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Background: Given sleep’s crucial role in health and cognition, numerous sleep-

based brain interventions are being developed, aiming to enhance cognitive

function, particularly memory consolidation, by improving sleep. Research has

shown that Transcranial Alternating Current Stimulation (tACS) during sleep can

enhance memory performance, especially when used in a closed-loop (cl-tACS)

mode that coordinates with sleep slow oscillations (SOs, 0.5−1.5Hz). However,

sleep tACS research is characterized by mixed results across individuals, which

are often attributed to individual variability.

Objective/Hypothesis: This study targets a specific type of SOs, widespread

on the electrode manifold in a short delay (“global SOs”), due to their close

relationship with long-term memory consolidation. We propose a model-based

approach to optimize cl-tACS paradigms, targeting global SOs not only by

considering their temporal properties but also their spatial profile.

Methods: We introduce selective targeting of global SOs using a classification-

based approach. We first estimate the current elicited by various stimulation

paradigms, and optimize parameters to match currents found in natural sleep

during a global SO. Then, we employ an ensemble classifier trained on sleep

data to identify effective paradigms. Finally, the best stimulation protocol is

determined based on classification performance.

Results: Our study introduces a model-driven cl-tACS approach that

specifically targets global SOs, with the potential to extend to other brain

dynamics. This method establishes a connection between brain dynamics and

stimulation optimization.

Conclusion: Our research presents a novel approach to optimize cl-tACS during

sleep, with a focus on targeting global SOs. This approach holds promise for

improving cl-tACS not only for global SOs but also for other physiological

events, benefiting both research and clinical applications in sleep and cognition.
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sleep, memory consolidation, electrical brain stimulation, global slow oscillations,
optimization

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1342975
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1342975&domain=pdf&date_stamp=2024-02-13
https://doi.org/10.3389/fnhum.2024.1342975
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1342975/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1342975 February 8, 2024 Time: 16:20 # 2

Alipour et al. 10.3389/fnhum.2024.1342975

1 Introduction

Sleep is crucial for health and brain functions, including mood
and cognition (Ramar et al., 2021). In particular, changes in
non-rapid eye movement sleep (NREM) are associated with mild
cognitive impairment (D’Rozario et al., 2020), Alzheimer’s Disease
(Falter and Van Den Bossche, 2021) and other neurodegenerative
issues [e.g., Parkinson’s Disease (Schreiner et al., 2021)]. Oscillatory
events found in the EEG during NREM sleep have been causally
implicated in changes in overnight memory performance. Cortical
slow oscillations (SOs, 0.5−1.5 Hz), thalamo-cortical spindles
(11−16 Hz) and hippocampal sharp-wave ripples (>100Hz)
(Mölle and Born, 2011; Binder et al., 2014; Brancaccio et al.,
2020; Azimi et al., 2021; Abdellahi et al., 2023), have all been
experimentally connected to consolidation of episodic memory,
with performance benefitting from enhancement of the oscillations
and their coordination, or disruption of these oscillations leading
to loss of performance (Muehlroth et al., 2019; Aksamaz et al.,
2022; Bastian et al., 2022; García-Pérez et al., 2022). The current
mechanistic understanding of the role these oscillations play in
memory changes centers on their time-based coordination, with
hierarchical nesting of ripples within spindles, and in turn within
SOs, hypothesized to support reactivation of memory traces, and
hence mediate the activity-dependent reorganization of synaptic
connections that strengthen episodic memory [known as Active
Systems Consolidation Theory (Klinzing et al., 2019; Mason et al.,
2021)]. This is built on research showing reactivation of behavior-
linked neuronal activity enhanced during oscillations (Ladenbauer
et al., 2017), as well as correlational and causals studies linking
these events with episodic memory outcomes (Klinzing et al.,
2019; Muehlroth et al., 2020; Niknazar et al., 2022). Beyond
consolidation of episodic memory, SOs are also relevant to broad
cognitive outcomes, as they contribute to the rescaling of synaptic
connections, supporting brain homeostasis (Niethard et al., 2017;
Klinzing et al., 2019) and glymphatic system clearance (Reddy and
van der Werf, 2020). Given their clear importance for cognitive and
health functions, research has sought to interact with SOs via brain
stimulation to enhance the functional outcomes of sleep. However,
the strides in this approach haven’t consistently yielded success
(Eggert et al., 2013; Sahlem et al., 2015; Paßmann et al., 2016;
Nilsson et al., 2017). We hypothesize that this is due to a failure to
account for the space-time properties of SOs during stimulation.
Moreover, the omission of inter-individual differences and the
use of heuristically established – but not formally optimized –
stimulation parameters have hindered the ability to provide
consistent results. Our paper introduces a modeling approach that
overcomes the limitations of the current approach by constraining
the stimulation protocol to properties derived from space-time
profiles of naturally occurring SOs.

