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Nearly 25  years ago, Dr. Patricia Goldman-Rakic published her review paper, “The 
‘Psychic’ Neuron of the Cerebral Cortex,” outlining the circuit-level dynamics, 
neurotransmitter systems, and behavioral correlates of pyramidal neurons in the 
cerebral cortex, particularly as they relate to working memory. In the decades 
since the release of this paper, the existing literature and our understanding 
of the pyramidal neuron have increased tremendously, and research is still 
underway to better characterize the role of the pyramidal neuron in both healthy 
and psychiatric disease states. In this review, we  revisit Dr. Goldman-Rakic’s 
characterization of the pyramidal neuron, focusing on the pyramidal neurons 
of the prefrontal cortex (PFC) and their role in working memory. Specifically, 
we examine the role of PFC pyramidal neurons in the intersection of working 
memory and social function and describe how deficits in working memory may 
actually underlie the pathophysiology of social dysfunction in psychiatric disease 
states. We briefly describe the cortico-cortical and corticothalamic connections 
between the PFC and non-PFC brain regions, as well the microcircuit dynamics 
of the pyramidal neuron and interneurons, and the role of both these macro- 
and microcircuits in the maintenance of the excitatory/inhibitory balance 
of the cerebral cortex for working memory function. Finally, we  discuss the 
consequences to working memory when pyramidal neurons and their circuits 
are dysfunctional, emphasizing the resulting social deficits in psychiatric disease 
states with known working memory dysfunction.
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Introduction

Patricia Goldman-Rakic was an accomplished neuroscientist and dedicated researcher 
whose innovative and multidisciplinary investigative approach permitted extensive 
characterization of the prefrontal cortex (PFC), despite the belief of the time that such a brain 
region was largely impossible to probe experimentally. Dr. Goldman-Rakic was relentless in 
her pursuits to understand the role of the PFC in cognition, and particularly in functions of 
working memory. Working memory, or the ability to transiently hold and manipulate 
information, is a vital component of cognitive function that underlies innumerable facets of 
behavior across species (D'Esposito and Postle, 2015). Working memory can be subdivided 
based on the sensory modalities of the presented stimuli, including visuospatial, auditory, and 
verbal working memory, and the particulars of the neural pathways involved will vary based 
on the assessment utilized. Additionally, working memory can be  conceptualized under 
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different theoretical umbrellas, and recent frameworks posited to 
explain working memory include processes of synaptic facilitation, 
astrocytic regulation, and intrinsic network dynamics (Durstewitz 
et al., 2000; Mongillo et al., 2008; Barak and Tsodyks, 2014; Gordleeva 
et al., 2021). Regardless of the specific facet of working memory being 
tested, however, adequate function and connectivity of the PFC is 
necessary for task performance (Goldman-Rakic and Friedman, 1991; 
Goldman-Rakic, 1995).

Dr. Goldman-Rakic’s research elegantly demonstrated the 
invaluable role of the PFC in working memory function, supported by 
its integrative role in the higher order processing of sensory 
information, and highlighted the unique qualities of PFC neurons that 
make them so well-suited for this role (Goldman-Rakic, 1995). Chief 
among these qualities was the ability of the pyramidal neuron, the 
principal neuron of the PFC, to generate and maintain persistent 
activity beyond the period of stimulus exposure (Funahashi et al., 
1991; Riley and Constantinidis, 2015). In the oculomotor task of 
working memory, individual PFC neurons were shown to respond to 
a visual stimulus within a narrow section of the visual field, with 
nearby neurons thought to respond to similar visual field sections, 
ultimately forming a cortical column that acts cooperatively to process 
a particular stimulus (Funahashi et al., 1989). These PFC pyramidal 
neurons demonstrate persistent activity that is maintained for a short 
period of time (up to several dozen seconds) following presentation 
of the stimulus, and this persistent activity has been heavily implicated 
in working memory function (Wang, 1999; Wang et al., 2007, 2013; 
Constantinidis et al., 2018; Kilonzo et al., 2021).

