
Frontiers in Human Neuroscience 01 frontiersin.org

Electrophysiological analysis of 
signal detection outcomes 
emphasizes the role of decisional 
factors in recognition memory
Stephan Schneider 1,2†, Sélim Yahia Coll 1,2,3*†, Armin Schnider 2 
and Radek Ptak 1,2

1 Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, 
Switzerland, 2 Department of Clinical Neurosciences, Division of Neurorehabilitation, University 
Hospitals of Geneva, Geneva, Switzerland, 3 Department of Clinical Neurosciences, Division of 
Neurosurgery, University Hospitals of Geneva, Geneva, Switzerland

Introduction: Event-related potential (ERP) studies have identified two time 
windows associated with recognition memory and interpreted them as reflecting 
two processes: familiarity and recollection. However, using relatively simple stimuli 
and achieving high recognition rates, most studies focused on hits and correct 
rejections. This leaves out some information (misses and false alarms) that according 
to Signal Detection Theory (SDT) is necessary to understand signal processing.

Methods: We used a difficult visual recognition task with colored pictures of 
different categories to obtain enough of the four possible SDT outcomes and 
analyzed them with modern ERP methods.

Results: Non-parametric analysis of these outcomes identified a single time 
window (470 to 670 ms) which reflected activity within fronto-central and 
posterior-left clusters of electrodes, indicating differential processing. The 
posterior-left cluster significantly distinguished all STD outcomes. The fronto-

central cluster only distinguished ERPs according to the subject’s response: yes 

vs. no. Additionally, only electrophysiological activity within the posterior-left 

cluster correlated with the discrimination index (d’).

Discussion: We show that when all SDT outcomes are examined, ERPs of 
recognition memory reflect a single-time window that may reveal a bottom-up 
factor discriminating the history of items (i.e. memory strength), as well as a top-
down factor indicating participants’ decision.
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1 Introduction

The cognitive underpinnings of human recognition memory have been the subject of intense 
debate centered around two dominant accounts: the dual-process and the single-process model 
(Mandler, 1980; Yonelinas, 2002; Eichenbaum et al., 2007). The dual-process account posits that 
recognition implies two sequential operations: familiarity and recollection (Curran, 2000; 
Ranganath et al., 2004). Familiarity reflects stimulus knowledge that is assumed to be automatic, 
fast, threshold-based, and devoid of spatio-temporal details (Yonelinas, 1999). In contrast, 
recollection involves the conscious and deliberate retrieval of specific details or events from 
memory (Yonelinas, 2002; Brezis et al., 2017). Among the many tasks used to distinguish between 
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the two processes (e.g., Dobbins et al., 2004; Ranganath et al., 2004; 
Yonelinas et  al., 2019) the remember/know (R/K) paradigm is of 
particular interest as it allows participants to indicate whether they have 
access to contextual information (remember) or merely know that the 
item was presented (know; Düzel et al., 1997).

A major support for the dual-process account of recognition 
memory is provided by studies using event-related potential (ERP) 
techniques (Curran and Cleary, 2003; Vilberg et al., 2006; Woodruff 
et al., 2006). A repeated finding of these studies is that R/K judgments 
are associated with distinct ERP components over mid-frontal 
electrodes (“know”: FN400 component) and posterior electrodes 
(“remember”: Late Positive Component, LPC; for a review see Rugg 
and Curran, 2007). This temporal separation between R/K judgments, 
which are interpreted as indicators of recollection vs. familiarity, has 
been replicated numerous times with ERP (Curran and Cleary, 2003; 
Vilberg et  al., 2006; Woodruff et  al., 2006) or functional imaging 
studies (fMRI; Scalici and Caltagirone, 2017). Further investigations 
have shown that the two ERP components are differentially affected 
by manipulations of attention (Curran, 2004), confidence levels 
(Yonelinas, 2001), or memory performance in amnesia (Aly et al., 
2010; Addante et al., 2012). R/K judgments identified with fMRI are 
associated with neural activations in two distinct regions of the frontal 
cortex. These findings indicate temporal, spatial, and functional 
differences associated with R/K judgments, which together support 
dissociated cognitive processes (Hill and Windmann, 2014; 
Hoppstädter et al., 2015; Andrew Leynes et al., 2019).

A less abundant line of research supports the idea that recognition 
memory relies on a single process. For example, some authors argued 
that the dissociation between R/K responses is confounded with the 
strength of the memory trace (Figure 1A; Finnigan et al., 2002; Brezis 
et al., 2017). According to this proposal, ERP components and time 
windows might be interpreted as two extremes on the continuum of a 
single variable: memory strength (Wixted and Stretch, 2004; Wixted, 
2009). Some findings also suggest that familiarity and recollection are 
not stochastically independent regarding their contribution to 
recognition memory (Moran and Goshen-Gottstein, 2015). The single-
process model has stirred considerable debate among scientists, and it 
is important to note that several subsequent studies have refuted this 
theory (e.g., Yu and Rugg, 2010; Addante et al., 2012; Addante, 2015). 
Some reports participating to the debate regarding the cognitive 
processes underlying recognition memory focused exclusively on 
correct recognition (i.e., hits and correct rejections; Wais et al., 2008; 
Hoppstädter et al., 2015), and thus provided arguments based on a 
biased view of recognition (Wixted, 2009). Several studies considered 
wrong responses (i.e., misses or false alarms; Curran, 2000; Rugg and 
Curran, 2007; Wolk et al., 2007; Addante et al., 2023), but a systematic 
analysis comparing all response types (i.e., correct and wrong 
responses) in a single analysis that englobes the entire electrode set 
(instead of focusing on selected electrodes) is missing. Within the 
framework of Signal Detection Theory (SDT), memory strength 
elicited by a stimulus represents a value on two overlapping 
distributions (“signal” and “noise”) that may be attributed to one of 
four possible outcomes: hit (seen and recognized), miss (seen but not 
recognized), correct rejection (CR; not seen and not recognized) and 
false alarm (FA; not seen but recognized). According to SDT, items are 
judged as “old” if the underlying signal strength exceeds an individual 
criterion (C; see Figure 1B). The interest in using such an approach is 
that outcomes can be decomposed according to behavioral response 
(old vs. new) or ground truth (signal vs. noise). Interestingly, R/K 

responses can also be  considered as criteria on the continuum of 
memory strength (Donaldson, 1996; see Figure  1A). The R/K 
procedure is then compatible with an analysis of recognition memory 
within the SDT framework (Dunn, 2004).