Beyond cl-tACS, other techniques are used to interact with
SOs to enhance memory, including auditory, magnetic, and
electrical approaches. Auditory stimulation involves presenting
meaningful cues or non-meaningful sounds (Ngo et al., 2013;
Bellesi et al., 2014; Cellini and Capuozzo, 2018; Grimaldi et al.,
2020); targeted-memory reactivation presents cues associated with
specific memories (Lewis and Bendor, 2019; Sanders et al., 2019;
Hu et al., 2020; Ngo and Staresina, 2022; Whitmore et al.,
2022); and transcranial magnetic stimulation employs magnetic

fields non-invasively (Massimini et al., 2007; Boyd and Linsdell,
2009; van de Ven et al., 2012; Meehan et al., 2013). All these
approaches have been shown to enhance SO and spindles, and
to boost cognition. A variety of electrical approaches are also
available, with transcranial electrical stimulation (tES) applying
low-intensity electrical currents (Massimini et al., 2007; Nomura
et al., 2019; Perceval et al., 2020), and, depending on the waveform,
being categorized as transcranial direct current stimulation (tDCS)
(Perceval et al., 2020), tACS (Nomura et al., 2019), slow oscillatory
tDCS (so-tDCS) (Binder et al., 2014), or transcranial random noise
stimulation (Pasqualotto, 2016). All these different types of tES
improve learning outcomes (Vorobiova et al., 2019; Au et al., 2022)
and influence memory consolidation by increasing the likelihood
of action potentials in prefrontal regions, where SOs are generated
(Murphy et al., 2009), thereby enhancing SOs and spindle activity
(Dondé et al., 2021). Despite the great potential and ongoing
progress, several factors contribute to SO-focused brain stimulation
techniques giving rise to highly varying outcomes, and challenges
in achieving consistent results (Eggert et al., 2013; Sahlem et al.,
2015; Paßmann et al., 2016; Nilsson et al., 2017). Inter-individual
differences among participants in anatomical (e.g., skull thickness,
cortical morphology) and physiological (e.g., neurotransmitter
availability and receptors distribution) traits can impact the
response to tDCS, and tACS (Kasten et al., 2019; Romanella
et al., 2020). Moreover, for any stimulation technique, the optimal
timing of stimulation and number of stimulation sessions are
still subjects of ongoing research and debate (Au et al., 2017;
Chase et al., 2020; Al Qasem et al., 2022). Determining the ideal
stimulation parameters, including current density, duration, and
waveform, remains a challenge (Brunoni et al., 2012; Cellini and
Mednick, 2019). Additionally, the heterogeneity in experimental
design across studies (e.g., sample size, age and sex of participants)
can contribute to difficulty in consolidating experimental outcomes
in meta-analytical studies (Barham et al., 2016). Another potential
confound is introduced when stimulation techniques targeting SO
dynamics do not explicitly consider the space-time properties of
the SOs. We argue that to improve the consistency in stimulation
outcomes, protocols need to consider the variability in individual
response to stimulation and the space-time dynamics of SOs during
stimulation. In this study, we present a modeling approach for SO-
based cl-tACS built on the space-time properties of the SOs during
stimulation, which can be leveraged for personalized tailoring
of stimulation protocols. We believe that this approach has the
potential to address these issues effectively.

The cl-tACS protocol we focus on targets a specific space-time
profile of SOs: global SOs. In recent work (Malerba et al., 2019),
we showed that a data-driven approach could categorize SOs on
the scalp as global, local, or frontal, based on their presentation
across electrodes. Global SOs, observed across nearly all electrodes
with short delay, exhibited higher trough amplitudes compared
to other SO types and demonstrated stronger coordination with
sleep spindles. In a follow-up study (Niknazar et al., 2022), we
reported that global SOs facilitated information transfer over
long distances, as evidenced by the strong correlation between
effective connectivity estimates and episodic memory improvement
across a night. Other, non-global, SO types did not exhibit these
characteristics or show significant relationships with memory.
These findings underscore the importance of considering the space-
time dynamics of SOs when aiming to enhance memory through
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brain stimulation techniques, and provide the rationale for the
current study to focus on establishing a stimulation paradigm
capable of selectively enhancing global SOs.

