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Most architectures and models of language processing have been built upon

a restricted view of language, which is limited to sentence processing. These

approaches fail to capture one primordial characteristic: e�ciency. Many

facilitation e�ects are known to be at play in natural situations such as

conversation (shallow processing, no real access to the lexicon, etc.) without

any impact on the comprehension. In this study, on the basis of a new model

integrating into a unique architecture, we present these facilitation e�ects

for accessing the meaning into the classical compositional architecture. This

model relies on two mechanisms, prediction and unification, and provides a

unique architecture for the description of language processing in its natural

environment.
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1 Introduction

During natural conversations, language is produced very rapidly, approximately 3–5

words per second, sometimes even faster. This means that the amount of time allocated

for producing and perceiving a word in a natural situation should be approximately 2–

300 ms per word. However, when exploring the time course of language perception in

the brain, we observe effects at different stages from 200 ms (lexical access, early effects

in morpho-syntactic violations etc.) to 600–800 ms or even more for integrating a new

word into the interpretation under construction (Friederici, 2002; Kaan, 2007). A long

latency is also observed for production, generating the phonological form of a word follows

different stages from 180 to 450 ms (Indefrey, 2011; Strijkers and Costa, 2011). Therefore,

there is a significant gap between what is predicted by theory in neurolinguistics, mainly

based on laboratory experiments (up to 1 s processing per word) and what is actually

observed in natural situation both for production and perception (2–300 ms per word).

Of course, parallelism and overlap have been shown to play a central role (Huettig et al.,

2022), explaining part of this gap, as well as buffering mechanisms (Vagharchakian et al.,

2012). However, more importantly, several facilitation mechanisms can explain the fact

that language is processed in real time, with no delay. Exploring this issue requires to

answer two questions: (1) What are the mechanisms that can speed up the processing and

(2) How are they involved in a global processing architecture? The main goal of this study

is to propose a model of language processing integrating such facilitation mechanisms.

Linguistic theories and computational and neuro-cognitive models rely on the idea

that linguistic information is organized into different levels, usually processed in a serial

way, in relation with the sequential nature of the input signal. In this type of organization,
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each level takes as input an information coming from the

level below (completed in some cases with other contextual

information). This architecture is thus hierarchical from lower

levels to abstract representations of the meaning (from phonetics

to semantics), each level operating as a function taking an input

and returning an output representation.

However, several studies have shown that one or more levels

can be skipped in many situations. For example, in the case of

idiomatic constructions, there is no trace in the brain signal of

an access to the lexical meaning after the recognition point of the

idiom (Rommers et al., 2013; Vulchanova et al., 2019; Kessler et al.,

2021). The meaning of the remaining words of the idiom after this

point is no more activated; the entire idiom has been retrieved from

the memory, the only processing consists in verifying the match

between the form of the idiom and the words produced by the

speaker. In case of mismatch, the related brain activity evokes a

reaction similar to a morphological error (Rommers et al., 2013).

In a similar way, the syntactic structure can be by-passed,

for example, in the case of semantic attraction (Kuperberg, 2007;

Brouwer et al., 2017), typically a situation of mismatch between

grammatical and thematic roles. In the same vein, many studies in

the framework of good-enough theory (Ferreira et al., 2002) have

also shown that a shallow processing is often at work, avoiding

building an exact syntactic structure. Note that for their part,

several linguistic theories also propose the idea that language

processing is based on the identification of an optimal structure,

possibly ill-formed and partial, challenging the idea of a strict

hierarchical organization (Prince and Smolensky, 1993; Blache,

2016).

Generally speaking, situations where processing can be

accelerated are extremely frequent, especially during conversation.

It is thus necessary to integrate such facilitation mechanisms

into a general architecture of language processing. However, to

date, no clear answer has been proposed by existing models for

integrating fuzziness, shortcuts, or partial information. Moreover,

it is difficult to imagine that two different types of processes

cohabit: one that would correspond to the classical hierarchical

organization, the other implementing facilitation mechanisms and

shortcuts skipping one or more linguistic levels to directly access

the meaning.

This study addresses this question by proposing the basis

of a unique architecture bringing together both facilitation and

standard processing mechanisms. This proposal relies on several

ideas:

• The basic processing components can be of different

granularities, from partial and underspecified objects to

words, constructions or entire pieces of knowledge;

• These units can be predicted, whatever their granularity;

• They can integrate information from the different linguistic

domains (and can be multimodal);

• The integration mechanism is based on the comparison of

what is predicted with what is perceived;

• Comprehension consists in updating a global model, at the

level of the conversation or the text;

In our model, instead of considering that two concurrent

mechanisms are in competition, one being hierarchical and the

other not, we propose to distinguish between cases where the

linguistic objects to be processed can be at a high or low level of

integration; in some cases, objects can correspond to single words

or, in other cases, to complex constructions, encoding a complete

piece of meaning. As it has been described in many neuro-cognitive

paradigms, the processing is hierarchical in the sense that goes

from lower to higher levels of abstraction (Ryskin and Nieuwland,

2023); in the classical description, it goes from the phonemes to the

meaning. Note that this mechanism is parallel in the sense that each

domain (phonetics, syntax, semantics, etc.) can work more or less

independently (Jackendoff, 2007; Baggio, 2021; Huettig et al., 2022).

In ourmodel, we propose to still consider processing as hierarchical

by integrating a structure into a more complex one. However,

in some cases, the processing starts based on high-level complex

objects, already bearing a lot of integrated information from many

different sources or domains. In such cases, the information usually

resulting from the processing of lower level is already compiled into

the structure.

In this study, we present the mechanisms implementing the

complete architecture and describe in detail the processing cycle.

2 How to access the meaning? A
theoretical perspective

We propose to start with two preliminary questions: What are

the mechanisms at play when accessing the meaning and What

are the basic components. We address these questions through the

prism of two theoretical frameworks from linguistics and cognitive

neuroscience: 1/ Construction Grammars and how they explain a

direct access to the meaning; 2/ Memory, Unification, and Control

and how unification renders possible the use of complex basic

components encoding entire pieces of meaning.

2.1 Direct access to the meaning:
construction vs. compositionality

Many consider that communication is the main purpose of

language. This means that the goal of a language processing

model should be to explain how people understand each other by

communicating with language (keeping in mind that language is

a means among others to communicate). In more formal terms,

understanding means accessing the meaning. In classical theories,

this process is based on the compositionality principle stipulating

that the meaning of a complex expression is a function of the

meanings of its parts (see Dowty, 2007 for a global discussion

and Szabó, 2004 for a formal overview). Understanding a sentence

(sentence being usually the level considered in formal semantics)

consists in proceeding step-by-step, bottom-up, by first accessing

the meaning of words, then aggregating these meanings into

larger structures until reaching the meaning of the sentence. The

syntactic structure is at the core of the composition function by

identifying the different sub-parts to combine and their relations.