Modeling work by Xiao-Jing Wang in 1999 first suggested a role 
for slow transmission mediated by N-methyl D-aspartate (NMDA) 
receptors in the maintenance of PFC PC persistent activity (Wang, 
1999). This was later supported by experimental work in Amy 
Arnsten’s laboratory, which showed that local blockade of NMDARs 
in the primate PFC resulted in a reduction in persistent activity (Wang 
et al., 2013). Furthermore, the group showed that systemic blockade 
of NMDARs by ketamine administration reduced working memory 
performance in these animals (Wang et al., 2013). However, it was not 
until 2021 that the gap between molecular and behavioral effects of 
NMDAR inhibition was bridged, when work by Kilonzo and 
colleagues demonstrated that NMDAR knockdown in PFC PCs 
specifically resulted in decreased working memory performance 
(Kilonzo et al., 2021). While there remains some debate in the field, a 
recent review by Amy Arnsten’s group argued that, in the face of such 
overwhelming evidence for the role of PFC PC persistent activity in 
working memory function, individual negative studies should 
be  viewed cautiously (Constantinidis et  al., 2018). Early on, Dr. 
Goldman-Rakic recognized the significance of this capacity for 
persistent activity, and much of her work centered on elucidating the 
intricacies of PFC PCs and their role in working memory (Goldman-
Rakic, 1999).

More recent research has focused on the dysfunctions that arise 
as a result of perturbations of this brain region, including the role of 
working memory deficits in a number of psychiatric conditions. Here, 
we aim to provide an update to Dr. Goldman-Rakic’s characterization 
of the PFC pyramidal neuron and its role in working memory, as well 
as specifically examine the role of working memory dysfunction in the 
pathophysiology of social deficits. First, we will describe the macro- 
and microcircuitry of the PFC and the role of this circuitry in the 
maintenance of excitation/inhibition balance amongst PFC pyramidal 
neurons in working memory function. We will then highlight the 

importance of working memory in social functioning by examining 
the perturbations of this circuitry in disorders of the PFC and the 
resulting social deficits observed.

PFC macrocircuits and working 
memory

Amongst the most significant scientific contributions by Patricia 
Goldman-Rakic during her long career was the wealth of anatomical 
studies she conducted in nonhuman primates to elucidate the 
connections between the PFC and other cortical and subcortical brain 
regions and the role of these pathways in working memory (Arnsten, 
2023). Indeed, from her seminal 1970 paper identifying distinct 
subdivisions of the dorsolateral PFC, which implicated specifically the 
principal sulcus of the dorsolateral PFC in working memory function 
(Goldman and Rosvold, 1970), Dr. Goldman-Rakic’s work served to 
lay the groundwork for the identification and characterization of the 
functional connectome of the PFC with task- and function-specific 
clarity. Recent technical strides within the field of neuroscience have 
allowed for the dissection of the circuits involved in working memory 
with fine spatiotemporal resolution. These studies advocate for a 
framework wherein no particular brain region can be deemed the sole 
“locus” of working memory, but instead demonstrate how the PFC 
functions within broader neural networks to support this 
phenomenon. Here, we review recent advances in working memory 
research from a connectome perspective to highlight the function of 
the prefrontal pyramidal neuron and the broader networks in which 
it operates (Figure 1).

While Dr. Goldman-Rakic’s early research demonstrated the 
critical role of the PFC in working memory function, a growing body 
of evidence additionally supports the role of other cortical regions, 
including sensory, temporal, and parietal cortices, and suggests that 
the recruitment of specific cortical regions is often task-dependent 
(Wager and Smith, 2003; Pasternak and Greenlee, 2005). One 
contemporary model integrating these observations asserts that 
working memory is subserved by a distributed cortical network that 
encodes multiple levels of abstraction of a particular stimulus 
(Christophel et al., 2017). Considering complex working memory 
tasks from the perspective of this model, sensory cortices must 
maintain low-level sensory information. In contrast, prefrontal and 
associative cortices are instead tasked with the representation of 
categorical and semantic contents of a stimulus. The question then 
becomes, how do cortical regions communicate to effectively integrate 
multiple levels of stimulus encoding to orchestrate appropriate 
behavioral responses for working memory? Several studies already 
suggest that communication between the PFC and other cortical 
regions is a feature of certain working memory tasks (Liebe et al., 
2012; Salazar et al., 2012; Jacob and Nieder, 2014; Murray et al., 2017), 
however, the precise integrative mechanisms of this communication 
are not yet understood.

