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Performance in stair-climbing is largely associated with disruptions to mobility

and community participation in children with cerebral palsy (CP). It is important

to understand the nature of motor impairments responsible for making stairs a

challenge in children with bilateral CP to clarify underlying causes of impaired

mobility. In pediatric clinical populations, sensitive measurements of movement

quality can be captured during the initial step of stair ascent. Thus, the purpose

of this study was to quantify the lower limb joint moments of children with

bilateral CP during the stance phases of a step-up task. Participants performed

multiple stepping trials in a university gait laboratory. Outcome measures

included extensor support moments (the sum of hip, knee, and ankle sagittal

plane moments), hip abduction moments, and their timing. We recruited seven

participants per group. We found that peak support and hip abduction moments

were similar in the bilateral CP group compared to the typical development (TD)

group. We also found that children with bilateral CP timed their peak moments

closer together and increasingly depended on the hip joint to complete the task,

especially in their more affected (MA) lower limb. Our investigation highlights

some underlying causes that may make stair climbing a challenge for the CP

population, including a loss of selective voluntary motor control (SVMC), and

provides a possible treatment approach to strengthen lower limb muscles.

KEYWORDS
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1 Introduction

While the majority of children with bilateral cerebral palsy (CP) are ambulatory
(Novak, 2014), stairs and curbs present an exhausting environmental barrier for this
population. Performance in stair-climbing is largely associated with disruptions to mobility
and community participation in CP, more so than performance in walking (Lepage et al.,
1998). Despite this, research investigating movement strategies during stair climbing in
bilateral CP has been limited. It is important to understand what makes stair climbing
difficult in children with bilateral CP to clarify underlying causes of impaired mobility. This
is a major concern because reduced mobility can lead to a higher risk of comorbidities such
as heart disease and chronic pain in adulthood (van der Slot et al., 2013; Heyn et al., 2019;
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Peterson et al., 2020; Schmidt et al., 2020; Hammam et al., 2021).
Most importantly, community members affected by CP prioritize
research focused on understanding the nature of impairments to
improve overall mobility (Vargus-Adams and Martin, 2009, 2011;
Gross et al., 2018), especially in the lower limbs (Zvolanek et al.,
2022).

In pediatric clinical populations, sensitive measurements of
movement quality can be captured during the initial step of stair
ascent (Stania et al., 2017). Individuals with and without CP spend
approximately 70% of an inclined gait cycle in the stance phase
(Ma et al., 2019), suggesting that researchers should prioritize this
phase of a step-up task. In individuals with typical development
(TD), substantial hip abduction moments and extensor support
moments, especially from the knee and ankle, are used to complete
a step-up task (Wang and Gillette, 2018; Goyal et al., 2023a,b).
However, bilateral lower limb motor impairments from bilateral
CP can affect the biomechanics of this task. Specifically, researchers
have identified paresis, or weakness, in both the hip abductors
and lower limb extensors in bilateral CP (Wiley and Damiano,
1998; Barber et al., 2012; Steele et al., 2012). Adults with stroke,
who also experience paresis in the same joint directions, generate
lower hip abduction, hip extension, and knee extension moments
compared to adults without stroke during a step-up (Goyal et al.,
2023a). A reduction in selective voluntary motor control (SVMC)
of distal joints such as the knee and ankle is also an often-observed
motor impairment in bilateral CP (Sanger et al., 2006; Fowler and
Goldberg, 2009; Fowler et al., 2010; Zhou et al., 2017). One group
of researchers found that children with CP may compensate for this
coordination issue during level-ground walking by shifting kinetic
output from the ankle to the hip (Riad et al., 2008). A loss of SVMC
may also lead to simultaneous and coupled lower limb movements
which alter timing in the gait cycle compared to children without
CP (Fowler and Goldberg, 2009). Collectively, this prior research
suggests that the stance phase biomechanics of a step-up task may
be different in children with bilateral CP compared to children
without bilateral CP. Of further importance, understanding the
nature of motor impairments in CP can also offer insight into how
the central nervous system is working (Sukal et al., 2007; Sukal-
Moulton et al., 2013, 2014a,b; Sánchez et al., 2018; Hill and Dewald,
2020) during a challenging activity of daily living.

The purpose of this study was to quantify the lower limb joint
moments of children with bilateral CP during the stance phases of
a step-up task. We hypothesized that children with bilateral CP
would generate lower peak hip abduction and extensor support
moments compared to children with typical development (TD),
and that timing of these peak moments would occur closer together
in children with bilateral CP. We also hypothesized that children
with bilateral CP would shift torque generation from the knee/ankle
to the hip to successfully complete a step-up task.