Therefore, the question of interest when considering SDT to 
understand memory strength and decisional factors as core determinants 
of recognition memory is whether the four response outcomes generate 
specific ERP signatures. While some studies have examined memory 
strength as a moderating factor of ERP components (Brezis et al., 2017), 
a model-free investigation of ERP signatures of SDT outcomes is lacking. 
ERP correlates of incorrect responses (misses and false alarms) are less 
commonly studied, mainly because most previous studies used relatively 
simple recognition paradigms that did not generate a sufficient number 
of incorrect answers. For example, several studies used words, 
non-words, or simple images, which often produce recognition rates 
exceeding 80% or even 90% (Brady et  al., 2008; Brezis et  al., 2017; 
Delorme et al., 2018). These types of stimuli are not sufficiently complex 
to elicit a substantial number of wrong answers while still maintaining 
above-chance performance. Some authors have analyzed certain 
comparisons of responses (Leynes et al., 2005). However, what is missing 
from these studies is a robust analysis leading to the identification of the 
regions of interest in terms of temporal windows as well as in spatial/
electrodes of maximal discrimination based on the response criterion. 
With this gap in the literature, the role of response biases and decisional 
factors in recognition memory remains uncertain. In this study, 
we  applied an old/new task to test recognition memory of natural 
stimuli that were presented for a limited amount of time to increase the 
difficulty of the task. The study aimed to analyze old/new ERP data 
without a priori assumptions regarding time windows or regions of 
interest and without favoring a particular theoretical framework.

2 Materials and methods

2.1 Participants

Twenty-three healthy participants (14 women, mean 
age = 25 years, SD = 5) took part in the study after giving their 
informed written consent. All participants reported no history of 
psychiatric or neurological disorder, no current use of medication 
and normal or corrected-to-normal vision. Participants were 
recruited through flyers around the campus of the University of 
Geneva. They were remunerated 20 Swiss francs per hour (average 
remuneration CHF 66). The study was conducted under the approval 
of Ethics Committee of the Canton of Geneva (approval number 
2021-00414). The research reported in this study was performed in 
accordance with relevant guidelines and regulations. The sample size 
was determined on the basis of previous ERP studies using an old/
new paradigm (Finnigan et al., 2002; MacKenzie and Donaldson, 
2007; Hoppstädter et al., 2015).

2.2 Stimuli

Stimuli consisted of 720 images, taken from various databases 
(SwissTopo, Chicago Face Database, THINGS database) and photos1 

1 Unsplash.com
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freely available under Creative Commons License. Images were from 
six categories: landscapes (160 images), buildings (160), objects (160), 
living (160), neutral human faces rated as “mixed race” (40) and 
fractals (40). Half of the stimuli of each category were presented on 
day one and the remaining half on day two. All images were 
preprocessed by removing any text (e.g., billboards) and people (e.g., 
workers on a construction site) using Adobe Photoshop (Adobe Inc., 
2019). They were then normalized to achieve equal luminosity by 
scaling each RGB channel to an average value of 127 using a custom 
MATLAB script (MATLAB, R2022b. Natick, Massachusetts: The 
MathWorks Inc.). Images were cropped to 900 × 900 pixels yielding 
an image size of 22 × 22, corresponding to 21° at a viewing distance 
of 60 cm. Stimuli were presented on a EIZO Foris FG2421, 23.5 in the 
screen with a refresh rate of 60 Hz.

2.3 Procedure and task

Participants underwent two experimental sessions separated by 
24 h. On the first day (Figure 2; “Day 1”) they were shown half of the 
images of each category, for a total of 360 items. Participants were 
instructed to memorize each image for a later recognition test 

(Figure 2; “Day 2”). Stimuli were displayed for 750 ms, separated by a 
fixation cross of 1,500 ms, and with randomized presentation order. 
Day 1 and Day 2 sessions were separated in blocks of approximately 
90 trials (4 blocks on Day 1 and 8 blocks on Day 2) lasting about 
7 min. Participants could take as much rest as needed between blocks. 
To ensure attentional engagement during the task, a control task was 
introduced, consisting of a white arrow appearing at random intervals 
instead of an image. When this happened, participants were prompted 
to indicate the direction of the arrow by pressing the corresponding 
arrow key with their left or right index finger.

On the second day (Figure  2; “Day 2”), participants were 
instructed to identify the 360 images seen on day one among 720 
images (50% old items). Images were shown in randomized 
presentation order for 750 ms, followed by a fixation cross for 1,500 ms. 
Following the fixation cross, the words “yes” and “no” appeared on the 
screen inviting subjects to indicate whether they had seen the image 
on the day before, by pressing the corresponding arrow key. To 
mitigate laterality effects, half of the participants answered “yes” with 
their right index finger and “no” with their left index finger, while for 
the other half the key-answer mapping was reversed. Once the answer 
was given, a fixation cross was again displayed for 1,500 ms and a new 
image appeared.

FIGURE 1

Signal detection theory view of recognition memory modified from Mickes et al. (2007). (A) Within a single-process view, familiarity (“know”) and 
recollection (“remember”) can be characterized as two criteria on the axis representing memory strength. (B) SDT conceptualization allows obtaining 
four outcomes, a decision criterion (C) and a measure of sensitivity (d) based on the spacing between signal and noise distributions.
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2.4 EEG acquisition and preprocessing

High-density EEG was recorded during the second session (day 
two) using a 128-electrode set-up (BioSemi Active-Two, V.O.F., 
Amsterdam, The Netherlands) at a sampling rate of 1,028 Hz. In 
addition, an electrooculogram (EOG) was recorded using 4 external 
electrodes for later artifact detection. The EOG electrodes were placed 
at both lateral canthi for horizontal eye movement and above and 
below the right eye for vertical movement detection.