A tACS protocol consists of the electrode montage, waveform,
and duration of the stimulation. To achieve better spatiotemporal
resolution, we divided the duration of the stimulation into smaller
time windows (1t). This provided more precise control over the
timing of targeting specific brain regions. To shape a stimulation
protocol to target global SOs, we first generated a set of stimulation
paradigms and used forward modeling to simulate brain dynamics
during those paradigms. We optimized the parameters for each
paradigm to match the profile of an average global SO extracted
from sleep EEG. Finally, a classification-based approach was used
to select the stimulation protocol among all paradigms considered.
To fully introduce our methodological study, we present our
new method for designing a stimulation protocol in the section
“3. Results.” This study provides a framework for developing
personalized brain stimulation protocols based on individual
specific space-time profiles of SOs.

2 Materials and methods

Our model of a global SO targeting protocol is achieved
through two procedures: data processing and simulation. Data
processing (Figure 1A) of sleep EEG includes generating the
average global-SO current density (CD) representation as a time-
by-region matrix, and training a classifier to label the CD
profiles of SOs as global or non-global. The simulation stage
(Figure 1B) includes defining a search region for stimulation
protocols (electrode montage, waveform, and 4t) and identifying
the optimal protocol within this region. Parameter tuning for each
waveform relies on the average global SO CDs and the global/non-
global SO classifier for labeling stimulation paradigms.

2.1 The EEG dataset

The present study is based on a dataset of sleep
polysomnography from the Sleep and Cognition Lab at University

of California Irvine, led by Dr. Mednick. The dataset is introduced
in detail in (Seok et al., 2022). The dataset includes full-night
EEG sleep data from 22 healthy volunteers (9 females) without
psychological or neurological issues. EEG signals were recorded
using a 64-channel cap based on the international 10−20 System at
a 1,000 Hz sampling rate, which was subsequently down-sampled
to 128 Hz. Out of the 64 channels, 58 recorded the head signal,
while others served as reference, ground, and other biosignal
channels. Sleep stages (Wake, Stage 1, Stage 2, SWS, and REM
sleep) were visually scored in 30-second epochs following the
R&K manual (Rechtschaffen and Kales, 1968), using the MATLAB
toolbox HUME (Saletin, 2015). Participants all had a good quality
sleep (basic sleep characteristics in Supplementary Table 1).

2.2 SO detection and space-time profiles

To detect SO events, we used an algorithm previously used in
(Seok et al., 2022) that closely followed the criteria introduced by
Massimini et al. (2004) and Dang-Vu et al. (2008). SO detection was
performed at each electrode independently, discarding times where
an artifact was found. The algorithm relied on well-established
conditions regarding the amplitude and duration of SO events, and
a comprehensive description can be found in prior publications
(Malerba et al., 2019; Seok et al., 2022). EEG epochs containing
either of two types of artifacts were excluded. First, 30-second
epochs with artifacts such as movements or arousals, as determined
by the expert sleep scorer at the Sleep and Cognition Lab at the
University of California, Irvine, were excluded. Second, epochs
with muscle movement artifacts were detected using two methods
and then excluded. The first method, presented by Brunner and
colleagues, involved filtering the EEG in the range of 26.25 to
32 Hz and then splitting it into 4-second time bins. Bins that were
more than 4 times greater than the median of the 45 surrounding
bins (3 min around the epoch) were identified as artifacts and
excluded (Brunner et al., 1996). The second method, presented by
Wang and colleagues, involved filtering the EEG in the range of 4
to 50 Hz and then splitting it into 5-second time bins. Bins that
were 6 times greater than the median of all bins were identified
as artifacts and excluded (Wang et al., 2020). The contralateral

