order to sustain rule 
representation. A causal link between thalamus and prefrontal 
activity and social dominance behavior was recently found, further 
emphasizing the importance of thalamic inputs for cortical 
processes (Zhou et al., 2017). Numerous investigations have been 
conducted to demonstrate the relevance of thalamic inputs in 
driving activity in their cortical destination (Mathiasen et al., 2017). 
Indeed, the tight functional correlation between the thalamus, 
hippocampus, and retrosplenial cortex suggests that the thalamus 
may be important in coordinating activity across various regions 
(Corcoran et al., 2016; Halassa and Kastner, 2017).

Another thalamic nucleus that has drawn a lot of attention is 
the reuniens nucleus, which connects the prefrontal and temporal 
lobe regions by way of various frontal areas, and serves as the 
primary thalamic afferent to the hippocampus. This area is believed 
to be a significant hub, organizing functional exchanges between 
frontal areas and the hippocampus, especially in the absence of 
direct inputs from the prefrontal area to the hippocampus, as these 
projections are reciprocal (Wolff and Vann, 2019).

Precuneus also showed causal influences on other brain 
structures in our results. A study (Hillebrand et al., 2016) showed 
that in alpha-2 frequency band, precuneus had one of the strongest 
outgoing connections with the areas receiving these connections 
which were mostly cortical areas, such as the superior frontal gyrus, 
inferior frontal gyrus, supramarginal gyrus, anterior cingulate, and 
temporal pole.

There are other findings on the causality of the subcortical areas 
over the cortical regions; examples include amygdala and 
hippocampus on the ventrolateral prefrontal cortexes (Velichkovsky 
et al., 2019), amygdala and dorsolateral prefrontal cortex having a 
significant negative interaction (Klein-Flügge et al., 2020), amygdala 
having a causal effect on default mode network because of its 
significant connections with ventromedial PFC (Kerestes et  al., 
2017), right and left thalamus having a causal effect on the right and 
left cortices, respectively (Fasoula et al., 2013), and hippocampus 
and parahippocampus on the inferior parietal, superior frontal, 
middle temporal, and inferior frontal gyri (Park et al., 2018).

Although the major finding in our work was a causal effect from 
the deep brain regions to the cortical areas, we  also observed 
causalities between the cortical areas. There are similar findings in 
previous works, such as the medial prefrontal region showing 
causality on the inferior parietal and inferior temporal areas 
(Friston, 2009), supplementary motor area having considerable 
connections to both left and right primary motor cortex (Jiao et al., 
2014), and medial prefrontal cortex having a significant connection 
to the posterior cingulate cortex and inferior parietal lobules in the 
default-mode network.

Despite the reports on the one-way causal influences of some 
brain regions over others, there are reports that these connections 
could be reciprocal; in other words, the two brain regions mutually 
showing influences on each other. For example, in a resting state 
study, bidirectional connections between the posterior cingulate 
and parietal areas, and between the medial prefrontal and parietal 
areas were seen (Wu et al., 2011; Zhou et al., 2011). In another work 
(Yusoff et al., 2018), estimating the effective connectivity between 
the inferior parietal and inferior temporal gyri showed that they 
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had a dynamic cooperation, the intrinsic connections between them 
were negative in both directions, and in other words, they were 
mutually inhibiting each other. Also, in Deshpande and Hu (2012) 
it was discovered that two areas, the posterior cingulate and inferior 
parietal regions, had mainly bidirectional connections with all other 
ROIs in the four networks of default-mode, dorsal attention, 
hippocampal cortical memory, and fronto-parietal control networks.

Our results attribute a low causality of the cerebellum in the 
modulation of cortical activity. To address this issue, we should 
mention that while the cerebellum is acknowledged for its role in 
enhancing the coherence of neuronal oscillations, its function is 
often described as coordinating communication between cortical 
areas rather than directly influencing cortical activity. This suggests 
a more indirect modulatory role, emphasizing coordination over 
direct causality in cortical modulations (McAfee et al., 2022). In a 
study (Streng et al., 2018) it is addressed that causality of cerebellum 
in cortical activity modulation is indirect, or it is also (Popa and 
Ebner, 2019) mentioned that indirect causality of cerebellum 
influences cortical activity in prediction-error processing. Similarly, 
another study depicted that cerebellum modulates cortical activity 
through feedback/feed-forward prediction-error processing (Peng 
et al., 2021).