Preprocessing was performed with BrainVision Analyzer (version 
2.2.0, Brain Products GmbH, Gilching, Germany). After filtering 
(high-pass: 0.25 Hz, low-pass: 30 Hz, Notch: 50 Hz), data were 
downsampled to 500 Hz to reduce data volume and increase 
processing speed. The reference was calculated as the average of all 
electrodes (Brunet et al., 2011), and electrodes displaying abnormal 
activity were excluded and interpolated (mean number of interpolated 
electrodes = 2.61 ± 2.98). To remove artifacts due to blinks or saccades, 
an ocular ICA was performed with information from the EOG.

ERP epochs were then extracted from −200 to 750 ms post-
stimulus onset. A baseline correction was performed using the 
200 ms pre-stimulus activity, and artifacts were rejected based on a 
min/max amplitude criterion of −100 μV/+100 μV (mean number of 
rejected epochs = 1.02 ± 1.3). ERPs were then labeled with their 
associated response type (i.e., Hit, Miss, CR or FA) based on 
participant’s answer. After the pre-processing stage, the mean number 
of artifact-free trials for the different response types was: Hit =185.22 
(median = 187, range = 100–282), Miss = 172.87 (median = 173, 
range = 74–260), CR = 245.35 (median = 250, range = 160–235) and 
FA = 112.48 (median = 107, range = 28–199).

2.5 Global waveform analysis

To identify the time periods and electrodes of interest without 
prior assumptions, we adopted a model-free approach of ERP analysis. 

We used the Statistical Toolbox for Electrical Neuroimaging (STEN) 
developed by Jean-François Knebel and Michael Notter.2 This Python 
(Python Software Foundation, http://www.python.org) toolbox allows 
the computation of statistics on several measures of EEG signals with 
non-parametric waveform repeated-measure analysis of variance 
(ANOVA), while correcting for family-wise error using the 
bootstrapping methodology. To summarize the methodology, a 
p-value is calculated for each time point of each electrode in each 
condition of interest using the bootstrapping method. This involves 
estimating the sampling distribution of a statistic by drawing samples 
with replacement from the entire original dataset. The main advantage 
of this methodology compared to a traditional ERP study is that the 
selection of electrodes is no longer based on a priori assumptions or 
arbitrary decisions, but solely on statistical criteria, allowing to 
perform the EEG analysis in a model-free manner. We performed this 
analysis on all averaged EEG time frames from all participants during 
the entire period of image presentation (i.e., 0 to 750 ms post-stimulus; 
Figure  3). The dependent variable was the mean amplitude in 
microvolts and the fixed factor the SDT response types (Hit vs. Miss 
vs. CR vs. FA). A bootstrapping with 1,000 iterations was applied to 
identify significant time frames and electrodes at p < 0.05. To eliminate 
short periods and to identify the region of interest that contains most 
information, only significant periods longer than 20 ms (i.e., 10 time 
frames) and only clusters of at least 10 significant non-neighboring 
electrodes were considered. These criteria are more conservative than 
in previous studies (e.g., Tautvydaitė et al., 2018), where authors only 
used time-wise correction. We justify this decision by the hypothesis-
free approach of our analysis (Manuel and Schnider, 2016).

Once the clusters identified, the mean ERP value of each SDT 
outcome was extracted for each participant in each cluster. Using 
Statistica (version 14.0.0.15, TIBCO software Inc.), a repeated-measure 
ANOVA with the mean amplitude in microvolts as dependent variable 
and the SDT response types and Electrode clusters (posterior-left vs. 

2 http://doi.org/10.5281/zenodo.1164038

FIGURE 2

Experimental procedure. On day 1, participants saw 360 images for 750  ms, with the instruction to retain as much information as possible for later 
recall. On day 2, the same images mixed with 360 foils (distractors) were shown for 1,500  ms. Participants indicated for each image whether they had 
seen it before by using the keyboard (CR, correct rejection; FA, false alarm).
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fronto-central) as fixed factor was conducted. In order to take into 
account the multiple comparison problem, simple effects were 
performed in Statistica and p-values were corrected using the False 
Discovery Rate methodology (FDR; Benjamini and Yekutieli, 2005).

2.6 ERP correlation with d’

A major advantage of SDT is the possibility to express overall 
memory sensitivity in a single parameter (D-prime or d’) that 
integrates information from Hit and FA rates based on their 
standardized difference. The higher the d’ value, the better individuals 
are able to discriminate signal (targets) from noise (distracters) in a 
recognition task (Macmillan et al., 2022).

To identify any difference in discrimination performance between 
the two electrode clusters, we performed correlation analyses between 
the mean ERP activation in the time window of interest and the d’ of 
each participant. To control for the impact of outliers we used robust 
correlations as implemented in the r-skipped correlation in the Robust 
correlation toolbox (Pernet et al., 2013) on MATLAB (version R2022b, 
The MathWorks Inc.). The r-skipped correlation attributes a low 
weight to outlier values and thus provides a more robust computation 
of the measure of association without loss of power (Pernet et al., 2013).

In order to ensure that the correlations for each cluster were 
interpretable independently from each other, we  performed a 

comparison of the correlation scores with the Cocor package on R 
(Diedenhofen and Musch, 2015) using the z methodology of Pearson 
and Filon (1898).