This mechanism is based on the hypothesis of the existence a

homomorphism, mapping the syntactic algebra into the semantic

algebra (Montague, 1973).
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However, several studies have shown that accessing the

meaning can also be direct in a top-down manner. In particular,

Construction Grammar (Fillmore, 1988) is based on the idea

that language structures are constructions made of form/meaning

pairings, offering direct access to the meaning, thus calling into

question the compositional mechanism (Goldberg, 2016). Idioms

are such typical constructions: when the idiom is recognized

(usually after few words), its (figurative) meaning is activated,

without needing to analyze the rest of the input. The same

mechanism is at work for all constructions: a direct access to the

constructionmeaning is possible when the form of the construction

is recognized.

The question is to explain how both routes, compositional and

direct, for accessing the meaning co-exist.

2.2 Memory and unification

TheMemory, Unification, and Control model (hereafter MUC)

relies on different ideas challenging what is classically integrated in

other neuro-cognitive models (Hagoort, 2005, 2013). First, MUC

is based on linguistic representations much more intricate than

usually considered: the basic units (the items stored in the mental

lexicon) contain rich information at different levels: phonology,

morphology, semantics, and syntax. The question of what is stored

in the memory is therefore a critical issue. The idea of having high-

level linguistic information (including partial structures) already

compiled in the memory represent the first and maybe the most

important facilitation mechanism (Baggio and Hagoort, 2011). It

has moreover a direct consequence on the processing architecture;

the mechanism consists in simply aggregating this high-level

components, integrating directly complex pieces of information.

It offers at the same time a way to implement a fine control of

the processing by providing multiple information from different

sources, offering first possibility to make precise prediction about

what is expected and second a mean to precisely compare what

is expected with what is realized. MUC integrates these aspects

by distinguishing three different components:memory, unification,

and control.

Memory corresponds to a repository storing all information

associated with basic units. Following a proposal called

lexicalization initiated by constraint-based linguistic theories

such as Head-Driven Phrase Structure Grammar (Pollard and

Sag, 1994), Tree-Adjoining Grammar (Joshi and Schabes, 1997),

or Lexical-Functional Grammar (Bresnan, 1982), lexical entries

encode high-level information, possibly concerning phonology,

morphology, syntax, and semantics.1 In these approaches, parsing

an input does not consist anymore in building a tree but in

aggregating the basic units due to a mechanism called unification

(see below). The initial inspiration in MUC was thus to encode in

the Memory lexical units associated with partial trees as proposed

in TAG and then enrich these units with different information

as it is the case with constraint-based theories (Sag, 2012). This

1 A common point of these theories is to get rid of production rules,

replacing them by general principles and mechanisms due to this rich lexical

encoding.

idea of bringing together different sources of information, from

different domains and modalities, has been pushed forward with

Construction Grammars (Fillmore, 1998). In this theory, the

basic components are constructions that can represent lexical

structures and complex patterns (also called MUC syntactic

frames), including, for example, long-distance dependencies.

Memory in MUC refers to such complex units that are stored and

retrieved from the long-term memory.

The Unification component takes in charge the question of

how to assemble basic units. The key aspect is that units stored

in the memory are associated with constraints that are mainly

stipulated in terms of restrictions over feature values (e.g., verbs

usually impose some semantic characteristics on their arguments).

Unification is a mathematical operation, which is intensively used

in linguistics since the origin of Unification Grammars (Kay,

1979). It basically offers the possibility to evaluate the compatibility

between two structures (see Section 4.1). Consequently, the

syntactic analysis mechanism consists of checking the compatibility

between a predicted structure and the input using unification only

(getting rid of derivation rules). We present this mechanism in

more details in Section 4.

The third component, called Control, is connected with

discourse-level phenomena, joint action, social interaction, context,

and more generally pragmatics. This component might be in

relation with attentional mechanisms that can be triggered by

specific linguistic devices (e.g., focus accent) in order to mark

important features.

A processing cycle is described in MUC on the basis of

the connectivity between the different regions involved in this

architecture (Baggio and Hagoort, 2011). Starting from the sensory

regions (visual or audio depending on the input modality),

the signal is conveyed to the regions where lexical information

is activated (inferior, middle, and superior temporal gyri: the

posterior temporal regions). All associated constraints but also

information coming from other modalities are collected there; this

is the role of the Memory component. A local activation within

temporal areas propagates information and activates related lexical

structures, building the semantic context in temporal cortex. From

these regions, the activated structures are passed to the inferior

frontal regions, hosting Unification. The information activated

there is propagated back to the temporal regions, forming a cycle.

This back-propagation triggers another spread of activation to

neighboring temporal areas, updating the semantic context. What

is interesting in this processing cycle is that the architecture is not

anymore strictly sequential but leaves place to cycles implementing

an interaction between Memory and Unification. On top of

checking the compliance of the activated and predicted structures,

this organization explains how units from different levels (lexical or

complex constructions) can be accessed within the same cycle.

One of the major contributions of MUC has been to

provide evidence at the brain level in favor of a unique

language processing mechanism: unification. On top of

being a crucial argument supporting constraint-based

linguistic theories, MUC also constitutes a specific neuro-

cognitive approach to language processing putting aside

at the same time the classical rule-based compositional

approach and a fully statistically data-driven view of language

processing.
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FIGURE 1

Abstract representation of a sign.

3 Basic components and how they
aggregate

In this section, we present the notion of sign, which is at the

core of our model. First, we detail their representation and second

their role in the representation of the meaning under construction,

called the Situation model.

3.1 Representing basic components: the
notion of sign

It is now classical to consider linguistic units as complex

entities, gathering different types of information. Many linguistic

theories such as HPSG or TAG (Joshi and Schabes, 1997; Sag and

Wasow, 1999) have developed this perspective by being lexicalized

in the sense that a lot of syntactic information is already encoded

at the lexical level. Pushing one step forward this idea, we have

observed how Construction Grammars represent linguistic entities

as form-meaning pairs: the form part is made of different formal

information (phonology, prosody, morphology, and syntax) and

the meaning is described by means of semantic slots and relations

between them (Fillmore and Baker, 2009). Each sign is then made

of different information describing the form and the meaning

of the sign itself (corresponding to endogenous features) and its

relation with other signs (exogenous features). Figure 1 illustrates

an abstract attribute-value representation of a sign, which is

adapted from sign-based construction grammars (Sag, 2012). The

first part of the sign encodes its form by means of phonological

and syntactic features, encoding in this example complements and

exogenous properties such as linearity or adjacency (the type of

constraints proposed in Property Grammars proposed in Blache,

2016). This illustration is partial and must be completed with other

types of features describing, in particular, phonetics, prosody, or

morphology.