4.3 Effective connectivity estimation

4.3.1 Mathematical models
To estimate the effective connectivity, a model of how one 

brain region influences another region is required. Both the two 
mostly used models, the DCM (Friston et al., 2003) and GCM 
(Goebel et al., 2003; Valdes-Sosa, 2004), appeal to causation and 
rely on time-series models of fMRI data. There are also a number 
of other methods for the estimation of the effective connectivity. 
The Tigramite (time-series graph-based measures of information 
transfer) is one example, and it is based on conditional 
independence testing under some assumptions, such as time-
order, causal sufficiency, the causal Markov condition, and 
faithfulness (Runge, 2018; Saetia et al., 2021). Because time-lag is 
included, this framework may demonstrate changes in the causal 
model over time, which is important for pathway inference 
(Mannino and Bressler, 2015). Another model, the Transfer 
Entropy (TE), is a model-free method for detecting the directed 
information transfer (causality) between stochastic processes 
(Saetia et al., 2021), and conditional mutual information (CMI) 
(Hlaváčková-Schindler et al., 2007) in the form of TE (Schreiber, 
2000) is the information-theoretic function used in this approach.

Dynamic causal model measures effective connectivity 
because it considers how underlying neuronal processes affect 
each other. The related procedures in some applications of GCM 
rest upon blind deconvolution to deconvolve the observed BOLD 
signal into an underlying neural time series (David et al., 2008; 
Ryali et  al., 2011; Sathian et  al., 2013; Wheelock et  al., 2014; 
Hutcheson et al., 2015; Goodyear et al., 2016; Ryali et al., 2016) 
that enables the estimation of effective connectivity. Based on a 
proposed distinction (Pedro et al., 2011), methods can be classified 
based on their approach to the temporal sequence of the samples, 
and one category is based on the temporal sequence of the signals 
[e.g., Transfer Entropy (Schreiber, 2000), or Granger Causality 

(Granger, 1969)], whereas others, such as Bayesian Nets (Frey and 
Jojic, 2005), do not pull information from the time sequence and 
instead rely solely on the statistical features of the time series. The 
GCM contains a multivariate approach that searches for directed 
graphs without imposing any particular structure onto the graph, 
and therefore these methods will be referred to as network-wise 
models (Seth et al., 2015).

We used the GCM model in our study, and there are evidences 
on the robustness of this approach. Some of the advantages of the 
GCM include: Granger causal models consider lagged links 
(Waldorp et al., 2011); GCM entails autoregressing a group of time 
series variables to determine which variables predict the values of 
which other variables most directly (Granger, 2008; Friston et al., 
2014); GCM is employed as a model-free method, requiring no 
strong assumptions about the structural connection underlying 
the specified ROIs; GCM begins with a complete graph spanning 
a large set of ROIs and gradually eliminates links between 
variables that do not reliably predict each other (Danks and Davis, 
2023); also, if we want to anticipate future brain states based on 
the current condition, GCM is a powerful time series analytic tool 
(Hyung, 2001); GCM can be applied to either observed BOLD 
responses (Regner et al., 2016; Zhao et al., 2016; Chen et al., 2017) 
or deconvolved BOLD responses (David et al., 2008; Ryali et al., 
2011; Wheelock et al., 2014; Goodyear et al., 2016; Ryali et al., 
2016); and finally, the previous studies (Roebroeck et al., 2005; 
Seth et  al., 2013) demonstrate that GCM is still instructive 
regarding the directionality of causal linkages in the brain (Seth 
et al., 2015). As a result, it seems that our findings which were 
based on the GCM could be reliable.