3 Results

3.1 Behavioral results

The average proportion of correctly recognized items (mean = 0.60, 
SD = 0.04) was significantly higher than chance for the entire 
participant group (t(22) = 12.5, p < 0.001), and for each individual 
participant. The mean number of responses by SDT response types 
were as follows: Hit = 186 ± 51.8 (median = 187, range = 100–285); 
Miss = 174 ± 51.8 (median = 173, range = 75–260); CR = 246 ± 51.5 
(median = 252, range = 115–327); FA = 114 ± 51.5 (median = 108, 
range = 33–245). In terms of SDT parameters, the average d’ was 0.56 
(median = 0.55, range = 0.10–1.09) and the decision criterion was 0.23 
(median = 0.27, range = −0.46–0.90).

3.2 Waveform analysis

3.2.1 Overall results
Figure  4A shows the output of the non-parametric repeated-

measure ANOVA computed across the four SDT response types (Hit, 
Miss, CR and FA) for the entire post-stimulus epoch (0 to 750 ms). The 
analysis yielded a single-time window between 470 and 670 ms that 
satisfied the temporal and spatial criteria for significance (Figure 4B).

Within this time window, two electrode clusters of neighboring 
electrodes showed significant differences between SDT outcomes 
(Figures  4, 5). The first cluster was fronto-central around the FC 
electrode (corresponding roughly to Cz, FCz, C1 and C2 in a 10–10 
system) while the second cluster was located in the posterior-left area 
centered around P3 (corresponding roughly to P1, P3, P5, P7, PO7, 
PO5, and O1).

3.2.2 Analysis Per electrode cluster
The repeated-measure ANOVA returned significant main effects 

of Electrode clusters [F(1,22) = 42,64, p < 0.001, ηp
2 = 0.660] and SDT 

response types [F(3,66) = 15.56, p = 0.022, ηp
2 = 0.135], as well as a 

significant interaction between both factors [F(3,66) = 27.77, p < 0.001, 
ηp

2 = 0.558].
To examine the interaction effect further, we performed simple 

effects between SDT response types within each Electrode cluster (see 
Table 1). Results revealed that all contrasts between SDT response 
types were significant for the posterior-left cluster. Concerning the 
fronto-central cluster, the Hit vs. Miss, Hit vs. CR, Miss vs. FA and CR 
vs. FA contrasts were significant, but not the Hit vs. FA and Miss vs. 
CR contrasts.

3.2.3 Correlation between SDT response types 
and d’

Correlation analyses between d’ and ERP activation in the fronto-
central cluster returned non-significant levels of association 
(r-skipped = 0.18, t(91) = 1.73, p = 0.866, bootstrapped 90% CI [−0.143, 
0.387], no bivariate outliers detected). In contrast, there was a 
significant negative correlation between ERP activation and d’ in the 

FIGURE 3

Graphical description of the analysis steps.
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posterior-left cluster (r-skipped = −0.25, t(91) = −2.41, p = 0.018, 
bootstrapped 90% CI [−0.377, −0.025], 4 bivariate outliers detected). 
The statistical comparison of the two (overlapping) correlations 
yielded a non-significant result (z = 1.73, p = 0.084).

4 Discussion

Our study focused on SDT parameters to investigate ERP 
correlates of recognition memory. By manipulating the complexity of 

FIGURE 4

Results of the analysis pipeline to identify the time windows and clusters of significance. (A) Output of the non-parametric repeated measure ANOVA 
on ERP waveforms and the four SDT outcomes. Black lines represent corrected periods of significance (p  <  0.05 and  >  20  ms). Each line represents an 
electrode from stimulus onset to 750  ms. (B) Histogram of the cumulative number of significant electrodes. The horizontal dashed lines represent the 
minimum criterion of 10 simultaneously significant electrodes. The two vertical lines represent the identified time window of interest between 470 and 
670  ms. (C) ERPs associated with the four response types at the fronto-central cluster, and (D) at the posterior-left cluster.
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the task, we obtained a sufficient number of wrong answers, i.e., FA 
and misses, to permit analysis of all four possible outcomes, while 
maintaining performance of all participants above chance. The 
waveform analysis identified one-time window of interest: 470–670 ms 
post-stimulus onset, and two clusters of electrodes: fronto-central and 
posterior-left. Comparisons of ERPs within each cluster showed that 
all SDT outcomes were well discriminated in the posterior-left cluster. 

In the fronto-central cluster, however, ERPs reflecting the same 
behavioral response, i.e., “yes” response (Hit and FA) vs. “no” response 
(CR and Miss) yielded indistinguishable ERPs even though they had 
different history: seen (Hit and Miss) vs. unseen (FA and CR). 
Additionally, we found a significant negative association between the 
discrimination index (d’) and ERP activation only in the posterior-left 
cluster. Our findings show that studying SDT outcomes expands our 
understanding of the electrophysiological correlates of 
recognition memory.

Behavioral performance in recognition memory often exceeds 
80% or even 90% in typical old/new paradigms, indicating that 
human recognition memory is highly efficient (Manns et al., 2003; 
Brady et al., 2008; Brezis et al., 2017; Delorme et al., 2018). In our 
study, recognition performance was considerably lower (about 60%), 
which might be due to several factors. Many previous ERP studies 
used simple black and white images or (non-) words (Finnigan et al., 
2002; Yu and Rugg, 2010), which have low ecological value and are 
highly discriminable (Felsen and Dan, 2005; Pinto et al., 2008) as 
compared to the photographs used in our study. Second, the short 
presentation time of 750 ms was likely insufficient for a thorough 
analysis and consequently precluded elaborated encoding of the 
stimuli. Superficial processing and low discriminability may favor 
item misses and false positive responses in our task, while previous 

FIGURE 5

Results of the repeated-measure ANOVA on activation levels (μV) between the response types in each cluster of electrodes (fronto-central and 
posterior-left) in the identified time window (470–670  ms). Significance levels are marked: ***  <0.001, **  <0.01, *  <0.5. Errors bars are the confidence 
intervals at 95%.

TABLE 1 Post-hoc results of the repeated measure ANOVA between 
response types in the two clusters of electrodes identified.