2 Materials and methods

2.1 Participant recruitment

Participants with bilateral CP were recruited through the
Shirley Ryan AbilityLab and the Cerebral Palsy Research Registry
(Hurley et al., 2011). Inclusion criteria for these individuals were

(1) between the age of 5 and 19 years, (2) a medical diagnosis of
bilateral CP affecting the lower limbs, (3) Gross Motor Function
Classification System (GMFCS) level I-III, and (4) independent
ambulatory function with ability to step up with or without
assistive devices. Exclusion criteria were (1) botulinum toxin
injections to lower limb muscles in the past 6 months, (2) surgeries
affecting lower limb function in the past year, and (3) serious
comorbidities or cognitive dysfunction that would affect ability
to participate. Age and sex-matched participants without bilateral
CP (typical development or TD) were recruited through word-
of-mouth and flyers. This study was approved by Northwestern
University’s Institutional Review Board. Participants under the
age of 18 provided assent in addition to informed consent from
their parent/guardian, while participants 18 and older provided
informed consent themselves.

2.2 Set-up and protocol

Participants performed multiple stepping trials on a 2 × 2
cluster of force plates (AMTI, Watertown, MA, USA) (Figure 1).
Two 10.2-cm wooden platforms, each approximately the size of a
single force plate, were placed on two side-by-side force plates to
simulate a step. A previous study found that a 10.2-cm step height
is both challenging and achievable for clinical populations with
lower limb impairments (Goyal et al., 2023a). A 10-camera motion
capture system (Qualisys, Göteborg, Sweden) recorded lower limb
kinematics from retro-reflective markers placed on the trunk
(sternum, C7 vertebrae, T10 vertebrae), pelvis (sacrum, posterior
superior iliac spines, greater trochanters), and lower extremities
(lateral femoral epicondyles, lateral malleoli, calcanei, the second
and fifth metatarsals, and thigh and shank four-marker clusters).
Ground reaction forces were captured at 1000 Hz, while kinematics
were captured at 100 Hz. Participants also wore a harness that was
attached to a passive overhead trolley to minimize the risk of falling.

Participants started the experiment with their feet on two
independent force plates posterior to the two platforms. This
ensured that all ground reaction forces for the left and right lower
limbs were recorded separately. Participants were instructed to step
up onto the platform at their typical walking speed (i.e., at the
pace if they were walking with a friend, not rushing to catch a
bus and not slowly moving in a big crowd). After a short pause
on the step, participants were then instructed to step down and
backward onto the starting force plates. These step-up trials were
repeated 5–15 times per leading foot, depending on participant
fatigue and comfort. Once the typical speed was established, we
monitored that trials were consistently being completed within 10%
of this speed. We offered breaks and asked for participant report
of their fatigue. A licensed physical therapist guarded and offered
support as needed for safety to participants who were GMFCS level
III; we did not offer these participants a handrail or other consistent
upper extremity support and they did not use their assistive devices.
The trial did not begin until they were standing independently.
These participants used a hand touch on the physical therapist’s
hand if they felt they needed it. If they attempted to use anything
more than support for balance (e.g., holding hands or pulling with
arms to ascend), they were cued to reduce this type of support
and the trial was not used for analysis. In addition to the step-
up trials, all participants completed timed single-limb stance tests
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FIGURE 1

A participant outfitted with reflective markers in the starting position
behind the two raised 10.2-cm platforms.

(Newton, 1989) and the Waterloo Footedness survey (Elias et al.,
1998) to identify the dominant (TD) or less affected (bilateral
CP) lower limb. Participants with bilateral CP also completed the
Selective Control Assessment of the Lower Extremity (SCALE)
(Fowler et al., 2009) and the locomotion ability assessment for kids
(ABILOCO-Kids) (Caty et al., 2008).