4.3.2 Neural causality
In the brain and to perform a task, simultaneous events occur 

at the sub-neuronal, neural, and neuronal network levels. It is 
believed that because the processes at the various levels of 
explanation simultaneously occur, they are connected by a 
non-causal supervenient relationship whereas causality in brain 
best describes how it operates within levels but not between them. 
It is suggested that three requirements are needed for causality; 
first, interventionist causality conditions must be met; second, the 
occurrences that are causally connected should be explained at the 
same level; and third, a need for temporal order must be met, with 
an appropriate time scale on the order of 10 ms (Rolls, 2021).

(I) An interventionist account is widely accepted, suggesting 
that removing a potential cause and preventing the putative effect 
increases the likelihood of the potential cause causing the effect 
(Levels, 2020). (II) The argument suggests that causality operates 
within a level of explanation, not between levels. This means that 
cause and effect must be within the same level of explanation. This 
can refer to mental, computational, single neuron, or transmitter-
influenced ion channels (Rolls, 2021). (III) Temporal order can 
be a useful criterion for identifying causality at the macro level of 
events in the mind, brain, and computers. In neuroscience, a time 
delay occurs when causes produce effects, allowing for Granger 
causality. In neuroscience, a time scale of 10 ms is sufficient for a 
causal event to be tested, as this time scale is similar to the time-
scale of computation in the brain. This argument suggests 
temporal order is a useful criterion for causality in the brain 
(Rolls, 2021).
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4.4 Neuroanatomical information and 
structural neuroimaging

Subcortical regions, such as the thalamus, basal ganglia, and 
brainstem nuclei, are integral to various neuromodulatory systems 
that influence cortical function. For instance, in (Sherman, 2016) it is 
mentioned the thalamus serves as a major relay station, transmitting 
sensory and motor signals to the cortex and playing a crucial role in 
consciousness, sleep, and alertness. Neuroanatomical studies have 
detailed extensive reciprocal connections between the thalamus and 
cortical regions, highlighting the thalamus’s role in integrating and 
modulating cortical activity. Another evidence is for basal ganglia that 
mentioned some structures such as the striatum and globus pallidus 
are involved in motor control, cognition, and emotion. These 
structures form loops with the cortex, facilitating the modulation of 
motor and cognitive functions (Haber, 2016). The next one is 
brainstem that brainstem nuclei, such as the locus coeruleus and raphe 
nuclei, which project widely to the cortex and influence cortical 
activity through the release of neuromodulators such as 
norepinephrine and serotonin. These projections play a critical role in 
arousal, attention, and mood regulation (Sara and Bouret, 2012).

Diffusion Tensor Imaging (DTI) studies also provide structural 
evidence supporting the connectivity between the subcortical and 
cortical regions. DTI studies have mapped the thalamocortical tracts, 
revealing the extensive white matter connections between the 
thalamus and various cortical regions, supporting its role in sensory 
and motor integration (Behrens et al., 2003). Also, DTI studies have 
identified the structural connectivity of corticostriatal tracts, 
providing evidence of the basal ganglia’s role in modulating cortical 
functions through these pathways (Lehéricy et al., 2013). DTI has also 
been used to map the brainstem’s projections to cortical regions, 
highlighting the structural underpinnings of the neuromodulatory 
influences from the brainstem to the cortex (Edlow et al., 2016).

4.5 Dynamic effective connectivity and 
clinical applications

It is crucial to note that a causal influence of the subcortical areas 
over the cortex is less studied in the literature. Most resting state 
effective connectivity studies focus on cortical regions, often 
neglecting the complex interactions between cortical and subcortical 
areas. As a result, performing studies focusing on the temporal 
dynamics of subcortical regions and their integration into cortical 
networks during different cognitive states are required (Hwang et al., 
2017), which could have significant implications in the psychiatric and 
neurological disorders.