Comparison

Fronto-
central

Posterior left

p-values

Hit

Miss <0.001 <0.001

CR <0.001 <0.001

FA 0.123 0.006

Miss
CR 0.146 0.010

FA 0.002 <0.001

CR FA 0.003 0.002

All p-values are corrected using the False Discovery Rate methodology (Benjamini and 
Yekutieli, 2005). CR, Correct rejections; FA, False alarms.
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studies of recognition memory generally only observed few item 
misses and even fewer FAs (e.g., MacKenzie and Donaldson, 2007; 
Hoppstädter et al., 2015).

Previous ERP studies testing recognition memory with the R/K 
paradigm distinguished two time windows that were, respectively, 
linked to familiarity (at 300–500 ms over fronto-central electrodes) 
and recollection (400–600 ms over left-parietal electrodes; Rugg and 
Curran, 2007). In contrast, our ERP analyzes only identified a single 
time window; that appeared to be temporally coherent with the late 
‘parietal’ time window (470–670 ms) identified in previous studies 
(Curran, 2004; Rugg and Curran, 2007). The crucial question is 
whether the time window in our study reflects the same underlying 
cognitive processes related to recognition memory as proposed by 
other authors. Rugg and Curran (2007) summarized the findings of 
several studies by concluding that the late parietal component (LPC) 
is indicative of memory recollection. Their reasoning was based on the 
observation that the LPC was modulated by successful vs. unsuccessful 
source judgments or remember vs. know responses. Some also argued 
that the LPC was not related to response confidence or stimulus 
probability (Yu and Rugg, 2010). However, some of the findings 
supporting these conclusions are derived from studies that did not 
systematically compared correctly and incorrectly classified old and 
new items. This presents a problem for the interpretation of any 
electrophysiological component: while missed items may be explained 
by a failure of familiarity or recollection, it is difficult to explain FAs 
without recurring to alternative explanations. Examining only correct 
responses also ignores the fact that recognition memory reflects a 
decision-making process, particularly when subject’s confidence 
is weak.

Though the parietal time window reported in previous studies was 
identified by comparing seen to unseen stimuli, we observed a similar 
window after integrating all four SDT outcomes in an ANOVA. The 
slight temporal shift of approximately 70 ms might be explained by 
increased difficulty of our task, which may have delayed decisions due 
to uncertainty regarding items held in memory (Murata et al., 2005). 
We also identified a left-parietal cluster of electrodes that appears to 
be predominantly activated during this time window. One possible 
interpretation of this ERP components within our time window could 
be similar to the LPC described in previous studies, and therefore 
might reflect related electrophysiological processes. However, as no 
remember/know ratings were included in the current paradigm a 
direct comparison between our findings and research using the R/K 
paradigm is difficult and might be addressed in future studies. This 
information could be obtained by adding confidence scales to allow 
more granularity of the old-new paradigm, while still allowing the 
analysis of all SDT categories.

In contrast to previous work, we also observed a fronto-central 
electrode cluster that was active during the same time window. Our 
findings are not compatible with a single-cognitive process taking 
place in this time window, such as recollection, but rather suggest two 
distinct contributions to recognition memory. When examining ERP 
differences across conditions, we  found that the posterior-left 
electrode cluster not only distinguished SDT outcomes according to 
item history (i.e., whether items had been presented before), but also 
the judgment of the subject (i.e., whether the subjects thought having 
seen the item before). In contrast, the fronto-central cluster only 
distinguished SDT outcomes according to the belief of the subject of 
having seen the item before. The distinction between item history and 

the subjective judgment of the observer is important, and can only 
be captured when all four SDT outcomes are considered.

The main strength of SDT is that it conceives item detection as a 
decision-making process, whereby subjective assessments, or beliefs, 
as well as decision criteria, come at play. Focusing only on ERP 
correlates of correct identifications of old vs. new items may identify 
electrophysiological processes underlying assumed memory 
components (such as recollection), but neglects the fact that memory 
is subject to metacognitive judgments. Our findings therefore open 
the debate as to which cognitive components are reflected by the 
identified ERP components. We would argue that in our findings 
associative strength of memory traces (Brezis et  al., 2017) and 
metacognitive judgments partly dissociate across the posterior-left 
and the fronto-central electrode cluster. This hypothesis is based on 
the observation that the latter cluster only exhibited activity 
differences that could be explained by the type of response (yes vs. 
no), but not the actual item history. This finding is difficult to 
reconcile with the proposal that this cluster is specifically linked to 
familiarity (Hoppstädter et al., 2015), since FA items that were not 
seen before and should therefore not be  familiar were processed 
similarly to target pictures. Also, interpreting this finding as reflecting 
the strength of memory traces requires the assumption that some 
items may have memory traces although they were never seen before. 
A more plausible possibility is that subjects decide whether they have 
seen an item before based on a comparison with the item pool, which 
becomes more difficult the more similar items have been presented.

Our finding thus suggests that the fronto-central cluster is 
specifically linked to metacognitive processes that guide the decision 
to produce a yes- or no-response. It is somewhat less straightforward 
to interpret the meaning of electrophysiological activity extracted 
from the posterior-left cluster, since this cluster differentiated 
between item history, but also between behavioral responses. 
Following our reasoning that responses in a recognition memory task 
reflect the strength of the memory trace and decisional processes, the 
posterior-left cluster appears to be a better predictor of performance. 
This conclusion is also supported by the correlation analysis, which 
showed that only ERP activity in the posterior-left cluster significantly 
predicted sensitivity in recognition memory (d’).

To sum up, our study shows that items in a recognition task do 
not only elicit different responses based on their representation in 
memory, but are also subject to complex decision processes. Such 
decision processes might operate on associative information, or on 
memory strength, which according to some authors may explain 
results of R/K paradigms within a single-process model (Brezis et al., 
2017). However, ERP data extracted from the posterior-left cluster 
identified in our study can better be reconciled with a decisional 
process, rather than with the strength of memory representations. 
Memory strength predicts an arrangement of amplitudes that places 
hits and misses together (high memory strength), as opposed to CR 
and FA outcomes (low memory strength). Instead, Figure 5 shows 
that ERP amplitudes were arranged following the order 
Miss>CR > FA > Hit, which suggests that outcomes with 
yes-responses demand lower activations. This pattern suggests that 
the driving factor in the posterior cluster is not memory strength per 
se, but rather a metacognitive representation motivating a yes- or 
no-response.