Signs can represent objects at any level. They can be under-

specified, restricted to a simple feature as in the example

(Figure 2A) representing a word starting with a vowel (as it is

the case for words following the determiner “an”). Signs can also

encode more complex relations such as a predicative structure

as illustrated in Figure 2B. In this representation, the connection

between form and meaning is implemented by structure sharing

(the co-indexation indicates a reference to the same object). In this

structure, the same sign (indexed by 1) appears as the value of both

the attribute SPR (the subject) and the thematic role “giver”. In

the same way, the values of the COMP (the complements) are shared

with different attributes in the meaning description. Note that the

meaning not only specifies the slots (in this case, the thematic roles)

but also specific semantic relations between slots (implementing a

partial conceptual graph).

The third example presented in Figure 3 depicts a sign encoding

a more complex piece of meaning, corresponding to an entire

frame as described in Frame Semantics (Fillmore and Baker, 2009).

This example illustrates the frame teaching, bearing a set of slots

and relations. Structure sharing implements the form/meaning

interface (as it is the case for the subject/teacher values).

On the opposite, some attribute values such as MATERIAL and

INSTITUTION are left free.

3.1.1 Activation, structure sharing
On the one hand, signs encode interaction between different

linguistic domains and, on the other hand, their relations with

other signs. Structure sharing implements directly relationships

between domains, typically between the argument list of a verb (its

complements) and the predicative structure at the semantic level.

Signs also encode higher level of information by making

reference to other external signs. For example, the predicative

structure associated with a verb specifies the type of the arguments

that are expected or required. These signs are said to be activated,

in the sense of ACT-R (Anderson et al., 2004; Lewis and Vasishth,

2005). In this theory, the context provides multiple sources of

information that can play the role of cues for a “chunk” (a

piece of information), each cue being more or less important in

the activation of the chunk (implemented by the weight of the

corresponding relation). In our approach, a chunk corresponds to

a sign that can be a complex structure with links to other signs.

During the processing cycle, the complete context encoded in the

situation model is used to identify what information can play the

role of a cue for the activation of signs. For example, the verb has

a strong relationship with its arguments: instantiating a verb leads

to the activation of its arguments, making them available for future

instantiation.

3.1.2 Are signs testable?
All linguistic theories have shown the necessity to consider

the basic components of language processing as complex objects

such as signs. These theories have shown more precisely that the

notion of linguistic category has to integrate many different types

of information from many different domains. In other words, the

type of information associated with words is necessarily complex.

Any language processing model has to take this question into

consideration. When addressing the question of experimentation,

this becomes of course an issue: are such complex objects testable
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FIGURE 2

Examples of signs. (A) Underspecified sign. (B) Predicative sign.

FIGURE 3

Frame sign.

in a neuro-linguistic perspective? Different works in neuroscience

use complex signs as basic component: we have observed the

form of lexical entries in MUC, but other works have also shown

the encoding in the brain of more complex constructions in

terms of neuronal assemblies (Pulvermüller et al., 2013). At the

experimental level, testing signs in their complete complexity is of

course difficult. However, it is possible to test one of their subparts

by controlling the rest. For example, when studying semantic or

syntactic violations, the tested subpart is one of the features of

the structure. Moreover, even though signs are a very powerful

representation, they can and should be used in experiment when

we are trying to explain language processing in general (and not

one of its subparts).

3.2 The situation model as a graph

Theories of interaction describe understanding as the

possibility for each participant to build a “situation model”,

consisting in the set of implicit and explicit knowledge conveyed

during a conversation (Zwaan and Radvansky, 1998; Pickering and

Garrod, 2021). In our proposal, such a knowledge is built upon

the set of signs instantiated during the conversation. Any sign can

bear a set of relations with other signs, implementing syntactic

and semantic dependencies. The representation of this knowledge

consists therefore in a graph in which nodes are the signs and edges

represent dependencies. The example in Figure 4 presents such a

graph encoding the meaning of the sentence “John buys a gift

for his son”. This graph is based on the predicative structure

associated with the verb “to buy” connected with its arguments

John, gift, and son. Note first that due to the structure of the

signs, dependencies are implemented within a sign by structure

sharing. The relations connect the internal arguments of a sign

(its slots) with external signs, leading to the unification of both

structures. For example, the subject of the verb to buy (in this

sign-based representation encoded by the specifier attribute SPR)

is connected with the sign John, which to its turn is connected

with the first argument of the semantic relation give of the noun

gift.

Note that the conjunction of unification between internal slots

and external signs together with structure sharing within signs

ensures the propagation of all dependencies inside and outside

the structures. For example, when the values of the attributes

SPR and COMPS of the sign to buy are unified with the lexical

signs John, gift and son, this information is propagated within

the sign to buy to the different arguments co-indexed in the

structure: John and gift become then the arguments of the

relation give_thing.

The example in Figure 4 illustrates another property that is

implicit in knowledge graphs: activation. This type of relation,

represented in the figure by dotted lines, connect slots with sign

not already realized in the discourse. For example, the semantic

structure of the verb to buy contains the slot PRICE and SELLER

that are not instantiated in the sentence. They are considered to be

activated which means that this information become available for

future unification.

4 Unification and the updating of the
situation model

We present in this section in more details unification

mechanism and how it is involved in the situation model updating.
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FIGURE 4

Graph implementing the situation model of the sentence “John buys a gift for his son.”

4.1 Unification

Unification is a mathematical operation consisting in

comparing two structures and assessing their compatibility

(Robinson, 1965). This mechanism is at the basis of logic

programming (Colmerauer, 1986) and most current linguistic

theories (Shieber, 1986). As presented above, this notion

is also at the core of the neuro-linguistic model MUC,

considering unification as the main mechanism implementing the

combinatorial nature of language (Hagoort, 2013). Technically,

unification is implemented as the resolution of an equation system,

the solution being a substitution making the two-term structures

identical.

The first important characteristic of unification is that any

type of structure can be compared. In the simplest case, the

two structures are fully specified, and unification simply consists

in verifying that these structures are identical. If this happens,

unification succeeds, otherwise it fails. For example, the predicates

f1=buy(John,gift) and f2=buy(John,bike) are not identical

and their unification (noted f1 ⊔ f2) fails.

However, the most interesting case occurs when two

underspecified structures are unified. In the case where one

of these structures has an argument with a free value (a variable),

unification consists in finding a substitution between this

variable and the corresponding argument in the second structure

to be unified. For example, unifying buy(John,gift) with

buy(John,x) succeeds on condition that x=gift. Unification

then leads to instantiation of the free variable x in the resulting

unified structure. Of course, substitution can be applied to two free

variables: unifying buy(John,x) with buy(John,y) succeeds

on condition that x=y. This means that both variables x and y

remain free but with the constraint to be equal in the case of future

instantiation.