FIGURE 1

The Global-SO-targeting protocol. (A) Sleep data processing procedure, producing a global/non-global SOs classifier and the average CD of global
SOs. (B) Simulation of stimulation procedure. The parameter tuning stage leverages the average global SOs CD. Classification is based on the
global/non-global SOs classifier trained on sleep data.
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mastoid channels (A1 and A2) were used for referencing EEG
signals and SO detection. Then the EEG signal was filtered within
the 0.1−4 Hz range, and potential SOs were identified as segments
between consecutive positive-to-negative and negative-to-positive
transitions. To be classified as SOs, the following criteria had to
be met: (1) the minimum wave amplitude was below or equal
to 80uV, (2) the voltage range between maximum and minimum
values was at least 80uV, (3) the time between the first and second
zero crossing in the data fell within 300 to 1,000ms, and (4) the total
duration of the candidate event was no more than 10s. The pool
of candidate SO events that satisfied these parameters underwent
further screening to eliminate potential artifacts. This involved
computing the amplitude at the trough referenced to the average
signal± 10s around the minimum. Events at one electrode with an
amplitude size 4 standard deviations above the mean of all events
detected at that electrode were discarded. A secondary distribution
of amplitudes, encompassing all events from all electrodes of a
subject, was then created. Once again, events with amplitudes
above 4 standard deviations from the mean were discarded. When
selecting SOs occurring during a specific sleep stage (S2 or SWS),
only those with both the beginning and end falling within the sleep
stage were considered. After SO detection, we performed clustering
of SO co-detections to reveal the space-time patterns of SOs, with
the same method used in (Malerba et al., 2019; Seok et al., 2022).
Briefly, we built separate co-detection matrices for S2 and SWS,
where each SO at each electrode was used to generate a binary array
the length of all available head electrodes, allowing for a delay of
400ms for co-detections. The co-detection binary matrix was then
analyzed with k-means clustering (k = 3) using Hamming distance,
with 200 replicates and a maximum iteration of 10,000. The clusters
were labeled Global, Local or Frontal based on the representation of
their centroids on the scalp. Counts of detected SOs in S2 and SWS
per each participant, and of global and non-global SOs, are reported
in supporting Supplementary Table 2.

2.3 SO current source density estimation

Our study required an estimate of current source density
(CD) for each detected SO, which we performed analogously
to our previous work (Seok et al., 2022). To achieve this step,
data from all EEG channels from 500ms before to 500ms after
the trough of the SO were binned at 4t time scale and then
imported into Brainstorm (Tadel et al., 2011). Data import to
Brainstorm was done for 4t values of 20, 50, 100, or 200ms,
separately. Since in this retrospective dataset we did not have MRI
for the participants, a mixed head model was created with both
cortex and sub-cortical substructures using the MNI ICBM152
package, which is highly compatible with different properties
within Brainstorm. Because this study focuses on SO dynamics, we
included in the model regions that are known to be involved in SOs
directly and regions that are potentially involved in coordinated
network activation during SO dynamics. The regions included
in the model were: neocortex, hippocampus, nucleus accumbens,
amygdala, brainstem, caudate nucleus, putamen, pallidum, and
thalamus. All regions but the brainstem were considered separately
in their left and right hemisphere components. Source estimation
was performed at each time point of interest by fitting current

dipoles in a fixed three-dimensional grid composed of voxels with
15,002 vertices for neocortex and 5,095 vertices for sub-cortical
structures. The boundary element method (BEM) OpenMEEG
was used to compute the lead field matrix (Gramfort et al.,
2010), and the minimum norm method was used to estimate
a solution to the linear inverse problem. The identity was used
as the noise covariance matrix, and standardized low-resolution
brain electromagnetic tomography (sLORETA) was applied, due
to our interest in subcortical regions activation, to obtain a final
current source density value in each voxel (Pascual-Marqui, 2002).
This allowed for comparison of CD profiles across individuals and
minimized bias in the source estimates. In this representation, the
CD of each SO is encoded in an m-by-n matrix, where m is the
count of4t bins in a 1s time window around the through of the SO
(e.g., for 4t = 20ms, m is 50) and n is the number of selected
brain regions (17 in our case). Thus, the matrix representing
spatiotemporal information of CD changes from 500ms before to
500ms after the trough of one SO at4t = 20ms has 850 elements.