In conclusion, by applying a signal detection framework 
we  observed that the representation of items in memory (i.e., 
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memory strength) as well as decisional processes affect the 
electrophysiological correlates of recognition memory. Based on 
our findings, we argue that classifying outcomes according to SDT 
enhances the possibility to analyze the electrophysiological 
components of recognition memory. Our study underlines the 
necessity to consider wrong answers (FA and misses) when 
analyzing recognition memory, as they may contain important 
information about the mental processes underlying the functions 
of human memory.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics Committee 
of the Canton of Geneva (approval number 2021-00414). The studies 
were conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

SS: Conceptualization, Formal analysis, Investigation, 
Methodology, Visualization, Writing – original draft, Writing – review 
& editing. SC: Conceptualization, Formal analysis, Investigation, 
Methodology, Supervision, Visualization, Writing – review & editing. 
AS: Funding acquisition, Resources, Supervision, Writing – review & 
editing. RP: Conceptualization, Resources, Supervision, Validation, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by the Swiss National Foundation (grant no 
320030_175472 to AS and grant no 32003B_184702 to RP) and the 
Novartis Foundation for medical-biological Research (grant no 
21C198). The funder(s) was not involved in the study design, 
collection, analysis, interpretation of data, the writing of this article or 
the decision to submit it for publication.

Acknowledgments

The authors thank Alexandra Adam-Darqué and Emilie Marti for 
assistance with the EEG system and acquisition.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Addante, R. J. (2015). A critical role of the human hippocampus in an 

electrophysiological measure of implicit memory. Neuroimage 109, 515–528. doi: 
10.1016/j.neuroimage.2014.12.069

Addante, R. J., Lopez-Calderon, J., Allen, N., Luck, C., Muller, A., Sirianni, L., et al. 
(2023). An ERP measure of non-conscious memory reveals dissociable implicit 
processes in human recognition using an open-source automated analytic pipeline. 
Psychophysiology 60:e14334. doi: 10.1111/psyp.14334

Addante, R. J., Ranganath, C., Olichney, J. M., and Yonelinas, A. P. (2012). 
Neurophysiological evidence for a recollection impairment in amnesia patients that 
leaves familiarity intact. Neuropsychologia 50, 3004–3014. doi: 10.1016/j.
neuropsychologia.2012.07.038

Adobe Inc (2019). Adobe Photoshop. Available at: https://www.adobe.com/products/
photoshop.html.

Aly, M., Knight, R. T., and Yonelinas, A. P. (2010). Faces are special but not too special: 
spared face recognition in amnesia is based on familiarity. Neuropsychologia 48, 
3941–3948. doi: 10.1016/j.neuropsychologia.2010.09.005

Andrew Leynes, P., Batterman, A., and Abrimian, A. (2019). Expectations alter 
recognition and event-related potentials (ERPs). Brain Cogn. 135:103573. doi: 10.1016/j.
bandc.2019.05.011

Benjamini, Y., and Yekutieli, D. (2005). False discovery rate–adjusted multiple 
confidence intervals for selected parameters. J. Am. Stat. Assoc. 100, 71–81. doi: 
10.1198/016214504000001907

Brady, T. F., Konkle, T., Alvarez, G. A., and Oliva, A. (2008). Visual long-term memory 
has a massive storage capacity for object details. Proc. Natl. Acad. Sci. U. S. A. 105, 
14325–14329. doi: 10.1073/pnas.0803390105

Brezis, N., Bronfman, Z. Z., Yovel, G., and Goshen-Gottstein, Y. (2017). The 
electrophysiological signature of remember–know is confounded with memory strength 
and cannot be interpreted as evidence for dual-process theory of recognition. J. Cogn. 
Neurosci. 29, 322–336. doi: 10.1162/jocn_a_01053

Brunet, D., Murray, M. M., and Michel, C. M. (2011). Spatiotemporal analysis of 
multichannel EEG: CARTOOL. Comput. Intell. Neurosci. 2011, 1–15. doi: 
10.1155/2011/813870

Curran, T. (2000). Brain potentials of recollection and familiarity. Mem. Cognit. 28, 
923–938. doi: 10.3758/BF03209340

Curran, T. (2004). Effects of attention and confidence on the hypothesized ERP 
correlates of recollection and familiarity. Neuropsychologia 42, 1088–1106. doi: 10.1016/j.
neuropsychologia.2003.12.011

Curran, T., and Cleary, A. M. (2003). Using ERPs to dissociate recollection from 
familiarity in picture recognition. Cogn. Brain Res. 15, 191–205. doi: 10.1016/
S0926-6410(02)00192-1

Delorme, A., Poncet, M., and Fabre-Thorpe, M. (2018). Briefly flashed scenes can 
be stored in long-term memory. Front. Neurosci. 12:688. doi: 10.3389/fnins.2018.00688

Diedenhofen, B., and Musch, J. (2015). Cocor: a comprehensive solution for the 
statistical comparison of correlations. PLoS One 10:e0121945. doi: 10.1371/journal.
pone.0121945

Dobbins, I. G., Kroll, N. E. A., and Yonelinas, A. P. (2004). Dissociating familiarity from 
recollection using rote rehearsal. Mem. Cognit. 32, 932–944. doi: 10.3758/BF03196871