In addition to cortico-cortical interactions, the influence of 
subcortical communication with the PFC on working memory 
function and on adaptive behavior more generally cannot 
be overstated. Indeed, to support adequate working memory function, 
the PFC is fine-tuned by neuromodulators, such as dopamine, that 
originate primarily from subcortical structures. The ventral tegmental 
area (VTA), a midbrain structure containing PFC-projecting 
dopaminergic cell bodies, is a primary source of dopamine in the PFC 
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and is implicated in a range of cognitive and emotional processes 
(Seamans and Yang, 2004). While Dr. Goldman-Rakic’s lab pioneered 
the seminal studies that supported the importance of dopaminergic 
signaling in the PFC for working memory function (Sawaguchi and 
Goldman-Rakic, 1994), subsequent research capitalizing on the 
genetic tractability of mouse models has revealed more intricate 
details regarding VTA-PFC communication (Duvarci et al., 2018). For 
example, Ge and colleagues utilized temporally precise optogenetic 
manipulation to discern that dopaminergic modulation of the PFC at 
early and late-delay period epochs results in differential effects on 
working memory performance (Ge et al., 2023).

In 1984, following a series of anterograde and retrograde tracing 
studies demonstrating the reciprocal pathways connecting the 
dorsolateral PFC to the hippocampus and parahippocampal gyrus in 
rhesus monkeys, Goldman-Rakic and colleagues developed a new 
hypothesis. They theorized that, in addition to direct projections from 
the hippocampus to the PFC, there exist indirect (polysynaptic) 
connections from the PFC to the hippocampus and associated cortices 
that can be divided into a medial and lateral pathway, each of which 
carries distinct information (Goldman-Rakic et al., 1984). In the years 
following that initial hypothesis, extensive research into 
PFC-hippocampal communication elucidated the critical role of these 
two brain regions in working memory function. Rodent anatomical 
and electrophysiological studies have shown divergent cortical 
connectivity and function between the dorsal (dHC) and ventral 
hippocampus (vHC) (Bannerman et al., 2004; Fanselow and Dong, 

2010; Strange et  al., 2014). Hippocampal-medial (m)PFC afferent 
communication occurs via unidirectional, monosynaptic projections 
from the CA1/subiculum of the vHC and via strictly indirect, multi-
synaptic connections from the dHC (Laroche et al., 2000; Thierry 
et al., 2000; Cenquizca and Swanson, 2007; Hoover and Vertes, 2012). 
In terms of working memory, increased theta- and gamma-frequency 
synchrony is observed between both the vHC-PFC and dHC-mPFC 
circuits during spatial working memory tasks (Jones and Wilson, 
2005; Hyman et al., 2010; Sigurdsson et al., 2010; Spellman et al., 2015; 
Salimi et al., 2022). Specifically, data suggest that gamma-oscillation 
synchrony between vHC-PFC neurons is critical for accurate spatial 
working memory encoding (Spellman et al., 2015), while increased 
delta, but not gamma, synchrony was observed during correct trials 
in a spatial working memory task (Salimi et al., 2022). Additionally, 
engagement in working memory tasks has been shown to modulate 
theta-synchrony in both vHC-PFC and dHC-PFC circuits (O'Neill 
et al., 2013). Furthermore, inactivation of the vHC leads to reduced 
dHC-PFC theta-oscillation synchrony, suggesting that vHC activity 
modulates dHC-PFC synchrony during working memory (O'Neill 
et  al., 2013). While there is no evidence to date that oscillatory 
coherence is sufficient to guide working memory, these results 
nonetheless advocate for a dynamic network model in which 
PFC-hippocampal communication is modulated when animals are 
placed in behavioral contexts evoking working memory. Furthermore, 
it should be noted that alterations in oscillatory activity have been 
associated with working memory deficits in psychiatric disease, such 

FIGURE 1

Schematic representation of the functional circuits involved in working memory. Anatomical (solid black line) and functional (dashed green line) 
connections between brain regions are represented by arrows, with arrowheads indicating the direction of the connection. Specific circuits highlighted 
include VTA to PFC (direct, reciprocal); vHC to PFC (direct) and dHC to PFC (indirect/multisynaptic); PFC to RE (direct, reciprocal) and RE to dHC 
(direct, reciprocal); PFC to MD (direct, reciprocal); VC to PFC (indirect/multisynaptic); and AC to PFC (indirect/multisynaptic). PFC, prefrontal cortex; 
dHC, dorsal hippocampus; vHC, ventral hippocampus; RE, nucleus reuniens, MD, mediodorsal thalamus; VC, visual cortex; AC, auditory cortex; VTA, 
ventral tegmental area.
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as the co-occurrence of aberrant gamma synchrony and notable 
working memory deficits in schizophrenia (Dienel and Lewis, 2019).