2.4 SO classification

We classify Global/non-Global CD of SOs with the
Bagged Trees algorithm, an ensemble classifier that uses
bootstrap aggregation, thus reducing overfitting and improving
generalization. Our classifier was built with a bagged ensemble
of 100 regression trees. Bagged Trees estimates the probability of
an instance belonging to each class by averaging the probability
estimates of each individual decision tree in the ensemble. The
predicted class is the one yielding the largest probability average.
We used 5-fold cross validation for performance evaluation, and 5-
fold cross validation in the training datasets. Bayesian optimization
was used to find hyper parameters. Features of the classification
were the CD of each brain regions in each specific time bin of the
CD [i.e., each entry of the CD matrix). We trained two separate
classifiers for SOs in stage 2 and SWS. Then, the output of testing
each trained classifier on the dataset was organized in a confusion
matrix, comprising “true positives” (TP), “true negatives” (TN)
and “false positives/negatives” (FP, FN), respectively. Due to
the imbalanced nature of the dataset (non-global SOs are more
frequent, comprising approximately twice the count of global
SOs in our dataset (Supplementary Table 3)], we use Matthews
Correlation Coefficient (MCC), which is highly informative for
imbalanced binary classification (Chicco et al., 2021), as our
metric for performance. MCC ranges from −1 to 1, with higher
values indicating better performance. MCC is calculated using the
following formula:

MCC = (TP ∗ TN − FP ∗ FN)/√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN).

2.5 Estimating the current delivered by a
stimulation paradigm

In our forward modeling, we estimated the current delivered
by a stimulation paradigm, and optimized its parameters to
approximate the CD representation of the average global SO found
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in natural sleep. To estimate the current delivered by any given
paradigm, we utilized ROAST, which is a fully automated, Realistic,
vOlumetric Approach to Simulate Transcranial electric stimulation
(Huang et al., 2019). It is an open-source MATLAB toolbox that
generates a finite-element model (FEM) mesh and solves the FEM
for voltage and electric field distribution in the brain at 1 mm
resolution. We used an MNI 152 head to build a transcranial
electric stimulation model. In this study, we utilized ROAST to
estimate the CD of specific brain regions with respect to the
placement of stimulation electrodes, their geometrical dimensions,
and initial voltage. This study utilized default values for tissue
conductivity (white matter: 0.126 S/m, grey matter: 0.276 S/m,
cerebrospinal fluid: 1.65 S/m, bone: 0.01 S/m, skin: 0.465 S/m, air:
2.5e-14 S/m, gel: 0.3 S/m, electrode: 5.9e7 S/m) (Handiru et al.,
2021) when simulating in ROAST. The size of all stimulation
electrodes, including two anodal and two cathodal electrodes, is
5× 5 cm2 with a thickness of 3 mm. The initial voltages for anodal
electrodes are set at+1V, and for the cathodal electrode, it is−1V.

2.6 Genetic algorithm

We optimized the parameters of the stimulation paradigm to
closely approximate the CD of a global SO. To achieve this, we
employed a genetic algorithm (GA): an evolutionary optimization
method that iteratively modifies a population of individual
solutions (Carr, 2014). The GA randomly selects individuals from
the current population for each generation, with the goal of
evolving the population toward an optimal solution. It relies on an
objective function to assess how closely a design solution aligns with
the desired goal. In our study, the objective function compares the
CD of stimulation to the average CD of global SOs in the data, to

minimize their difference. In our study, the GA terminated if either
the average relative change in the best fitness function value over
50 generations was less than or equal to 1e-6 or if the maximum
number of iterations, set at 100 times the count of parameters to be
optimized, was reached.

2.7 Performance metrics

The stimulation paradigm that best approximated the CD of
an average global SO, ranked based on the posterior probability of
classification, was selected as the stimulation protocol. In addition
to the posterior probability of classification, which indicates the
accuracy of the classification, we employed two additional criteria
to evaluate the simulation: the weighted correlation coefficient
(WCC) (Costa, 2011) and the weighted mean square error (WMSE)
(Zhang et al., 2002). The WCC measures the similarity between
the CD resulting from the stimulation protocol and the data, while
the WMSE quantifies the error of the simulation. In the following
formula x, y, and w are data, prediction, and weight (importance),
respectively. n is the count of features in CD of the data. The WCC
is computed as below:

WCC =
cov(x, y;w)√

cov(x, x;w) cov(y, y;w)

cov(x, y;w) =

∑n
i = 1 wi(xi −m(x;w))(yi −m(y,w))∑n

i = 1 wi

m(x;w) =

∑n
i = 1 wixi∑n
i = 1 wi

FIGURE 2

Search region of stimulation paradigm. (A) The four regions of choice to search for electrode montage. (B) The four stimulation waveforms, W1 to
W4 that constituted our search region for waveforms, each shown here with arbitrary parameters.
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The WMSE is computed as below:

WMSE =
1
n

∑n
i = 1 wi(yi − xi)∑n

i = 1 wi

2.8 Stimulation paradigm

The first step in designing a stimulation protocol involves
establishing a set of stimulation paradigms and then identifying
the optimal paradigm to be used as the stimulation protocol. To
determine the optimal stimulation paradigm, we explored various
parameters of a stimulation protocol. Thus, we generated a set
of stimulation paradigms by specifying search regions for the
electrode montage, stimulation waveforms, and 4t (i.e., the time
resolution that we used to sample time in our simulations and
data analysis). To limit the search space, we restricted the potential
combinations of stimulation paradigm parameters to four electrode
sets, four 4t values, and four different waveforms (Figure 2). For
4t, a particularly relevant parameter that imposes a time scale at
which brain dynamics during an SO can be considered stationary
enough that it can be represented by its average, we considered 20,
50, 100, and 200ms. For each electrode montage (Figure 2A), we
required four electrodes, each chosen from a different quartile of
the scalp. We restricted our search region to the electrodes from
the 10−20 standard electrodes in each quartile and disregarded
electrodes located in the central region. The rationale for selecting
one electrode from each quartile to compose any given montage
in our search region was to ensure a practical use of stimulation
electrodes in real-life implementation of our model. The 10−20
placement preference satisfied two complementary needs: first,
placing two electrodes too close to each other could present issues
for ROAST when setting up the boundary conditions for the FEM;
second, choosing electrodes outside the MRI image boundary could
reduce the accuracy of the results. Combining these choices, our
search set consisted of 2041 possible montages for active electrodes.
For each combination of electrodes, we required two having a
positive voltage and two having a negative voltage, such that
the sum of all electrode voltages was zero. For the stimulation
waveforms (Figure 2B), we allowed for: sinusoidal (W1), sum of
three sinusoidal waves (W2), square wave (W3), and a 3rd-order
polynomial wave (W4). We reasoned that, while not complete,
this set of waveforms could capture subtleties in the dynamics of
naturally occurring SOs. Each waveform is parameterized with a
range of 4−10 values, and we aimed to determine the optimal
parameters with global optimization approaches. Table 1 illustrates
the waveform functions.

3 Results

This study aims to build a principled brain stimulation protocol
based on the tACS technique by simulating the currents delivered
by tACs and tailoring the protocol parameters to best match
the currents naturally found in the sleeping brain during the
target event. Simulating a stimulation protocol involves two steps
including estimating the currents each paradigm would evoke
as function of the parameters and tuning their parameters to
match currents found in the sleeping brain. The last steps include

classifying all the stimulation paradigms (either matching the target
event of not), and finally finding the optimal stimulation protocol
based on classification outcomes.

3.1 Depth profile construction of
stimulation paradigm with forward
modeling

Any tES protocol, to target a physiological event, delivers
definite electrical voltage on the scalp in a short period of time.
This process elicits a specific current density across brain regions.
To target global SOs, we simulate a stimulation protocol and tune
its parameters to elicit a CD in the brain that closely matches
the CD of an average global SO. We estimate the CD of any
given stimulation paradigm with forward modeling, focusing on
a selection of brain regions and time range from 500ms before to
500ms after the SO trough.

Firstly, to numerically encode the stimulation waveform, we
chose one waveform from Table 1 and defined it within the range
of [0, 1] second, encoded at very high time resolution (0.1ms). The
choice of a 1s-long duration for our stimulation protocol was driven
by knowledge of the application of the stimulation protocol, in our
case to match global SO dynamics both as spatial and temporal
events. Spatially, the propagation of SOs from frontal to occipital
regions requires about 360ms (Massimini et al., 2004); temporally,
the median duration of global SOs is about 1.0s (Malerba et al.,
2019) (Supplementary Table 3). Hence, a 1s-long duration for
the stimulation waveform would allow for an effective realization
of a global SO-like dynamics. We then “binned” the waveform
in time bins the length of one of the 4t available in our search
domain (20, 50, 100 or 200 ms), calculating the average amplitude
of the waveform within each time bin. Next, we applied ROAST
to estimate the CD induced by stimulation in the brain regions
we chose to focus on. Figure 3 shows one example of computing
estimates for the case of a stimulation waveform W1 (sinusoid),
4t = 100ms, and electrode montage at placed at (F3, F4, P3,
P4) with initial voltages of (+1, +1, −1, −1) V, respectively.
The waveform and its time-binned representation are shown in
Figures 3A, B shows the CD of all 17 brain regions for the whole
1s-long interval, while Figure 3C shows the estimated CD across
regions within one specific time bin. This estimate is obtained with
the assumption that the CD evoked by a stimulation protocol will
change linearly with the amplitude of its waveform.