Human brain networks may be  characterized by a system of 
interconnected brain regions that have been recognized by time-
dependent observations via fMRI. To identify patterns, discover 
anomalies, and interpret temporal dynamics, it is critical to understand 
the changes of effective connectivity as a biomarker of 
neurodegenerative and psychiatric disorders, connections between 
different brain areas, and how these connections develop over time 
(Zhao et al., 2022). In DeMaster et al. (2022) it is demonstrated how 
alterations in resting state effective connectivity can serve as 
biomarkers for depression, or another work (Wang et  al., 2022) 
highlights the changes in effective connectivity in schizophrenia, 

aiding in better diagnosis and understanding of the disorder. A study 
validates the use of dynamic causal modeling (DCM) for resting state 
effective connectivity, which can detect early connectivity changes in 
neurodegenerative diseases (Razi et al., 2015). In Bacon et al. (2023) 
it is investigated how resting state effective and functional connectivity 
can help to understand the network disruptions caused by interictal 
discharges. Another study discusses how connectivity can reflect 
network reorganization and recovery following brain injury 
(Nakamura et al., 2009). One research offers novel evidence about the 
pathophysiology of Autism in children by examining the effective 
connections within and between large-scale brain networks (Wei 
et al., 2022). As a result, studying the causality between the cortical 
and subcortical areas could also have clinical applications in the future.

4.6 Philosophical implications of the 
findings

One implication of our findings could be suggesting a hypothesis 
for the mind-brain interaction dilemma. A rough hypothesis is that, the 
brain areas which show the highest causality effects may be the place of 
interface between the mind and brain, albeit by having this assumption 
that the human mind is superior over the human brain. The issue of 
causality in the sciences of the mind and brain have always been under 
debate. The mind–body problem is primarily focused on how the mind 
and body can interact causally; specifically, how the mind can react to 
the body, and how the mind can control the actions of the body. The 
causal power of the mind is assumed as a thinking, rational entity, and 
all activities and productions, including mental and intellectual 
inventions, are attributed to it (Hookway, 1986; Batouli and 
Sisakhti, 2019).

Causality in the brain is the most important relationship that can 
help us to solve the mind-brain interaction. A mental event appears to 
cause a sequence of complicated and coordinated bodily motions, which 
have further downstream repercussions in the physical world (Harnad, 
2000). It is the causal status of the mental component that lies at the core 
of the mind–body problem. The underlying neural mechanism causes 
both the brain’s and body’s functional neural/behavioral states and the 
fact that those states also happen to be mental states. This is known as 
third-party causation in the mind/body theory (Harnad, 2000).

Mental causation is at the heart of the mind–body problem. In 
particular, asking how mind and body interact is asking how they could 
impact one another. The sort of agency necessary for freewill and moral 
responsibility appears to necessitate mental causation (Harnad, 2000). 
There are researchers who have suggested the duality of the mind and 
brain. René Descartes introduced dualism into Western philosophy. 
Substance dualists, such as Descartes, believe that the mind is an 
independently existent substance (Descartes, 1998). However, if 
we remove the raw monistic approaches to explain the fundamental and 
conceptual differences between the attributes of mind and brain, the 
bilateral causal role of mind-brain in perception and volition needs to 
be explained. In the mathematical and accurate explanation of this 
interaction and the mechanism of this effect, quantum theories of 
consciousness are pioneering. For example, the Eccles-Beck theory 
delves into the influence of quantum probability on the exocytosis 
process of pyramidal neurons, and according to this theory, the mind, 
conceived as a distinct entity separated from the brain, exerts its 
influence on the brain by determining the result of this quantum process 
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within the realm of intrinsic quantum probability, acting as a hidden 
variable (Eccles, 1994). The Penrose-Hameroff theory or orchestrated 
objective reduction theory (Orch-or theory) recognizes the mental 
states and consciousness to arise from quantum information processing 
at the level of neuron microtubules. They also propose a descriptive 
explanation of the causal role of the mind on the brain (Hameroff and 
Penrose, 2014). In addition, in an Avicenna-Bohm’s theory, which is a 
mathematical and physical explanation of the mind’s causal influences 
on the brain, it explains through the extended Bohmain quantum 
mechanics the role of the mind in determining the Bohmian force in 
guiding the nervous system toward the desire and imagination of the 
mind (Jamali et al., 2019).