2.3 Data and statistical analysis

Qualisys Track Manager (Qualisys, Göteborg, Sweden)
recorded marker and ground reaction force data. Marker data were
visually inspected to ensure that they were correctly labeled. All
data were then imported to Visual 3D (C-Motion, Germantown,
MD, USA). First, a static trial was used to estimate a biomechanical
model using the following markers: trunk (sternum, C7 vertebrae,
T10 vertebrae, acromions), pelvis (sacrum, posterior superior
iliac spines, greater trochanters, ischial tuberosities), thigh (four-
marker clusters, greater trochanters, lateral and medial femoral
epicondyles), shank (four-marker clusters, lateral and femoral
epicondyles, lateral and medial malleoli), and foot (lateral and
medial malleoli, calcanei, first, second and fifth metatarsals).
Dempster’s regression equations were used to define segment
weights (Dempster, 1995) and segment initial properties were

estimated based on segment weight and geometry (Hanavan, 1964).
Bell’s regression equations were used to define hip joint centers
(Bell et al., 1989), while knee and ankle joint centers were estimated
based on the static markers defined above. At least three markers
from each segment were used to track segment movement. The
marker and ground reaction force data were first interpolated to fill
in small gaps and passed through a 4th-order low-pass Butterworth
filter with a 6 Hz cutoff frequency to filter out high-frequency
oscillations. These data were then used in combination to perform
inverse dynamics calculations of hip moments in the frontal plane
and hip, knee, and ankle moments in the sagittal plane. The joint
angular convention used was the Cardan sequence—global axes
were used to define overall metrics and local axes were used to
define joint angles. To account for the 10.2-cm step height, the
height of the two corresponding force plates was adjusted virtually.
Important gait events, including lift-off and initial contact for both
lower limbs, were identified by the software using a 5 N ground
reaction force threshold and manually inspected for accuracy.

Joint moment data were further analyzed in MATLAB
(MathWorks, Inc., Natick, MA, USA). All joint moments were
normalized to participant body weight for comparison in statistical
analyses. Hip, knee, and ankle sagittal plane moments were
considered separately and together, summed to calculate an overall
extensor support moment (Novak and Brouwer, 2011). All data
were evaluated for each individual trial during two stance phases of
the step-up. The push-off phase was defined when the trailing limb
was in single-limb stance, between leading limb lift-off and initial
contact with the step. The pull-up phase was defined when the
leading limb was in single-limb stance, between trailing limb lift-
off and initial contact with the step. For each individual participant,
any step-up trial with a length outside of two standard deviations
from the average were not considered in statistical analysis.

All statistical analyses were performed in Stata IC 14.1
(StataCorp LLC, College Station, TX, USA) and the threshold for
significance was set to p < 0.05. Independent two-sample t-tests
were used to compare participant-specific metrics such as age,
weight, and height. An ANOVA was used to compare single limb
stance times between the limbs in each group [CP more affected
(MA), CP less affected (LA), typical development dominant (TD)].
Paired t-tests were also used to compare SCALE scores between
the limbs of participants with bilateral CP. All outcome measures
were considered independently for each stance phase: (1) peak hip
abduction moments, (2) peak support moments, (3) individual hip,
knee, and ankle percent contributions to peak support moments,
(4) time duration of stance phase, and (5) time to peak moments.
Individual joint percent contributions were calculated by dividing
hip, knee, and ankle contributions to peak support moment by
the overall peak support moment. Timing of peak moments was
identified as a percentage of the corresponding stance phase. Our
analysis determined that the effect of limb dominance was not
significant for children with TD (Goyal et al., 2023b); as such,
only data from their dominant limb was considered in subsequent
analyses. All outcome measures were statistically compared using
linear mixed effects models with one fixed effect of limb (MA,
LA, TD) and a random effect of participant. The distribution of
residuals for each mixed effects model was visually inspected using
histograms to confirm normality of the data. All trials for each
participant were input individually into the statistical models to
increase the effective sample size. Significance of multiple pairwise
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TABLE 1 Mean (SD) participant-specific metrics and clinical
assessment outcomes.

Outcome measure Group

Bilateral CP (n = 7) TD
(n = 7)

Age (years) 10.5 (3.6) 10.2 (3.9)

Limb dominance 2R/5L 7R

Weight (kg) 38.7 (19.6) 41.7 (23.7)

Height (m) 1.40 (0.19) 1.42 (0.22)

ABILOCO-Kids 14.1 (5.7) –

Limb MA LA Dom

Single-limb stance time (s) 2.27 (2.28) 5.25 (5.91) 43.7 (38.2)

SCALE 3.15 (1.68) 6.14 (3.58) –

comparisons was adjusted using Bonferroni’s corrections. Finally,
the effect size of each statistical analysis was calculated using
G∗Power (Faul et al., 2009).