Unification applies to any type of structure and can therefore

be applied to entire signs.2 In this case, unification consists in

comparing term by term the attributes of the signs to be unified.

The example in Figure 5A illustrates the case where two signs

representing a noun (one having its form instantiated the other

not) unify. The result is the third sign, which is associated with

the substitution x=book. This substitution information will be

propagated to all other instances of x. The example Figure 5B

illustrates an unification failure: the attributes CAT of the unified

signs are not compatible, one being V , the other N. Finally,

example Figure 5C illustrates an important property of unification:

instantiation. In the case where one sign contains an attribute

which is not specified in the other sign, unification succeeds and

the resulting sign is the union of the arguments of both signs.

In example Figure 5C, the attribute SEM is only instantiated in

the first sign. As all other attributes are compatible (equals or by

substitution x=book), the resulting unified sign is the fusion of both

signs. We will observe in the next section the importance of this

mechanism when unifying predicted and produced signs. Overall,

as summarized in the study by Huettig et al. (2022), the result of

unification is a sign that shares all the features they have in common

and preserves all the features that are distinct.

2 Note that formally, predicates and signs (in other words attribute-value

structures) both correspond to graphs.
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FIGURE 5

Signs unification.

4.2 Unification and the brain

In the MUC model, the basic information components are

retrieved from the long-termmemory and assembled by unification

into larger structures in order to derive high-level meaning. The

comprehension process during a conversation is considered to be

sequential. The different linguistic components (words, chunks,

expressions, etc.) are therefore integrated incrementally in two

steps: the information corresponding to the component is first

retrieved from the lexicon and then integrated into the structure

under construction thanks to unification.

In MUC, the distinction between memory and unification

is found at the cerebral level. Temporal and parietal regions

are crucial for memory retrieval. For its part, the left inferior

frontal gyrus is recruited in unification operations at different

levels (Hagoort, 2005). Lexical processing involving unification into

representations spanning larger multi-word structures activates

different areas in this brain region. A distinction is done between

different types of unification that can also be associated with

this region (Hagoort, 2013): semantic unification (Brodmann’s

areas BA47 and BA45), syntactic unification (BA45 and BA44),

and phonological processes (BA44 and ventral parts of BA6).

Different experiments have shown how these regions can be

differently activated, reflecting the unification load, for example,

when processing semantic incongruities (Hagoort, 2016).

4.3 The updating mechanism

Situation Model instantiation is based on unification. Signs

encode in a unique structure lexical, syntactic, and semantic

information, which is processed at the same time. This is an

important feature of our model; unlike other approaches such

as MUC, we do not distinguish between syntactic and semantic

unification, and more importantly, there is no chronology between

them. The question is then to explain how the different signs

can be aggregated during the processing. Taking the hypothesis

that language processing is incremental, achieved token by token,

a new sign has to be interpreted at each step and integrated

into the structure under construction (the situation model). This

integration is done by unifying information which is expected with

the one associated with the input sign.

4.3.1 Activated sign
The situation model is a graph of signs, each sign being

formed with features (or attributes) and values possibly connected

with other signs (the value of a feature being possibly a sign).

For example, the value of the feature SPR in Figure 2B is a sign

corresponding to an NP. This representation means that the sign

describing the verb to give expects NP as subject. The situation

model is then made of a graph of two types of signs: (1) signs

that have been realized in the input signal (a word produced by

the speaker) and (2) activated signs that are not already realized

(feature values of type sign). Activated signs are underspecified,

bearing partial characteristics of the type of information that should

occur at this position.

For example, in Figure 4, the signs corresponding to the

slots PRICE and SELLER encode information not realized in the

discourse. Activated signs bear a partial semantic information, with

no specification about the form. They encode information available

for the integration of possible future realized signs.

Remind that activated signs can be activated either by semantic

or syntactic relations, with no distinction: both forms and meaning

features can potentially have attributes with values of type sign.

This is, for example, the case of the the syntactic features COMPS,

specifying the complements. In Figure 4, when encountering the

word buys, the signs corresponding to theNP and PP complements

become activated signs, which are available for future integration.

4.3.2 Weighted activation
Situation model encodes different expectations. However, not

all of them are at the same level: some can correspond to important

or even compulsory information, some others being more optional.

All relations in the graph bear a weight encoding its importance:

mandatory complements bear high weights, optional signs a light

one. This information is fundamental in the estimation of the

activation level of a sign, in the sense proposed in ACT-R adapted
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to language (Lewis and Vasishth, 2005). In this approach, activation

is evaluated based on different information. Each sign in the

situation model has a basic activation, based on the frequency

and the history of its access. This value is completed with the

sum of the weights of the different cues in relation with the sign.

Concretely, in our graph-based representation of the situation

model in which each node corresponds to a sign, the more a

sign receives input relations, the higher its activation. Different

approaches for estimating the activation level have been proposed,

completing the ACT-R proposal. For example, Property Grammars

encode all linguistic relations by means of constraints (Blache,

2013). The state of the constraint system associated with each sign

is analyzed, comparing, in particular, the sum of the weights of

satisfied constraints with those unsatisfied. This indication is then

integrated to the activation level estimation. Note that at the brain

level, it has been observed that the amplitude of the N400 evoked

by a word is negatively correlated with the activation level (Baggio

and Hagoort, 2011).

4.3.3 Sign integration
Integrating a new sign into the situation model graph consists

therefore in unifying it with an expected sign. More precisely, the

situation model contains a list of activated signs with different

activation values. The integration of the new sign into the graph

is implemented by looking in priority for its unification with highly

activated signs. Note that the activation level, as proposed in ACT-

R, can increase with the number of relations that the activated sign

receives. For example, the sign John in Figure 4 receives directly two

input relations (plus indirect ones due to structure sharing within

the sign buy). As a consequence, it becomes the highest activated

sign in the situation model and thus used in priority for future

integration.

4.3.4 Unification mismatch and loose unification
In addition to the estimation of the activation level, feature

weights also play an important role in controlling unification.

Weights, by distinguishing between important and optional

relations, offer the possibility to implement unification as a flexible

mechanism. We have observed that unification fails when two

feature values are not compatible. If the mismatch involves features

with heavy weights, unification failure is hard, which is not

recoverable. On the opposite, when incompatible features have light

weights, it is possible to consider that unification succeeds anyway

by relaxing the equality constraint for these specific values.

Unification of two complex signs provides a way to precisely

identify (and quantify) for what reason unification succeeds or

fails, which is of deep importance in the study of different types

of mismatches. As a consequence, weights offer the possibility to

evaluate the strength of unification success or failure, giving a way

to estimate a gradient between light and hard failures. Interestingly,

this gradient could be correlated with the nature and the amplitude

of the response in the brain signal faced with incongruities. The

result of the unification between two signs with a large amount

of compatible heavy features will be considered as more complete,

stable, and saturated than a resulting sign requiring constraint

relaxation.