Donaldson, W. (1996). The role of decision processes in remembering and knowing. 
Mem. Cognit. 24, 523–533. doi: 10.3758/BF03200940

https://doi.org/10.3389/fnhum.2024.1358298
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.neuroimage.2014.12.069
https://doi.org/10.1111/psyp.14334
https://doi.org/10.1016/j.neuropsychologia.2012.07.038
https://doi.org/10.1016/j.neuropsychologia.2012.07.038
https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://doi.org/10.1016/j.neuropsychologia.2010.09.005
https://doi.org/10.1016/j.bandc.2019.05.011
https://doi.org/10.1016/j.bandc.2019.05.011
https://doi.org/10.1198/016214504000001907
https://doi.org/10.1073/pnas.0803390105
https://doi.org/10.1162/jocn_a_01053
https://doi.org/10.1155/2011/813870
https://doi.org/10.3758/BF03209340
https://doi.org/10.1016/j.neuropsychologia.2003.12.011
https://doi.org/10.1016/j.neuropsychologia.2003.12.011
https://doi.org/10.1016/S0926-6410(02)00192-1
https://doi.org/10.1016/S0926-6410(02)00192-1
https://doi.org/10.3389/fnins.2018.00688
https://doi.org/10.1371/journal.pone.0121945
https://doi.org/10.1371/journal.pone.0121945
https://doi.org/10.3758/BF03196871
https://doi.org/10.3758/BF03200940


Schneider et al. 10.3389/fnhum.2024.1358298

Frontiers in Human Neuroscience 10 frontiersin.org

Dunn, J. C. (2004). Remember-know: a matter of confidence. Psychol. Rev. 111, 
524–542. doi: 10.1037/0033-295X.111.2.524

Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H.-J., and Tulving, E. (1997). Event-
related brain potential correlates of two states of conscious awareness in memory. Proc. 
Natl. Acad. Sci. 94, 5973–5978. doi: 10.1073/pnas.94.11.5973

Eichenbaum, H., Yonelinas, A. P., and Ranganath, C. (2007). The medial temporal lobe 
and recognition memory. Annu. Rev. Neurosci. 30, 123–152. doi: 10.1146/annurev.
neuro.30.051606.094328

Felsen, G., and Dan, Y. (2005). A natural approach to studying vision. Nat. Neurosci. 
8, 1643–1646. doi: 10.1038/nn1608

Finnigan, S. J., Humphreys, M. S., Dennis, S., and Geffen, G. M. (2002). ERP “old/new” 
effects: memory strength and decisional factor(s). Neuropsychologia 40, 2288–2304. doi: 
10.1016/s0028-3932(02)00113-6

Hill, H., and Windmann, S. (2014). Examining event-related potential (ERP) 
correlates of decision Bias in recognition memory judgments. PLoS One 9:e106411. doi: 
10.1371/journal.pone.0106411

Hoppstädter, M., Baeuchl, C., Diener, C., Flor, H., and Meyer, P. (2015). Simultaneous 
EEG–fMRI reveals brain networks underlying recognition memory ERP old/new effects. 
Neuroimage 116, 112–122. doi: 10.1016/j.neuroimage.2015.05.026

Leynes, P. A., Landau, J., Walker, J., and Addante, R. J. (2005). Event-related potential 
evidence for multiple causes of the revelation effect. Conscious. Cogn. 14, 327–350. doi: 
10.1016/j.concog.2004.08.005

MacKenzie, G., and Donaldson, D. I. (2007). Dissociating recollection from 
familiarity: electrophysiological evidence that familiarity for faces is associated with a 
posterior old/new effect. Neuroimage 36, 454–463. doi: 10.1016/j.neuroimage.2006.12.005

Macmillan, N. A., Hautus, M. J., and Creelman, C. D. (2022). Detection theory: A user’s 
guide. 3rd Edn. New York, NY: Routledge.

Mandler, G. (1980). Recognizing: the judgment of previous occurrence. Psychol. Rev. 
87, 252–271. doi: 10.1037/0033-295X.87.3.252

Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G., and Squire, L. R. (2003). 
Recognition memory and the human Hippocampus. Neuron 37, 171–180. doi: 10.1016/
S0896-6273(02)01147-9

Mickes, L., Wixted, J. T., and Wais, P. E. (2007). A direct test of the unequal-variance 
signal detection model of recognition memory. Psychon. Bull. Rev., 14, 858–865.

Manuel, A. L., and Schnider, A. (2016). Differential processing of immediately 
repeated verbal and non-verbal stimuli: an evoked-potential study. Eur. J. Neurosci. 43, 
89–97. doi: 10.1111/ejn.13114

Moran, R., and Goshen-Gottstein, Y. (2015). Old processes, new perspectives: familiarity 
is correlated with (not independent of) recollection and is more (not equally) variable for 
targets than for lures. Cogn. Psychol. 79, 40–67. doi: 10.1016/j.cogpsych.2015.01.005

Murata, A., Uetake, A., and Takasawa, Y. (2005). Evaluation of mental fatigue using 
feature parameter extracted from event-related potential. Int. J. Ind. Ergon. 35, 761–770. 
doi: 10.1016/j.ergon.2004.12.003

Pearson, K., and Filon, L. N. G. (1898). VII. Mathematical contributions to the theory 
of evolution. IV. On the probable errors of frequency constants and on the influence of 
random selection on variation and correlation. Philos. Trans. R. Soc. Lond. Ser. Contain. 
Pap. Math. Phys 191, 229–311. doi: 10.1098/rsta.1898.0007

Pernet, C. R., Wilcox, R., and Rousselet, G. A. (2013). Robust correlation analyses: 
false positive and power validation using a new open source Matlab toolbox. Front. 
Psychol. 3:606. doi: 10.3389/fpsyg.2012.00606

Pinto, N., Cox, D. D., and DiCarlo, J. J. (2008). Why is real-world visual object 
recognition hard? PLoS Comput. Biol. 4:e27. doi: 10.1371/journal.pcbi.0040027

Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., and D’Esposito, M. 
(2004). Dissociable correlates of recollection and familiarity within the medial temporal 
lobes. Neuropsychologia 42, 2–13. doi: 10.1016/j.neuropsychologia.2003.07.006

Rugg, M. D., and Curran, T. (2007). Event-related potentials and recognition memory. 
Trends Cogn. Sci. 11, 251–257. doi: 10.1016/j.tics.2007.04.004

Scalici, F., and Caltagirone, C. (2017). The contribution of different prefrontal cortex 
regions to recollection and familiarity: a review of fMRI data. Neurosci. Biobehav. Rev. 
83, 240–251. doi: 10.1016/j.neubiorev.2017.10.017

Tautvydaitė, D., Manuel, A. L., Nahum, L., Adam‐Darqué, A., Ptak, R., and 
Schnider, A. (2018). Absence of an early hippocampal encoding signal after medial 
temporal lesions: No consequence for the spacing effect. Hippocampus, 29, 587–594.