3 Results

3.1 Participant summary

We recruited 7 participants in each group (Table 1). There
were no significant differences in age, weight, and height between
the groups. Five participants with bilateral CP were GMFCS level
II and two participants were GMFCS level III. No participants
with CP had notable joint contractures in the lower extremities
that influenced their ability to perform the step up task. Single
limb stance times between the limbs were significantly different
(p = 0.002), where the TD limb had a larger stance time than the
LA (p = 0.007) and MA limbs (p = 0.004). Average SCALE scores
were significantly different between the limbs of the CP group
(p = 0.020).

3.2 Push-off stance phase

There were no significant differences in peak hip abduction or
support moments between the limbs in the push-off stance phase
(Table 2). There were significant differences in hip (p < 0.001,
effect size = 0.943) and ankle (p = 0.011, effect size = 0.492)
percent contributions to peak support moments between the limbs
(Figures 2, 3). The MA limb had a significantly higher hip percent
contribution compared to the LA and TD limbs, while the LA limb
also had a significantly higher hip percent contribution compared
to the TD limb (p < 0.001 for all). In contrast, both limbs
of participants with CP had lower ankle percent contributions
compared to the TD limb (less affected: p = 0.016; more affected:
p = 0.003). Joint moments in Nm/kg for the hip, knee, and ankle at
the time of peak support moments are provided in Table 2, though
statistics were not run on these values.

There were significant differences in average stance time of the
push-off phase (p = 0.005, effect size 0.322), where the LA limb
spent more time in the stance phase than the MA limb (p = 0.001)

(Table 2). There were also significant differences in timing of peak
moments between the limbs (both p < 0.001, effect size = 36.5 for
peak hip abduction moment and 0.580 for peak support moment).
Both limbs of participants with CP reached a peak hip abduction
moment later compared to the control limb (LA: p < 0.001; MA:
p = 0.004) and reached a peak support moment earlier compared to
the TD limb (LA: p < 0.001; MA: p < 0.001).

3.3 Pull-up stance phase

There were significant differences in peak support moments
(p < 0.001, effect size = 0.640) between the limbs in the pull-
up stance phase (Table 2). Both the limbs of participants with
CP generated higher peak support moments compared to the TD
limb (LA: p = 0.016; MA: p = 0.001). There were also significant
differences in hip and knee percent contributions to peak support
moments between the limbs (both p < 0.001, effect size = 0.719
for hip and 0.942 for knee) (Figures 2, 4). The MA limb had a
significantly higher hip percent contribution compared to the LA
and TD limbs (both p < 0.001). In contrast, the MA limb had
a significantly lower knee percent contribution compared to the
LA and TD limbs (both p < 0.001), while the LA limb also had a
significantly lower knee percent contribution compared to the TD
limb (p = 0.003). Joint moments in Nm/kg for the hip, knee, and
ankle at the time of peak support moments are provided in Table 2,
though statistics were not run on these values.

There were no significant differences in the average stance
time of the pull-up phase between the limbs, though there was a
significant difference in time of peak support moment (p = 0.042,
effect size = 0.419) (Table 2). The MA limb reached a peak support
moment later compared to the LA (p = 0.020) and TD limbs
(p = 0.012).

4 Discussion

The present study quantified differences in the lower limb
joint moment strategies of a step-up task between children with
and without bilateral CP. While there were only small differences
in peak moments between the CP and TD groups, there were
significant differences in timing of these moments during each
stance phase of a step-up task. We also quantified an increased
dependence on the hip joint to keep the body upright during a step-
up with an associated decreased use of the knee and ankle joints in
the CP group, especially in the MA limb. These results can further
help us narrow down target areas to improve movement quality
in bilateral CP.

Our first hypothesis that peak hip abduction and extensor
support moments of a step-up task would be lower in children
with bilateral CP was not confirmed. Given that step initiation
requires larger frontal plane moments compared to subsequent
steps (Wang and Gillette, 2018), our results suggest that a step-
up task can be used as a hip abductor strengthening activity in
individuals with CP because it provides a functional load to the
hip abductor muscles. Children with bilateral CP unexpectedly
generated significantly larger peak support moments in the pull-
up phase compared to controls, reflective of the high demand from
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TABLE 2 Mean (SD) outcome measures for the push-off and pull-up stance phases in a step-up task.