TABLE 1 The parameters in the table are amplitude (A), frequency (f),
phase (∅), offset (O), duty cycle (D) for square function and coefficients of
polynomial function (p1 to p4).

Symbol Formula Parameters

W1 Asin(2πft − ∅)+ O A, f , ∅, O

W2 A1sin(2πf1t − ∅1)+

A2sin(2πf2t − ∅2)+

A3sin(2πf3t − ∅3)+ O

A1,A2,A3, f1, f2, f3,∅1,

∅2,∅3,O

W3 A × square(2πft − ∅,D)+ O A, f , ∅, D,O

W4 p1(x− ∅)3
+ p2(x− ∅)2

+ p3(x−
∅)+ p4

p1, p2, p3, p4,∅
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FIGURE 3

Estimating the CD elicited by a stimulation protocol: example. (A) A sinusoidal waveform in the [0, 1] second window with time partitioned in
100ms-long epochs, marked by dashed lines. Blue color shows the waveform with amplitude, frequency, phase and offset equal to 0.2 A, 0.9 Hz,
pi/2 s, 0.05 A and red color shows average of the waveform in 4t. (B) CD changes of 17 brain regions during one second using F3, F4, P3, P4 as
stimulation electrode montage with initial voltages equal to (+1, +1, –1, –1) V, respectively. The x-axis on the top shows time and x-axis on the
bottom shows feature number (brain regions) which periodically recur every 100ms proportionally to average of stimulation waveform. The red
circle refers to figure C which shows CD of brain regions. (C) CD of 17 brain regions. Ac-L, left nucleus accumbens; Ac-R, right nucleus accumbens;
Ad-L, left amygdala; Ad-R, right amygdala; Bs, brainstem; Cd-L, left caudate; Cd-R, right caudate; Cx-L, left cortex; Cx-R, right cortex; Hc-L, left
hippocampus; Hc-R, right hippocampus; Pd-L, left pallidum; Pd-R, right pallidum; Pm-L, left putamen; Pm-R, right putamen; Tm-L, left thalamus;
Tm-R, right thalamus.

3.2 Parameter tuning of stimulation
paradigm

We tuned the parameters of the waveform of each stimulation
paradigm using a GA. The optimization objective was to obtain CD
in specific brain regions that closely resembled the average CD of
global SOs. As our previous study suggested some differences could
be present in the source currents of SOs in different sleep stages
(Seok et al., 2022), we conducted this optimization approach for
global SOs found either in stage 2 sleep (a lighter NREM phase) or
in slow wave sleep (SWS, a deeper NREM phase), keeping the two
estimates separate. In each case, we defined the objective function
of GA as shown in the equation below, where xi is the ith feature in
CD estimated from the stimulation, x∗i is the ith feature in CD of the
global SO, ωi is the weight of ith feature:

ε =
1∑n

i = 1 ωi

n∑
i = 1

ωi(xi − x∗i )

To obtain each feature scaling factor (weight) from the data, we
used the F-value of the one-way ANOVA as a univariate feature
ranking method (Acharya et al., 2015). We calculated the F-value
between the ith feature and the global/non-global label of SOs in
the dataset. Figure 4 reports the weights of features in 4t 20ms
in SWS, showing that CD in times around the trough are more
discriminative of global vs. non-global SO. Across all types of
waveforms considered, we had to optimize parameters describing
amplitudes, frequencies, offsets, and duty cycle (see Table 1). We
assigned the parameter search region for the GA as follows: A at
[0, 1]A for all amplitudes, f at [0.01, 4]Hz for all frequencies, ∅
at [−π, π] for all phases, O at [0, 1]A for all offsets, the duty
cycle of the square waveform (W3) as a percentage value between
[0, 100]. Lastly, all coefficients of the polynomial waveform were
defined between [−1, 1]. The optimization process finely tuned
these stimulation parameters to predict that they would elicit CD in
the brain closely replicating the average CD of global SOs. Figure 5
shows the CD of sleep data and optimal stimulation protocol
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FIGURE 4