Growing anatomical evidence suggests that one of the key 
mediators of the polysynaptic connection between the PFC and 
hippocampus is the thalamic nucleus reuniens (Re), a brain region 
that is reciprocally connected to the mPFC and hippocampus 
(Wouterlood et al., 1990; Vertes, 2002, 2006). Notably, a small subset 
of Re neurons that receive mPFC input send direct projections to the 
hippocampus (Vertes, 2006; Vertes et al., 2006; Varela et al., 2014). 
Moreover, 25% of hippocampus-projecting Re neurons also project to 
the mPFC (Varela et  al., 2014). Inactivation of the Re disrupts 
oscillatory synchrony in CA1-mPFC projections (Hallock et al., 2016) 
and results in working memory deficits (Hembrook and Mair, 2011; 
Hembrook et al., 2012; Cholvin et al., 2013; Hallock et al., 2013; Duan 
et al., 2015; Layfield et al., 2015; Hallock et al., 2016; Maisson et al., 
2018; Viena et al., 2018). Thus, it is posited that the hippocampal-PFC 
synchrony observed during working memory may be mediated by the 
Re (Vertes et  al., 2006; Griffin, 2015; Dolleman-van der Weel 
et al., 2019).

As demonstrated by Goldman-Rakic’s laboratory in 1982, 
reciprocal connectivity also exists between the mPFC and the 
mediodorsal thalamus (MD) (Kievit and Kuypers, 1977; Isseroff et al., 
1982; Goldman-Rakic and Porrino, 1985; Giguere and Goldman-
Rakic, 1988). Specifically, augmented beta oscillation synchrony 
between the MD and mPFC has been observed during both the 
acquisition and performance of working memory tasks. Further, 
increases in beta synchrony between these two regions correspond to 
improvements in working memory performance (Parnaudeau et al., 
2013, 2018). Inhibition of either MD-mPFC alone in rats (Ferguson 
and Gao, 2018) or both MD-mPFC and mPFC-MD pathways in mice 
results in decreased working memory performance. One working 
model is that elevated, activity in the mPFC during the delay period 
in working memory tasks is supported by inputs from MD, and that 
top-down communication from the mPFC to the MD is important for 
memory retrieval and action selection (Bolkan et  al., 2017). This 
model is supported by both rodent and primate studies, given that 
silencing of dorsolateral PFC-lateral MD projections impaired 
performance in a spatial working memory task, and that, conversely, 
enhancing MD activity optogenetically during the delay period results 
in improved task performance (Bolkan et  al., 2017; Oyama et  al., 
2021). Together, these circuit studies show that the PFC does not act 
alone to support working memory, but instead works in concert with 
other brain regions to learn, maintain, and express working memory 
task-related information.

PFC microcircuitry and working 
memory

Beyond characterizing the long-range afferent inputs and efferent 
projections from the PFC that comprise the working memory 
macrocircuit, Goldman-Rakic was also interested in describing the 
unique neuronal morphological characteristics and microcircuitry 
within the PFC that permitted its unique ability for persistent activity. 
Pyramidal neurons within layer III of the PFC have particularly dense 
apical arborizations, which permit spatial summation of incoming 
excitatory potentials from both neighboring pyramidal neurons 
(Kritzer and Goldman-Rakic, 1995; Wang et al., 2011) and distant 

brain structures involved in working memory, such as the 
hippocampus (Abbas et  al., 2018). Additionally, these layer III 
pyramidal neurons express relatively high levels of NR2B-containing 
N-methyl D-aspartate (NMDA) receptors, which have long activation 
kinetics and allow for slower decay of incoming activation (Wang, 
1999; Wang et al., 2008, 2013). In early development, these NMDA 
subunits are present in many cortical areas and neuronal cell types, 
where they contribute to early-life plasticity (Monaco et al., 2015). In 
the rodent PFC, these subunits are present on pyramidal neurons and 
are thought to contribute to functions of working memory and 
decision-making (Murphy et  al., 2005; Dalton et  al., 2011). In 
macaque, pharmaceutical blockade of these subunits, but not of NR2A 
subunits, results in ablation of persistent firing during the delay period 
(Wang et al., 2013). Furthermore, dysregulation of NMDAR function 
generally and of NR2B expression specifically have been implicated in 
the pathophysiology of schizophrenia, and may underlie some of the 
working memory deficits observed in this disorder (Kantrowitz and 
Javitt, 2010).