Metric Push-off stance phase Pull-up stance phase

Bilateral CP TD Bilateral CP TD

More
affected

Less
affected

Dominant More
affected

Less
affected

Dominant

Joint moment (Nm/kg)

Peak hip abduction 0.598 (0.206) 0.552 (0.188) 0.658 (0.178) 0.553 (0.264) 0.573 (0.214) 0.520 (0.192)

Peak support −1.08 (0.227) −1.08 (0.321) −0.887 (0.333) −1.55 (0.219)* −1.66 (0.405)* −1.23 (0.180)

Individual joint moments at the time of peak support moments (Nm/kg)

Hip −0.531 (0.257) −0.270 (0.255) 0.015 (0.143) −0.726 (0.189) −0.501 (0.183) −0.292 (0.226)

Knee 0.201 (0.241) −0.046 (0.387) 0.017 (0.261) −0.352 (0.260) −0.666 (0.246) −0.657 (0.253)

Ankle −0.751 (0.288) −0.765 (0.359) −0.873 (0.278) −0.469 (0.216) −0.494 (0.230) −0.225 (0.184)

Individual percent contributions to peak support moments (%)

Hip 48.0 (20.3)*+ 28.4 (28.7)* −5.86 (20.9) 47.2 (11.4)*+ 31.5 (17.0) 20.2 (17.0)

Knee −18.6 (22.3) −2.96 (42.9) 0.017 (33.7) 22.3 (16.0)*+ 39.4 (13.4)* 60.3 (19.6)

Ankle 70.6 (27.8)* 74.6 (37.4)* 106 (30.8) 30.6 (14.3) 29.1 (12.8) 19.5 (14.9)

Temporal

Average stance time (s) 0.533 (0.107)+ 0.604 (0.155) 0.513 (0.092) 0.479 (0.106) 0.539 (0.240) 0.470 (0.083)

Time of peak hip abduction (% of stance
phase)

22.6 (0.092)* 25.4 (0.124)* 16.4 (0.089) 51.9 (22.5) 42.4 (23.3) 45.3 (31.3)

Time of peak support (% of stance phase) 57.6 (36.4)* 57.8 (36.2)* 94.1 (0.181) 17.1 (15.2)*+ 10.4 (7.15) 7.03 (4.70)

For individual percent contributions to peak support moment, a negative percentage indicates a joint flexion contribution. *p < 0.05 for a significantly different from control limb. +p < 0.05
for a significantly different from less affected limb.

the lower limb extensors required by this phase of stair ascent
(Riener et al., 2002; Reeves et al., 2009; Novak and Brouwer, 2011;
Strutzenberger et al., 2011). Despite extensor muscle weakness in
the hip, knee, and ankle (Wiley and Damiano, 1998), children
with CP in our study were successful in completing the step-up
task, meaning that they were able to meet the minimum support
moment threshold. However, the greater effort output by the
extensors during the pull-up phase may be part of an alternative
and inefficient strategy to step up, similar to that which has been
quantified in other clinical populations and older adults (Reeves
et al., 2009; Brown et al., 2016).

Indeed, children with bilateral CP used their hip extensors
more and their knee and ankle extensors less compared to controls
when stepping up, which confirms our second hypothesis. This
strategy is especially prevalent in the MA limb. Previous research
has quantified a similar shift in children with hemiparetic CP
during gait (Riad et al., 2008) and adults with hemiparetic stroke
during stair ascent (Goyal et al., 2023a), possibly as a compensation
for distal weakness in the paretic limb. However, weakness may
not be the only impairment affecting the distal joints in children
with bilateral CP. Recall that in the TD group, the ankle contributes
the most to support moments in the push-off phase while the knee
contributes the most to support moments in the pull-up phase. In
the CP group, while the ankle joint did not produce equally enough
plantarflexion during the push-off phase (Table 2), it did during
the pull-up phase of a step-up task. This change in pattern and
capacity between two different contexts, which in this case are the
two stance phases, suggests that a loss of SVMC in the distal joints
(Sanger et al., 2006) may primarily be responsible for the shift in
hip dependence during a step up (Figure 5).