In addition to weights, semantic similarity constitutes a second

information that can be used for identifying situations of mismatch

allowing loose unification. When the expected sign and the sign

produced by the speaker do not unify, a semantic distance can

be calculated in the same way as distributional semantic does

(distance between embeddings). If this distance is low, failure can

be relaxed and unification succeeds. This type of phenomenon

has been observed at the brain level: the amplitude of the evoked

potential N400 is proportional to the semantic distance (Baggio and

Hagoort, 2011; Nieuwland, 2019).

4.3.5 Disconnected graph for representing the
semantic structure

The semantic knowledge can be made of different part of

information, not necessarily connected together. Encoding the

situation model as a graph offers this important property: it can be

disconnected. During a conversation, it can be the case that at some

point, a new information is introduced with no explicit relation

with the previous context. In such case, this new information is

buffered as a disconnected sub-graph that can be connected later

on during another updating of the situation model.

5 Prediction

Language processing is based on prediction: inferences using

high-level information can be done in order to predict what will

happen at lower levels (Pickering and Garrod, 2007; Kuperberg

and Jaeger, 2016; Heilbron et al., 2022; Ryskin and Nieuwland,

2023). During a conversation, the listener anticipates different types

of information before encountering the input produced by the

speaker. By doing this, participants use the context to facilitate

processing. Many studies in psycholinguistics have underlined

this role of prediction (Ferreira and Chantavarin, 2018). Highly

predicted words are read more rapidly (Monsalve et al., 2012) and

elicit facilitation patterns in the brain signal (Kutas and Hillyard,

1984; Hagoort et al., 2009). We describe in this section the main

features of prediction and its role in our model as a facilitation

mechanism.

5.1 What is predicted?

It is important to precise what exactly is predicted under what

form and at what level. First, let us recall that language processing

is classically considered to be incremental and processed word-

by-word. The mechanism consists in updating hypotheses after

encountering each incoming word (Kuperberg and Jaeger, 2016).

In most models (in the same way as with deep language models),

prediction concerns the next word. However, several studies have

shown that predictions can be done over multiple levels of

representations (Caucheteux et al., 2023). For example, one can

predict a phonetic constraint based on the previous word (DeLong

et al., 2005): the use of the determiner /a/ (resp. /an/) stipulates

that the next word should start with a consonant (resp. a vowel).

In the same way, at the lexical semantic level, the use of a certain

predicate (e.g., the verb “to drink”) may impose a semantic
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feature on the argument (e.g., [+drinkable]). Predictions can

capture coarse or fine-grained properties (Wang et al., 2020; Ryskin

and Nieuwland, 2023) at any level: morpho-syntactic category,

semantic type, phonetic structure, and complete events or frames

(Huettig, 2015). Predicting representations with such a multiple

granularity requires to take into account the complete narrative

context, the participant’s world knowledge, theory of mind, etc.

As a consequence, when related to the predictive coding

hierarchical architecture, this means that prediction can be done

at any level of representation. It can also be done at any moment:

whatever its granularity, being it fine or coarse, using the entire

context available at a time t makes it possible to predict either a

single feature (in the case of poor contextual information) or on the

opposite a complex structure, bearing a rich bunch of information.

This means that prediction is not necessarily done at a unique level,

step-by-step, going linearly from one level to another but can be

done in a single shot, simultaneously at any level. We will observe

that this sequential, incremental, and hierarchical architecture is a

general theoretical proposal, possibly shortcut by shunting some

levels due to the context.

In addition to granularity, the second important feature of

prediction is that it is a probabilistic phenomenon: multiple

predictions can be done in parallel (for example corresponding

to multiple parses). There is in this case a graded pre-activation

of multiple candidates within long-term memory (Kuperberg and

Jaeger, 2016; Frisson et al., 2017). As a consequence, the prediction

process, instead of providing a single output, returns a list of

predictions with their probability, making it possible to order them

from high to low predictions (see Figure 6).

Note that each predicted sign is lexically anchored in the

sense that it contains necessarily a prediction about the expected

surface form, starting with the next token. Such prediction is

not necessarily the exact phonetic form and can be some formal

properties about the form. For example, the predicted sign

(including when it concerns an entire frame) can stipulate a

phonological constraint (e.g., that the next token should start with

a vowel), a morphosyntactic category (e.g., the next token should

be a noun), or even a lexical form. In other words, prediction can

concern signs at any level (a word, a construction, or a complete

semantic frame) but always stipulate constraints on the next token

to be produced by the speaker.

5.2 Predictive coding

The predictive coding paradigm in neuroscience is based on

the fact that the brain is an inference organ, constantly making

predictions about events that are going to happen depending on

the context (Rao and Ballard, 1999; Friston, 2018; Pezzulo et al.,

2021). During perception, the brain makes predictions at each

stage of processing and compares these predictions (coming from

the brain) with the perceived signal (coming from the senses).

Each comparison measures a distance between the two signals,

resulting in a prediction error. Therefore, there is a constant double

movement, bottom-up and top-down, during which each step

provides a measure of the prediction error that propagates in

both directions. This paradigm relies on a hierarchical architecture

from lower levels (sensory inputs) to higher levels, encoding

abstract information. When applied to language (see Ryskin and

Nieuwland, 2023 for a review), the classical hierarchical structure

of processing (from sound to sense) represents this sequential

architecture in which each level represents a type of linguistic

processing: lower levels of the hierarchy correspond to sounds,

the higher level is the meaning, intermediate levels are syllables,

words, phrases, constructions, syntactic structures, etc. In this

strict hierarchical organization, the predictive processing consists

for high-level predictions to inform low-level ones: top-down

predictions from higher levels are at each step compared with

perceived stimuli.

The question of prediction is of course topical in language

processing. Artificial intelligence and large language models

are entirely based on predicting what comes next. During

conversations, this is done by activating different sources of

information from word to world knowledge. Concretely, in a

comparable manner as for natural language processing, predictions

are generated by models based on prior experience with the event

knowledge. Each level in the hierarchy corresponds to a model

making a prediction based on the context (the context being

what has been realized and interpreted). These generative models

provide top-down predictive signals from hierarchically higher

levels which are compared with incoming stimuli. The prediction

error (i.e., the mismatch between the prediction and the sensory

signal) is propagated to higher layers in the hierarchy. In other

words, prediction is transmitted down from higher levels to the

lower levels, whereas prediction error is propagated upward. This

mechanism makes it possible at each step to update the response

and generate the next prediction by revising the weights of the

hypotheses. A minimization of the prediction error is then applied

progressively, improving eachmodel predictions, until reaching the

best interpretation of the input signal.