In addition to the modulation of excitatory transmission inherent 
in the persistence of the NR2B subunit, PFC pyramidal neurons are 
part of a complex microcircuitry that works to maintain the excitation 
level of the cortical column as it is engaged in tasks of working 
memory. Goldman-Rakic identified not only the microcircuit between 
individual excitatory pyramidal neurons of the PFC, demonstrating 
that the mediolateral columnar organization of neurons within and 
across cortical layers differed from that of other cortical regions, such 
as the primary visual cortex (Kritzer and Goldman-Rakic, 1995), but 
additionally recognized the importance of inhibition within this 
microcircuit. Indeed, while the large excitatory pyramidal neurons of 
the PFC have been the focus of early work in working memory, a small 
percentage (~15–17%) of PFC neurons release inhibitory gamma-
aminobutyric acid (GABA) (Rudy et  al., 2011). These inhibitory 
interneurons (INs) are smaller and canonically projected locally; thus, 
their arrangement defines the local PFC microcircuit. To this end, 
Constantinidis et al. (2002) used simultaneous recordings in monkeys 
and reported an important role of inhibition in the cerebral cortex-
controlling the timing of neuronal activities during cognitive 
operations and thereby shaping the temporal flow of information in 
the PFC. The PFC microcircuit was further modeled by Dr. Goldman-
Rakic and her laboratory as consisting of four cell types: pyramidal 
neurons, perisoma-targeting PV neurons, dendrite-targeting 
calbindin (CB) neurons, and interneuron-targeting calretinin (CR) 
neurons (Wang et  al., 2004). They predicted that CB INs would 
demonstrate an inverted tuning curve, meaning that, opposite to the 
pyramidal neurons, the activity of CB INs would decrease when a 
visual stimulus was presented. It was proposed that these CB INs were 
responsible for tuning the responses of pyramidal cells against 
distractors. These early proposals paved the way for more recent 
research utilizing modern cell-type specific manipulation techniques 
to discern the contribution of individual IN populations to working 
memory functions.

Today, PFC INs are usually categorized according to three main 
groups: parvalbumin-expressing (PV), somatostatin-expressing (SST), 
and 5-HT receptor 3 (5-HT3R)-expressing (Kepecs and Fishell, 2014; 
Yang et  al., 2021). The electrophysiological and morphological 
diversity of PFC INs is not well contained by these groups. However, 
some generalizations can be  made regarding spiking pattern and 
synapse location. Generally, PV INs are fast-spiking and innervate 
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perisomatic areas of pyramidal neurons (Kvitsiani et al., 2013). SST 
INs are largely dendritic-targeting and demonstrate a wide range of 
electrophysiological properties, including strong facilitation of 
excitatory inputs (DeFelipe et al., 2013; Kepecs and Fishell, 2014). 
Lastly, 5-HT3R INs include INs expressing the vasoactive intestinal 
peptide (VIP) and neurogliaform cells (NGFCs) (Tremblay et  al., 
2016) (Figure 2). Whereas VIP INs have been shown to preferentially 
target other INs, resulting in pyramidal cell disinhibition, NGFCs are 
mostly confined to layer I, where they potently inhibit both local INs 
and pyramidal cells. In a 2015 study of PV-Cre mice, selective 
silencing of PV INs via expression of tetanus toxin light chain (TeLC) 
led to impairment in a hole-board test of working memory (Murray 
et al., 2015). In contrast, when TeLC was expressed in SST INs, mice 
did not demonstrate working memory impairment. Notably, TeLC-
mediated inhibition results in a permanent and relatively complete 
reduction in activity of the target cell population, which may limit the 
interpretation of experimental data, as compensatory mechanisms 
that arise in response to such perturbations are difficult to account for.

Extracellular electrophysiological recordings cannot distinguish 
between IN populations with the precision afforded by Cre lines. 
However, cells can be roughly grouped into fast-spiking, regular-
spiking, and irregular-spiking populations, corresponding to PV, 
SST, and VIP INs, respectively (DeFelipe et al., 2013; Kepecs and 
Fishell, 2014). In a 2016 study utilizing tetrode recordings of PFC 
neurons in mice undergoing a T-maze task of working memory, 
putative INs were categorized as putative PV or SST cells, and PV 
IN activity showed little coordination with the delay period 
compared to SST INs (Kim et  al., 2016). Additionally, SST IN 
activity served as a better predictor of successful performance in the 
task, which supports the hypothesized role of SST INs in tuning the 

PFC functional column to maintain the persistent activity necessary 
for optimal performance. When optogenetic techniques were 
applied, SST activation impaired task performance while PV IN 
activation suppressed the activity of recorded pyramidal neurons, 
but did not significantly diminish task success. In a 2018 study, 
optogenetic inhibition of SST INs again resulted in working 
memory impairment, seemingly by decreasing PFC synchrony with 
the hippocampus (Abbas et  al., 2018). In a Go-No-Go task of 
working memory in mice, Kamigaki and Dan (2017) demonstrated 
that inhibition of pyramidal neurons via PV IN activation resulted 
in significant decreases in task performance, while disinhibition of 
pyramidal neurons via activation of VIP INs enhanced 
behavioral performance.