Vilberg, K. L., Moosavi, R. F., and Rugg, M. D. (2006). The relationship between 
electrophysiological correlates of recollection and amount of information retrieved. 
Brain Res. 1122, 161–170. doi: 10.1016/j.brainres.2006.09.023

Wais, P. E., Mickes, L., and Wixted, J. T. (2008). Remember/know judgments probe 
degrees of recollection. J. Cogn. Neurosci. 20, 400–405. doi: 10.1162/jocn.2008.20041

Wixted, J. T. (2009). Remember/know judgments in cognitive neuroscience: an 
illustration of the underrepresented point of view. Learn. Mem. 16, 406–412. doi: 
10.1101/lm.1312809

Wixted, J. T., and Stretch, V. (2004). In defense of the signal detection interpretation of 
remember/know judgments. Psychon. Bull. Rev. 11, 616–641. doi: 10.3758/BF03196616

Wolk, D. A., Schacter, D. L., Lygizos, M., Sen, N. M., Chong, H., Holcomb, P. J., et al. 
(2007). ERP correlates of remember/know decisions: association with the late posterior 
negativity. Biol. Psychol. 75, 131–135. doi: 10.1016/j.biopsycho.2007.01.005

Woodruff, C. C., Hayama, H. R., and Rugg, M. D. (2006). Electrophysiological 
dissociation of the neural correlates of recollection and familiarity. Brain Res. 1100, 
125–135. doi: 10.1016/j.brainres.2006.05.019

Yonelinas, A. P. (1999). The contribution of recollection and familiarity to recognition 
and source-memory judgments: a formal dual-process model and an analysis of receiver 
operating characteristics. J. Exp. Psychol. Learn. Mem. Cogn. 25, 1415–1434. doi: 
10.1037/0278-7393.25.6.1415

Yonelinas, A. P. (2001). Consciousness, control, and confidence: the 3 Cs of 
recognition memory. J. Exp. Psychol. Gen. 130, 361–379. doi: 10.1037/0096-3445.130. 
3.361

Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years 
of research. J. Mem. Lang. 46, 441–517. doi: 10.1006/jmla.2002.2864

Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., and Wiltgen, B. J. (2019). A contextual 
binding theory of episodic memory: systems consolidation reconsidered. Nat. Rev. 
Neurosci. 20, 364–375. doi: 10.1038/s41583-019-0150-4

Yu, S. S., and Rugg, M. D. (2010). Dissociation of the electrophysiological correlates 
of familiarity strength and item repetition. Brain Res. 1320, 74–84. doi: 10.1016/j.
brainres.2009.12.071

https://doi.org/10.3389/fnhum.2024.1358298
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1037/0033-295X.111.2.524
https://doi.org/10.1073/pnas.94.11.5973
https://doi.org/10.1146/annurev.neuro.30.051606.094328
https://doi.org/10.1146/annurev.neuro.30.051606.094328
https://doi.org/10.1038/nn1608
https://doi.org/10.1016/s0028-3932(02)00113-6
https://doi.org/10.1371/journal.pone.0106411
https://doi.org/10.1016/j.neuroimage.2015.05.026
https://doi.org/10.1016/j.concog.2004.08.005
https://doi.org/10.1016/j.neuroimage.2006.12.005
https://doi.org/10.1037/0033-295X.87.3.252
https://doi.org/10.1016/S0896-6273(02)01147-9
https://doi.org/10.1016/S0896-6273(02)01147-9
https://doi.org/10.1111/ejn.13114
https://doi.org/10.1016/j.cogpsych.2015.01.005
https://doi.org/10.1016/j.ergon.2004.12.003
https://doi.org/10.1098/rsta.1898.0007
https://doi.org/10.3389/fpsyg.2012.00606
https://doi.org/10.1371/journal.pcbi.0040027
https://doi.org/10.1016/j.neuropsychologia.2003.07.006
https://doi.org/10.1016/j.tics.2007.04.004
https://doi.org/10.1016/j.neubiorev.2017.10.017
https://doi.org/10.1016/j.brainres.2006.09.023
https://doi.org/10.1162/jocn.2008.20041
https://doi.org/10.1101/lm.1312809
https://doi.org/10.3758/BF03196616
https://doi.org/10.1016/j.biopsycho.2007.01.005
https://doi.org/10.1016/j.brainres.2006.05.019
https://doi.org/10.1037/0278-7393.25.6.1415
https://doi.org/10.1037/0096-3445.130.3.361
https://doi.org/10.1037/0096-3445.130.3.361
https://doi.org/10.1006/jmla.2002.2864
https://doi.org/10.1038/s41583-019-0150-4
https://doi.org/10.1016/j.brainres.2009.12.071
https://doi.org/10.1016/j.brainres.2009.12.071

	Electrophysiological analysis of signal detection outcomes emphasizes the role of decisional factors in recognition memory
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Stimuli
	2.3 Procedure and task
	2.4 EEG acquisition and preprocessing
	2.5 Global waveform analysis
	2.6 ERP correlation with d’

	3 Results
	3.1 Behavioral results
	3.2 Waveform analysis
	3.2.1 Overall results
	3.2.2 Analysis Per electrode cluster
	3.2.3 Correlation between SDT response types and d’

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions

	References