When studying the brain correlates with this architecture,

where each layer predicts a neural activity of the level below,

the evaluation of the prediction error consists in comparing the

predicted activity with that of the current layer. This architecture

explains how responses are modulated by linguistic predictions

(Heilbron et al., 2022). Many types of prediction mismatch have

been explored in the literature. Typically, an incongruous word

involves a large prediction error generating a strong negative

component, the N400 effect (Kutas and Hillyard, 1984). Earlier

components related to prediction have also been observed,

for example, the ELAN effect associated with syntactic errors

(Friederici et al., 1993) and positive effects (see Nieuwland, 2019

for a review).

Predictive coding perfectly fits with what is observed in

language processing, including through different experiments in

NLP looking for a mapping between the activation of artificial

neural networks and brain areas (Caucheteux et al., 2023). This

notion of top-down prediction applied step-by-step in a linear

way is very productive and fits well with the classical hierarchical

organization of language processing going step-by-step through the

different linguistic dimensions: phonetics, phonology, morphology,

syntax, and semantics. However, as observed in the previous

section, the integration mechanism can be non-linear in the sense

that what is predicted at each processing cycle can be at very

different levels: from low-level underspecified signs until richly

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1356541
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Blache 10.3389/fnhum.2024.1356541

FIGURE 6

The prediction step returns a list of possible signs, calculated from the situation model, with their probabilities (the image of short-term memory is

simply an illustration of the situation model graph, no need to read the content of the nodes).

instantiated signs encoding a large piece of meaning. At the

beginning of a processing cycle, when few information is predicted,

the mechanism is basically linear. On the opposite, when whole

pieces of information are predicted, the different layers are skipped

and the processing cycle goes directly to the integration step. This

non-linearity corresponds to the main form of facilitation. Note

that, as we will observe it in the last section, non-linearity is also at

work within a processing cycle during stage change: the activation,

saturation, and probability level of a sign decides for activating of

inhibiting specific mechanisms such as lexical access.

5.3 Prediction vs. activation

In our model, we distinguish between prediction and

activation. Following the predictive coding framework, we

consider that prediction is always at work in language processing.

However, the mechanism is different depending on the scope

of the expectation. In their review paper, Van Petten and Luka

(2012) propose to distinguish between prediction, the mechanism

explicitly devoted to the anticipation of a specific word to occur

in the future), and expectation, which refers to the broad semantic

content that can be anticipated. In our model, we use a comparable

distinction between prediction and activation:

• Prediction: The mechanism that calculates the most likely next

sign based on the context.

• Activation: The mechanism that calculates all activated signs,

not already realized, regardless of whether they will be realized

or not.

The notion of prediction adopted here is local in the sense

that it is restricted to the next event, predicted word-by-word. It

refers to the pre-activation of a linguistic representation before

verification with the bottom-up input produced by the speaker.

For its part, the notion of activation is global and refers to

the meaning encoded in the complete situation model. At each

processing cycle, the situation model is updated first by aggregating

the new sign corresponding to the word produced by the speaker

and second by adding to the model all the signs activated by

enough cues. As a consequence, the situation model encodes two

types of information: (1) a set of signs connected by relations,

corresponding to what was actually produced by the speakers and

(2) expectations about what might be produced during the rest of

the conversation. Such expectations correspond to activated signs,

not already realized and representing a possible slot value. For

example, when encountering the verb buy in the sentence “John

buys a gift to his son”, two signs corresponding to the

complements (NP and PP) are activated (see Figure 4). Activation,

unlike prediction, says nothing about the position or the moment

when the activated sign could be realized. It simply prepares a

future possible unification.

On the other hand, it is possible to predict step-by-step, at any

time, the next word (or more precisely a list of possible following

words) to be produced. Large language models have shown the

effectiveness of this mechanism. If we simply extend the notion

of word to that of sign, we can make the hypothesis that at each

processing cycle (i.e., each incoming word), a new sign (more or

less specified depending on the context) can be predicted.

To sum up, activation specifies the set of signs corresponding

to expected pre-activated values, while prediction is restricted to

the next sign to be realized. Activation defines a set of activated

signs associated with an activation level depending on the context

(see Section 4.3). Prediction specifies at each position t in the input

signal a set of signs that can appear at t + 1, ranked by probability.

6 The processing cycle of the
prediction-unification model

Prediction and unification cannot be separated in this type

of model. Unification represents the unique mechanism for
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comparing the predicted structure with the produced one.

Moreover, it is a constructive process making it possible to build

a new structure by merging the unified ones. Involving prediction

into the model requires unification. We will describe in this section

the role played by unification at each step of the processing cycle.

We propose in this section to present the processing cycle by

taking the case of a conversation, even though the same cycle can

be applied in reading, by substituting the audio input to a written

one.

6.1 Segmenting

The first step consists in segmenting the input.3 Different

studies have explored for many years how infants and adults can

segment the input audio stream and identify syllables, word, or

phrases boundaries (Saffran et al., 1996; Mattys et al., 1999; Endress

and Hauser, 2010; Matzinger et al., 2021). Several different cues are

used in this task: prosodic (lengthening, pause, and pitch change),

phonotactic (permissible combinations of phonemes), statistical

(transitional probability between adjacent syllable), etc. Note that

automatic speech recognition techniques also rely on similar cues

(Georgescu et al., 2021) and can be correlated at the brain level (Lee

and Cho, 2016).

These studies show that speech segmentation can be based

on low-level features, explaining that this skill appears early

in language development and is extremely efficient. When

studying the complete cycle of language processing during natural

interaction, segmentation provides the first input information: this

preliminary step returns a sequence of phonemes (or at least a

set of acoustic features in noisy environments). Remind that in

our architecture, the basic linguistic units are constructions, which

are made of a form/meaning pair. In this framework, all types of

linguistic objects (including words) are considered as constructions

and represented with this same format. As a consequence, the

phoneme sequence returned by the segmentation mechanism can

be used as a key for accessing the mental lexicon by comparing the

sequence with the form attribute of the corresponding word in the

lexicon. The important characteristics are that this segmentation

is done early and of course way before accessing any information

related to the word.

In classical language processing architectures (as well as

in linguistic theories in general), this segmentation is usually

associated with lexical access, in a unique step: segmenting a

word consists in retrieving in the lexicon a matching sequence of

phonemes. The information associated with the word (its morpho-

syntactic features and its meaning) is systematically retrieved from

the mental lexicon, for all words. We propose in our model to

clearly distinguish between segmentation and lexical access. By

considering segmentation as an independent process, we make it

possible to use these segments in different purposes. They can

be used as a control mechanism for verifying whether what is

predicted by the hearer corresponds effectively to what has been

3 Note that even if we consider here the case of conversation, word

segmentation also constitutes the preliminary stage in reading.