While the precise role of the prefrontal microcircuit in working 
memory function is an area of active investigation, it is clear that 
different populations of INs have distinct and interconnected roles in 
the maintenance of persistent activity and subsequent task 
performance, as predicted by the Goldman-Rakic modeling from 
more than 20 years ago. PV INs potently inhibit pyramidal neurons, 
likely playing a role in downregulating the activity of those pyramidal 
neurons that are not tuned to a particular receptive field (Kim et al., 
2016). SST INs improve task performance by inhibiting the conduction 
in distal dendrites of active pyramidal cells (Abbas et al., 2018). Finally, 
VIP INs potently disinhibit pyramidal neurons, maintaining the 
excitation level necessary for persistent activity (Kamigaki and Dan, 
2017). Furthermore, interneuron dysfunction has been identified in a 
number of psychiatric diseases that also demonstrate working 
memory impairment, including Alzheimer’s disease (Palop and 
Mucke, 2016), schizophrenia (Dienel and Lewis, 2019), and autism 
(Nomura, 2021), amongst others.

FIGURE 2

Schematic representation of PFC microcircuitry. Diagram depicting the microcircuitry of the pyramidal neuron (PN) with each of the three interneuron 
(IN) subtypes. Parvalbumin-expressing INs (PV) inhibit PNs that are not tuned to the relevant receptive field. Somatostatin-expressing INs (SST) inhibit 
PNs, and their activity is associated with the delay period of working memory (WM) tasks. Vasoactive intestinal peptide-expressing INs (VIP) inhibit PV 
and SST INs, thus disinhibiting PNs.
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The intersection of working memory 
and social function

While much of Goldman-Rakic’s work sought to reveal the 
individual neuronal properties and circuit-level dynamics that 
underlie working memory, she also worked to uncover the functional 
consequences of working memory deficits in psychiatric disease 
(Arnsten, 2013). Working memory underlies many facets of daily 
functioning, including social functioning. As a prerequisite for normal 
social functioning, organisms must be able to consider multiple social 
cues within their environment, assess and remember the social status 
of others, and adapt to the continuous and changing demands of social 
interaction, all of which are facets of social cognition that require 
adequate working memory. Investigations of young children have 
revealed a relationship between the development of working memory 
capacity and social-relational functioning (de Wilde et al., 2016). A 
subset of working memory that deals specifically with the processing 
and integration of social information, known as social working 
memory, permits individuals to engage in “mentalizing,” or the 
consideration of other individuals’ thoughts, traits, and beliefs [(Meyer 
et al., 2012), reviewed in Meyer and Lieberman (2012)]. Deficits in 
working memory can prevent the consideration and manipulation of 
social information necessary for successful social behaviors, resulting 
in social deficits. Co-occurring deficits in working memory and social 
functioning are noted in a number of psychiatric and neurological 
conditions, including traumatic brain injury (Nolan et  al., 2018), 
autism spectrum disorder (Rabiee et  al., 2020; Gong et  al., 2023; 
Memisevic et al., 2023), borderline personality disorder (Krause-Utz 
et al., 2014), epilepsy (Lim et al., 2007; Hernan et al., 2014), post-
traumatic stress disorder (Sippel et  al., 2021), neurodegenerative 
conditions (Legaz et al., 2023), and intellectual disability (Ducic et al., 
2018). Here, we highlight the relationship between working memory 
deficits and social dysfunction in three psychiatric conditions: 
attention deficit hyperactivity disorder (ADHD), schizophrenia, and 
social anxiety, with a special emphasis on how PFC dysfunction may 
mediate this relationship.