The ability to independently activate the joints is significantly
reduced in the knee and ankle compared to the hip (Fowler et al.,
2010) and has been correlated with abnormal gait patterns in
CP (Chruscikowski et al., 2017; Zhou et al., 2019). Researchers
have hypothesized that a loss of SVMC is due to corticospinal
tract damage and compensatory use of brainstem motor pathways,
including the rubrospinal, reticulospinal, and vestibulospinal tracts
(Fowler et al., 2010; Cahill-Rowley and Rose, 2014; Zhou et al.,
2017; Sánchez et al., 2018). In general, the brainstem motor
pathways have connections to the hip joint for postural control.
Stimulations to activate the human vestibular system have induced
activity in hip extensor muscles such as the gluteus medius and
biceps femoris (Ali et al., 2003), which might explain the notable
hip extension activity in the CP group during a step-up task. Future
interventions to improve mobility in CP may benefit from focusing
on strengthening the hip joint (Riad et al., 2008) to optimize its
function as compensation for distal joint impairment. In addition,
a focus on improving distal SVMC ability during early intervention
in bilateral CP (Riad et al., 2008; Sargent et al., 2020) may improve
efficiency of their mobility and limit the need for dependence on
the hip joint during gait and stairs.

Increased dependence on the hip extensors may also explain
why timing of peak hip abduction moments and support moments
were closer together in both limbs of participants with CP
compared to the TD limb. During stair ascent, the gluteus maximus
muscle plays a role in both hip extension and hip abduction (Lyons
et al., 1983). We postulate that this muscle played a larger role in
contributing to overall extension in our participants with bilateral
CP, and therefore influenced the timing of both peak moments. In
addition to closer peak moments, timing of the first peak moment
in each stance phase occurred later in the CP limbs compared to the
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FIGURE 2

Representative plots of hip, knee, and ankle sagittal plane moments during the push-off (left) and pull-up (right) stance phases of a step-up task.
The top row displays joint moments from an individual in the TD group, while the bottom row displays joint moments from an individual in the
bilateral CP group (MA limb). Shaded regions represent one standard deviation. Compared to the individual with TD, the individual with CP generated
larger hip extension moments.

FIGURE 3

Hip and ankle percent contributions during the push-off stance phase of a step-up task for each lower limb (TD = typical development, LA = bilateral
CP less affected, MA = bilateral CP more affected). Significant pairwise comparisons are shown by the black brackets (corrected p < 0.017).

control limb. As the rate of force development is significantly lower
in children with bilateral CP compared to children with TD during
isometric conditions (Moreau et al., 2012), it may be inferred that
the ability to rapidly generate torque in dynamic conditions is also

impeded. This delay also suggests an increased use of brainstem
motor pathways, as multiple synapses increases the central motor
conduction time compared to the corticospinal pathways (Eyre
et al., 2001; Lemon, 2008).
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FIGURE 4

Hip and knee percent contributions during the pull-up stance phase of a step-up task for each lower limb (TD = typical development, LA = bilateral
CP less affected, MA = bilateral CP more affected). Significant pairwise comparisons are shown by the black brackets (corrected p < 0.017).

FIGURE 5

This figure depicts a concept map of contributions to extensor support moments from the hip, knee, and ankle joints. A darker shade of an individual
joint indicates a larger contribution to support moment. In the TD group, the ankle joint had the largest contribution to support moments in the
push-off phase while the knee had the largest contribution to support moments in the pull-up phase. If distal joint weakness was the primary
impairment affecting gait in children with bilateral CP, we hypothesize that the hip joint compensates for low knee and ankle joint contributions in
both stance phases. We might also hypothesize that overall support moments would be lower in the bilateral CP group compared to the TD group.
However, if a loss of SVMC was the primary impairment affecting gait, we hypothesize that (1) hip contribution increases as compensation for
decreased contribution from the ankle joint only in the push-off phase and (2) hip contribution increases as compensation from decreased
contribution from the knee joint only in the pull-up phase. Indeed, the results from the bilateral CP group point toward a loss of SVMC, as there was
a pattern change between the two different stance phases rather than an overall decrease in contributions from both the knee and ankle joints in
both stance phases.

In this study, we quantified the differences in lower limb
joint moments between children with and without bilateral CP
during a functional step-up task. Limitations of the study include
instructing participants to move at a self-selected speed, which
was mitigated through normalization of the stance phases, and
the low sample size in each group. Our investigation highlights
some underlying causes that make stairs a challenge for the
CP population and provides a possible treatment approach to
strengthen lower limb muscles. To replicate the type of step
ups quantified in our study, patients should perform stairs
with as little external support (from a person or railing) as
is feasible and safe so they can overload the lower extremity

muscles. If significant compensations through the trunk or lower
extremity kinematics occurs, strategies that unload body weight
may be indicated to maintain appropriate alignment. Rehabilitation
focused on optimizing use of the hip extensors and improving distal
joint selective control may lead to better outcomes for children
with bilateral CP.
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