FIGURE 7

The segmenting step returns a list of possible forms (audio

segments) with their probabilities.

produced by the speaker. They can also serve as a key for retrieving

the corresponding word stored in the mental lexicon.

As observed above, audio stream segmentation returns a set

of phonemes, possibly incomplete in the case of noisy signal (see

Figure 7). This step can of course be prone to errors or uncertainty.

Each element of the sequence, instead of being a phoneme, is

rather a probabilistic space representing possible phonemes. As a

consequence, the segmenting step of the audio input calculates a list

of possible audio segments. In terms of a sign-based representation,

an audio segment corresponds to a value of the PHON attribute in

the FORM description. Segmenting returns therefore a list of signs

specified only for their form value, each sign corresponding to a

possible audio segment (with its probability).

6.2 Comparing the predicted sign with the
input audio segment

Predictive coding is based on the comparison between top-

down prediction and bottom-up information. In most models, this

comparison is done at each level of the processing in a hierarchical

sequential way (Ryskin and Nieuwland, 2023). In the case of our

model, we integrate the fact that complex signs can be predicted.

The first step consists therefore in comparing what has been

produced by the speaker (the audio segment, corresponding to a

word) with the form of the predicted sign. Remind that prediction

and segmentation steps return a list of possible signs, more or

less specified, and ranked by probability. The comparison between

the predicted sign and the input stimulus consists in verifying by

unification the compatibility of both signs. Concretely, this consists

in unifying a partial sign returned by segmentation (containing

only the FORM attribute) with the FORM value of the predicted sign

(or with the beginning of the FORM value when multiple words are

predicted).
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If unification succeeds, the sign resulting from the unification

(called in Figure 8 the “Unified sign”) is passed to the next step.

This sign contains all predicted information plus the audio form

and can correspond already this stage to a more or less complete

sign, containing a lot of information. If unification fails, a new

match is sought by finding the next more likely pair audio

segment/predicted sign. If no match between any audio segment

and predicted sign exists, the most probable audio segment,

forming an underspecified sign containing only the FORM attribute,

is passed to the next step.

6.3 To access the lexicon or not: prediction
and saturation

When prediction matches with the input stimulus, the resulting

unified sign contains, on the one hand, the phonetic form coming

from the speaker’s production and, on the other hand, all predicted

information coming from hearer’s prediction. It is necessary at this

stage to estimate whether the unified sign can be considered as

complete before updating the situation model.

Depending on the state of the context encoded in the situation

model, this predicted sign can be more or less instantiated or

specified. Remind that a sign is made of a set of weighted attributes,

some of them being mandatory. It is thus possible to estimate what

we can call a saturation level. This notion is borrowed from HPSG

(Sag and Wasow, 1999) where a sign is said to be saturated when

all mandatory complements are realized. We extend this notion

by introducing a gradient making it possible to estimate a level of

saturation. The saturation level is calculated as a function of the

attribute weights, in the manner of Blache (2016): a high number of

attributes with heavy weights results in a high saturation level.

The second important input for estimating whether the unified

sign contains information enough for being used directly is the

probability level of the predicted sign. Intuitively, the idea is that

the probability level of the predicted sign gives also an indication

on its completeness. When the probability of the predicted sign and

the saturation level of the unified sign are both high, it is very likely

that it contains information enough and can be directly used for

updating the situation model, without accessing the lexicon. On the

contrary, when these levels are low, it indicates that the unified sign

does not contain information enough. In this case, the lexicon is

accessed, looking for a corresponding entry.

The necessity to access the lexicon also occurs when there is

no possible matching (even by relaxing some constraints) between

the audio segment and the predicted sign. In this case, priority is

given to the stimulus, and a matching lexical entry is searched in

the lexicon, based on the phonetic form only.

To sum up, accessing the lexicon is thus required when the

unified sign bears not enough information or when a mismatch

occurs between the audio input and the predicted sign (see

Figure 9). Technically, lexical access consists in looking for an

entry in the lexicon unifying with the sign resulting from the first

step. This sign constitutes the access key to the lexical database

formed by the mental lexicon. Note that the higher the access key

specification, the more efficient the access: when the the access key

contains a lot of information, the search space in the lexicon is

reduced, each information playing the role of a constraint pruning

the lexical space. As a consequence, accessing the lexicon when the

only available information is the phonetic form (i.e., when there

is no match between audio segment and prediction) will be more

demanding than when some predicted information can be used.

Concretely, accessing the lexicon consists in unifying the access key

that can contain predicted information and the lexical entry. The

result of this unification is a retrieved sign that will be passed to the

next step.

Two routes can be taken at this stage in the processing

cycle: a facilitation route and a normal one. The facilitated route

corresponds to the situation where the predicted sign matches

with the audio segment and contains information enough to

be considered as saturated and probable. In this case, the sign

resulting from the prediction and the audio segmentation (called

unified sign in Figure 10) is directly passed to the updating process,

without needing any lexical access, which constitutes the first main

facilitation mechanism.

The second route involves lexical access. It is used in two cases:

when no match can be find between an audio segment and a

predicted sign or when a match exists, but the unified sign does

not contain information enough. In this case, the lexical access,

completed with the audio form and predicted information, results

in a sign (called retrieved sign in Figure 10) used for updating.

6.4 The complete model

The previous steps in the model result in building the sign that

will be used in the final updating step of the cycle: the integration

of the sign to the situation model. Integration consists in scanning

the situation model, looking for an activated slot unifiable with the

updating sign.

This model makes it possible to take into account the two

types of mechanisms at play in language processing : the normal

route, based on a sequential word-by-word processing and the

facilitated route, based on the prediction of complete structures,

directly integrated to the situation model.

6.4.1 Without facilitation: the classical
compositional processing

This route corresponds to the classical architecture of language

processing, relying on different levels of processing corresponding

to the different domains: phonetics, phonology, morphology,

syntax, and semantics. It occurs when no prediction/activation

can be done from the situation model and corresponds to the

more complex case, where no information can help in controlling

or reducing the processing (for example, in the case of the

interpretation of a complex text without context). In this case,

the updating step consists in looking in the knowledge graph

for slots where retrieved sign can be integrated. This mechanism

is based on unification and resembles to those used during the

lexical access. It consists in identifying all the slots in the graph

with a free value (i.e., not already instantiated) and look for

the best unification between the slot and the retrieved sign.

By instantiating a slot, the information is propagated from the
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FIGURE 8

Comparison stimulus/prediction, returning the optimal match, possibly reduced to the audio form only.

FIGURE 9

Estimation of the saturation level, access to the lexicon.

syntactic to the semantic structures due to structure sharing. This

situation corresponds to the classical compositional view where a

lexical processing is followed by a syntactic one and eventually a

semantic interpretation.