ADHD is a psychiatric disorder characterized by persistent and 
maladaptive inattention and/or hyperactivity and impulsivity that 
most commonly presents in children but can exist across the lifespan 
(American Psychiatric Association, 2013). Studies investigating 
working memory in individuals with ADHD consistently but not 
ubiquitously (Schecklmann et  al., 2010) find reduced working 
memory capacity in patients with ADHD compared to healthy 
controls (Ramos et al., 2020; Torgalsbøen et al., 2021; Friedman et al., 
2023). Dysfunction and aberrant connectivity of the PFC have been 
implicated in the pathophysiology of ADHD, with functional imaging 
studies demonstrating decreased activation of the middle and right 
PFC during tasks of executive function (Yasumura et al., 2019) and 
decreased hemodynamic response in the dorsolateral PFC during 
working memory tasks (Friedman et  al., 2023) in children with 
ADHD compared to neurotypical controls. The role of the PFC in 
ADHD symptomatology is further supported by the observed effects 
of current pharmacological treatments on PFC function and 
connectivity, and by the success of nonpharmacological intervention 
strategies that target the PFC. For example, functional magnetic 
resonance imaging has demonstrated a decrease in functional 
connectivity between the PFC and various subcortical brain regions 

during a working memory task in adolescents with ADHD who are 
currently taking stimulant medication compared to those same 
subjects without stimulant medication (Sheridan et  al., 2010). 
Furthermore, a recent randomized, double-blind, sham-controlled 
trial of transcranial direct current stimulation (tDCS) in patients with 
ADHD demonstrated that tDCS directed over the PFC resulted in 
improved working memory in ADHD (Barham et al., 2022).

In addition to the established executive dysfunction and working 
memory deficits seen in ADHD, patients also demonstrate significant 
deficits in social functioning [(Caillies et al., 2014; Humphreys et al., 
2016), reviewed by Nijmeijer et  al. (2008)]. As ADHD is viewed 
primarily as a disorder of cognitive dysfunction, the resulting social 
deficits can be conceptualized as a consequence of working memory 
dysfunction, given appropriate testing paradigms. For example, Hilton 
and colleagues utilized a dual-task paradigm to investigate the 
relationship between working memory and social cue encoding in 
children with ADHD, and found that social cue encoding was 
significantly disrupted when working memory load was increased 
(Hilton et al., 2020). Furthermore, Kofler and colleagues found that 
working memory deficits may indirectly lead to social dysfunction in 
children with ADHD by impacting patients’ ability to focus on 
multiple environmental stimuli at one time to process and 
appropriately integrate social cues (Kofler et al., 2011). In a recent 
study examining the role of specific facets of executive dysfunction in 
social deficits of ADHD, Bullard and colleagues found that working 
memory mediated the relationship between social functioning and 
diagnosis (ADHD vs. typical development) based on teacher ratings 
(Bullard et al., 2024). An investigation of biological motion (BM) in 
children with ADHD found that deficits in both working memory and 
theory of mind, a necessary component of successful social 
functioning, were correlated with worse performance on the BM task, 
suggesting that an interplay between working memory and theory of 
mind dysfunction may be  responsible for the deficits in social 
perception observed in ADHD (Imanipour et  al., 2021). Animal 
models of ADHD have also demonstrated social deficits, with a 
neonatal homocysteine treatment model demonstrating increased 
hyperactivity, decreased sociability, and significant morphological 
changes in dendritic spine shape in numerous brain regions, including 
the PFC (De la Torre-Iturbe et al., 2022).

Perhaps one of the most debilitating psychiatric disorders, 
schizophrenia is characterized by positive symptoms (i.e., 
hallucinations, delusions), negative symptoms (e.g., anhedonia, 
avolition), and cognitive symptoms (e.g., executive dysfunction, 
working memory deficits) (American Psychiatric Association, 2013). 
Molecular, cellular, and circuit-level connectivity changes have been 
described across numerous brain regions in schizophrenia. Still, PFC 
dysfunction is arguably one of the most consistent findings in the 
study of schizophrenia pathophysiology (Gao et  al., 2022). In 
examining schizophrenia, working memory deficits in particular, the 
PFC is extensively implicated. Functional imaging studies have 
demonstrated decreased PFC activation and reduced prefrontal-
parietal communication during working memory tasks when 
compared to healthy controls (Deserno et  al., 2012; Kumar et  al., 
2021). Furthermore, several imaging studies have supported the role 
of compensatory post-task PFC hyperactivation in the 
pathophysiology of working memory deficits in schizophrenia (Noda 
et  al., 2017; Kumar et  al., 2021). In a recent trial of tDCS in the 
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treatment of schizophrenia, Meiron and colleagues found that tDCS 
targeted to the left PFC produced significant improvements in 
working memory in addition to a general reduction in symptom 
severity (Meiron et al., 2021). Mirroring results seen in the study of 
PFC-targeted tDCS treatment in patients with ADHD, the success of 
this intervention supports the role of PFC dysfunction in the 
pathophysiology of working memory deficits in schizophrenia.