If we  do not deny the causal role of the mind in the brain, in 
addition to the mechanisms and physics of influence, the location of this 
interaction is of great importance. There are several theories about 
which part of the brain is related to the mind and mental states, and 
some of them propose that the whole brain is involving (Godwin et al., 
2015; Jones, 2015; Cofré et al., 2020), and some of them have mentioned 
specific regions being responsible for it (Patrick, 2008; Zhao et al., 2019). 
Although today’s dominant cognitive science approach is that the cortex 
is responsible for the emergence of human cognition functions, this 
phenomenon may be under the control of deeper regions of the brain 
(Ward, 2013; Wolff and Vann, 2019). For example, special attention has 
been paid to the key role of thalamus in the emergence of cognitive 
issues and its role in the field of perceptual and dynamic control of 
cortex layer (Ward, 2013). The author in Ward (2011) suggested that 
primary conscious awareness is triggered by synchronized activity in 
dorsal thalamic nuclei’s dendrites, mediated by inhibitory interactions 
with thalamic reticular neurons, and suggests the thalamus’s anatomy 
and physiology play a central role in consciousness. Among the theories 
related to consciousness, Avicenna-Bohm’s theory emphasizes 
characteristically on the role of thalamus in the interaction between the 
mind and brain (Jamali et al., 2019), while Penrose-Hameroff’s and 
Eccles-Beck’s theories emphasize on the role of the sub-neuron levels 
and propose that this level plays a key role in the mind-brain interaction 
(Eccles, 1994; Hameroff and Penrose, 2014). However, due to the 
novelty of these theories and their mathematical and physical challenges, 
more studies are needed in this field in the future.

5 Conclusion

In this study we tried to identify the brain areas with the highest 
causality influences over other brain areas during the resting state. 
This was an endeavor toward numerous previous studies which tried 
to solve the interaction of the mind and body. During the resting state, 
numerous functional networks appear and alternate in the brain, and 
we hypothesized that, some brain areas which might be the places of 
interaction with the mind, should have causal influences in those 
alterations. We observed that the subcortical brain areas show a higher 
causality here, and the areas receiving those effects were mostly the 
cortical regions.

Despite our endeavors in selecting robust methodology for this 
study, there were some limitations with our work. First, we did not 
have the recordings for heart beat and respirations during the fMRI 
imaging. Although we used the ICA algorithm which is powerful in 
noise removal, it cannot be guaranteed that these physiological noises 
have not affected our results. Second, we used the Granger causality 

algorithm, which has advantages in some aspects, but utilizing other 
approaches could also provide confirmations for our findings. For 
example, accuracy of the Granger causality is known to be dependent 
on the TR, and the long TR in our study may cause errors. Third, our 
fMRI imaging had a time resolution of 2.5 s, and performing the 
imaging with a much better sampling rate is more robust in showing 
the dynamic aspect of functional integration in the brain at rest. 
Fourth is that 63 healthy adults in the age range of 20 to 30 years 
represented our study sample. Age has been found to both increase 
inter-network connectivity and decrease intra-network connectivity 
(Jones, 2015), and consequently, there is less potential of extrapolating 
our results to other populations. With the potential of rsfMRI to 
diagnose and track changes in brain function related to 
neurodegenerative disorders, this limitation is especially significant. 
Fifth, in this study, we  used the absolute values of the effective 
connectivity matrix elements for each subject and summed them to 
achieve the highest degree of causal effect. However, as mentioned in 
the text, this can also be done by considering the signs of the elements, 
which might yield different results, and needs to be studied in the 
future. And finally, although we have suggested that our results could 
be a help to solve the mystery of the mind-brain interaction, as this is 
not clear today yet of what the human mind actually is and where this 
is located, the implication of our finding that the subcortical brain 
areas may be more in interaction with the mind is only a suggestion, 
and it needs further confirmation and studies in the future.
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