6.4.2 Facilitation: prediction and integration
Facilitation comes into play at two levels: prediction and

integration (i.e., situation model updating). First, we have observed

that when prediction reaches a certain probability level, the

predicted sign can directly be used, without lexical access. Avoiding

lexical access forms the first facilitation mechanism. The second

facilitation level occurs when entire pieces of knowledge are

predicted and integrated to the situation model. In this case, the

predicted sign corresponds to sequences of words and complete

knowledge subgraphs. In this case, updating integrates to the

situation model a complete subgraph in a single step. This

corresponds to the situation of a direct access to the meaning,

without needing a compositional mechanism based on the syntactic

structure. Typically, in the case of multi-word expressions (that

can contain a large number of words), as soon as the expression

is recognized, no syntactic processing is required anymore, the

corresponding meaning being fully activated and integrated into

the situation model. The third facilitation mechanism relies on

activation. We have observed that the situation model graph

contains activated signs, corresponding to information that has

not been realized in the discourse (i.e., produced by the speaker)

but with strong relationships with the context. Activated signs
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FIGURE 10

The complete prediction-unification model.

correspond to information that can be inferred and is then available

for understanding. Moreover, the activation level plays a central

role during updating: the most activated signs are used in priority

when looking for a possible unification with the sign that has been

produced by the speaker. This is a very efficient mechanism for

reducing the search space and controlling unification.

To sum up, a complete facilitation situation occurs when a very

predictable high-level sign, encoding a large set of information can

be anchored with the speaker’s production and integrated to the

situation model with a highly activated sign. But note that this is

not an all-or-nothing mechanism: it can be the case that the first

facilitation (avoiding lexical access) is at work but not the last one

(integration controlled by activation).

7 Discussion and perspectives

Most architectures and models of language processing have

been built upon a restricted view of language limited to sentence

processing. Studying language in its natural environment, typically

conversation, needs to take into consideration the fact that the

meaning is built by gathering in a very efficient manner different

sources of partial information. Moreover, it is also necessary to

explain the fact that in many cases, language processing remains

very shallow and not sequential. These characteristics correspond

to facilitation phenomena that need to be integrated into a unique

architecture.

We have presented in this study such a model, taking first

advantage of the fundamental role of prediction which becomes

a core mechanism. The context under discussion during a

conversation (or when reading a text) forms a complete knowledge

base in which entities and concepts are inter-connected. This base

offers the possibility to make predictions at any level, which is

exactly what happens in the brain whatever its activity. These

characteristics are implemented in our model by the fact that basic

components are objects of any granularity: they can correspond

to words, sequences of words, complete pieces of knowledge, or

on the opposite underspecified structures. The main facilitation

effect explaining the efficiency of language processing comes

from this double characteristics: prediction is always at work and

signs at any granularity can be predicted. Note that this last

characteristic has deep consequences on the theory of language.

All linguistic theories relies on a mechanism (derivation, constraint

solving, etc.) aggregating linearly objects of categories at the

same level. We propose instead to consider that the linguistic

objects used as basic components can be of any granularity and

do not correspond necessarily to a category of the same level.

Unlike most linguistic theories, this means that the integration

mechanism is no longer linear in the sense that structures at any

level, not necessarily corresponding to a defined category, can

be assembled.

The second important aspect of the model concerns the

mechanism used at each step of the processing cycle: unification

when comparing the predicted sign with the segment of the

audio input, during lexical access, for updating the situation

model. At each stage, unification plays a double role: verifying

the compatibility of two structures and building a resulting

structure merging both. The role played by unification can thus

be very different. In the case of lexical access, unification is the

controlling mechanism for identifying the matching entry. In the

case of situation model updating, it implements a non-linear

compositionality by integrating the current sign (of any granularity
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level) into a structure. Note that this operation is highly controlled

by the fact that the activation mechanism reduces the number of

possible sites where the current sign can be integrated.

In addition to these roles, unification offers the possibility to

manipulate complex structures (the signs). These structures encode

many different information, possibly coming from any domain

(phonetics, syntax, semantics etc.), and structure sharing (which

is a form of unification) ensures the relation between the features

of these domains. In other words, the interaction between the

different domains (or even the different modalities) only relies

on sign unification and structure sharing. This represents a major

theoretical shift: instead of considering domain interaction in terms

of interaction rules between domains, it is directly implemented

at the sign level. In this way, parallelism of language processing

can be observed in a completely different way. In the original

proposal, the parallel architecture is considered at the level of the

domains and the interaction is specified by rules between them

(Jackendoff, 2007; Huettig et al., 2022). On the opposite, the type

approach we use in ourmodel is based on complex signs integrating

all sources of information. This approach can still be observed as

parallel in the sense that no domain should pre-exist or have a more

important role than another. The difference lies in the fact that the

interaction is done at the sign level instead of the domain-specific

level. It is interesting to note that this distinction is classical in

multimodal computing, merging different sources of information

(or the different modalities) can be done early or late. Our approach

comes to an early fusion of the data where the classical domain-

interaction approach comes to a late fusion. Note again that when

the prediction of a high-level complex sign integrating all sources

of information is not possible, a low-level mechanism is at work

for accessing the meaning. In a parallel processing perspective, this

comes to follow the domain-specific stream at the same time before

integrating them to the meaning (see for example the M/G-stream

model proposed in Baggio, 2021).

Unification of complex structures offers finally a very precise

and efficient way to measure the distance between what is predicted

and what is produced in the input (the prediction error in the

predictive coding paradigm). In particular, due to the weights

associated with the features and relations in a sign, it becomes

possible to estimate precisely the level of the error and its source.

When studying the brain correlates of language processing, it

constitutes an efficient tool for estimating the type and the level

of prediction error that can be correlated with the type and the

amplitude of the response in the brain signal, for example, with

event-related potentials. Moreover, in the case of mismatch, the

importance of the failure can also be assessed due to the weights,

leading to a possible constraint relaxation: such mechanism

informs about the possibility of repairing the mismatch (possibly

anticipating a late positivity in the brain signal).

This prediction-unification model provides in conclusion a

framework bringing together into a unique architecture facilitation

mechanisms besides a classical incremental processing. This is

done due to a single processing cycle based on the integration

of complex multi-level structures. In addition to explaining how

to integrate facilitation mechanisms, this model also brings a

new vision about the two different ways to build the meaning:

compositionality or direct access. In our approach, these two

mechanisms only differs from one point: the granularity of the

signs to integrate into the situation model. Building the meaning

is always done compositionally but can correspond to a word-by-

word incremental mechanism (the classical view of compositional

principle) or on the opposite in the integration of entire and large

pieces of meaning.
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