As in ADHD, working memory deficits in schizophrenia may 
contribute to the observed social deficits of the disorder, and 
numerous studies have sought to explore the potential relationship 
between these symptom domains. Takahashi and colleagues found 
that spatial working memory dysfunction was correlated to various 
aspects of social dysfunction in schizophrenia, including community 
skills (Takahashi et al., 2005). Similarly, Huang and colleagues found 
that working memory dysfunction was able to predict corresponding 
dysfunction in social problem solving in a schizophrenic population 
(Huang et  al., 2014). PFC dysfunction appears to mediate the 
relationship between working memory and social deficits in 
schizophrenia. Pu and colleagues found decreased lateral PFC 
activation compared to healthy controls during a working memory 
task, and found that activation in this region was significantly 
correlated with theory of mind scores in patients with schizophrenia 
(Pu et al., 2016).

Animal model studies have also supported a relationship between 
working memory deficits and social dysfunction in schizophrenia. 
Ibotenic acid-induced lesions of the CA1 region of the hippocampus 
result in cytoarchitectural changes in the PFC and amygdala of 
rodents, and this paradigm has been used to model schizophrenia 
symptoms, including working memory and social deficits (Martínez-
Torres et  al., 2021). In another rodent model of schizophrenia 
symptomatology, prenatal infection (poly I: C) results in impairments 
in working memory and reductions in social interaction, both of 
which are attenuated by treatment with cannabidiol (CBD) (Osborne 
et al., 2017). This is particularly interesting given the opposing effects 
of CBD and delta-9-tetrahydrocannabinol (THC), the two active 
ingredients in marijuana, on working memory and sociability when 
examined independently. In rats, intra-PFC infusion of THC resulted 
in increased anxiety-like behavior but no changes to working memory. 
In contrast, intra-PFC infusion of CBD resulted in impairments in 
working memory without corresponding changes in anxiety or 
sociability (Szkudlarek et al., 2019). Interestingly, however, intra-PFC 
infusion of CBD in the setting of acute PFC glutamatergic antagonism 
with MK-801 resulted in a reversal of the NMDAR antagonist-induced 
cognitive effects, suggesting that CBD may result in pro-cognitive and 
pro-social effects only in the setting of existing pathology, as was the 
case in the poly I: C model.

While both ADHD and schizophrenia serve as examples of 
psychiatric disorders in which PFC dysfunction and resulting 
working memory deficits may contribute to the observed social 
dysfunction, a reverse relationship, in which social stress or anxiety 
may lead to working memory deficits, has also been demonstrated. 
Acute social exclusion in healthy adolescent and young adult female 
participants results in decreased performance on working memory 
tasks (Xu et  al., 2018; Fuhrmann et  al., 2019). Additionally, 
adolescent social defeat stress has been shown to result in reductions 
in working memory performance in adulthood in rodent models 
(Novick et  al., 2013; Weber et  al., 2018). Furthermore, working 
memory appears to be altered in individuals with social anxiety, 

such that negative or socially threatening stimuli are preferentially 
retained at the expense of other social information, potentially 
resulting in decreased social functioning in these individuals 
(MacNamara et al., 2019; Yeung and Fernandes, 2019). Working 
memory may be specifically impaired in social anxiety under high-
demand conditions, such as in tasks that require filtering and 
inhibition of irrelevant distractors (Moriya and Sugiura, 2012). 
Interestingly, results from preliminary studies suggest that working 
memory training may have therapeutic potential in individuals with 
social anxiety, further cementing the role of working memory in 
this disorder (Zhao et al., 2020).

Conclusion

Working memory has a rich history within the fields of 
psychology, psychiatry, and neuroscience, and efforts to understand 
the neural mechanisms underlying working memory processes have 
additionally served to elucidate the structure and function of critical 
brain regions of higher cognitive function, most notably the 
PFC. From her early work utilizing anterograde and retrograde tracers 
to investigate PFC connectivity across cortical and subcortical regions 
to her later work examining the role of dopamine in the 
pathophysiology of schizophrenia, Patricia Goldman-Rakic was 
instrumental in furthering our understanding of working memory 
and its role in numerous functional domains. As the technology 
available to researchers has continued to expand, the neuroscientific 
community has built upon the work of Dr. Goldman-Rakic, and many 
of her early hypotheses continue to shape the direction of working 
memory research across the globe. As we continue to examine the role 
of working memory in human cognitive function, particularly the role 
of working memory dysfunction in the pathophysiology of various 
psychiatric conditions, we see the myriad ways this process is critical 
to cognition and behavior.
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