Weights of features in 4t = 20ms in stage 3 from 500ms before to
500ms after the SO trough, totally 850 time windows. Lower and
upper x-axis are feature number and time (ms), respectively.

simulation for4t 20ms, from 500ms before to 500ms after the SOs
trough in stage SWS. Figures 5A–D show results for waveforms W1
to W4, respectively. Table 2 shows the desired electrode montage
and optimal parameters for each stimulation waveform considered.
Figure 5 and Table 2 demonstrate that the CD of EEG and tACS
simulation align well, indicating the effectiveness of the chosen
electrode montage and waveform parameters in inducing global
SOs.

In addition to the optimal electrode montage presented in
Table 2, Supplementary Table 4 provides the optimal symmetric
montage, including only symmetric electrodes based on the axis
separating brain hemispheres. A choice of symmetric electrode
montage can be advantageous in studies aiming to uniformly
modulate bilateral brain activity, so we were interested in assessing
whether symmetry would provide an advantage. Of note, imposing
inter-hemispheric symmetry did not demonstrate a significant
difference compared to the optimal generic electrode montage,
which can be either symmetric or asymmetric, for each stimulation
waveform in Table 2. Increasing the complexity (degree of
freedom) of the stimulation waveform can lead to a higher success
rate in reaching the optimum. For example, using a 20ms time
window and among 2401 different electrode combinations, the GA
using a single sinusoidal wave reached the optimum in only 836
cases. However, when using the sum of three sinusoidal waves,
it successfully reached the optimum combination in 1273 cases.
On average, across different 1t and waveforms in this study, the
GA successfully reached the optimum in 42.7% of the different
combinations. The failure to converge in most cases is attributed
to a limitation in FEM problem-solving in ROAST, considering the
electrode combination, and not to the limitation of the allowed
maximum number of iterations.

3.3 Classification of stimulation paradigm

In our modeling approach (Figure 1), once each stimulation
paradigm had been parameterized to induce currents as close as

possible to global SOs CD, we applied a sleep-trained classifier of
global/non-global SO CD to the resulting estimates. The classifier
for global/non-global SOs classification trained on the dataset,
showed performance measured via MCC at 0.91 in Stage 2
and 0.88 in SWS, respectively. The CD estimate of the current
elicited by tuned stimulation paradigm was classified, and, based
on the likelihood of belonging to the “global SO” class, the
paradigm with the highest posterior probability was chosen as
the optimal stimulation protocol. This choice ensures that, among
the optimized paradigms capable of targeting global SO, we select
the most effective one as the stimulation protocol based on the
classifier’s predictions. This approach allows us to identify the
optimal protocol by virtue of its close alignment with the global SO
characteristics learned by the classifier from EEG data.

To assess the degree of success in matching the current
estimated from our optimized protocol with the current
underlying the average global SO derived from sleep data, we
measured performance metrics including posterior probability of
classification, WCC and WMSE (Supplementary Figure 1). We
found that, for SWS, WCC decreases as 4t increases; a trend also
seen in stage 2. This was true for all 4t values except at 4t 100ms,
where WCC increases. This suggests that our stimulation protocol
will yield higher accuracy at smaller 4t. It also indicates that our
algorithm could not lead to an effective stimulation protocol for
targeting global SOs in stage 2 with square waveform for4t 100ms.

4 Discussion

In the present study we model an electrical brain stimulation
protocol to target global SOs using tACS to enhance sleep-
dependent memory consolidation. This study introduces a
framework of leveraging data about targeted sleep events to
determine the stimulation protocol that can best enhance them.
This required identifying compatible mathematical representations
of current during sleep and current driven by stimulation. Using
source modelling, we encoded each SO event in a time-by-region
matrix and trained a classifier to distinguish global SOs from non-
global ones. Using forward modelling, we estimated the current
induced by stimulation paradigms in a time-by-region matrix of
the same format as the sleep SO ones. To identify the stimulation
current which fitted best the current naturally occurring in the
sleeping brain, we built a search domain for all elements of a
tACS protocol: electrode montage, stimulation waveform, and
sampling time window. We applied a genetic algorithm to optimize
these parameters, seeking a combination that closely matched the
average global SO current. Finally, by applying our classifier to
all stimulation protocols that were optimized, we could choose,
among those identified as global SOs, the protocol with the highest
posterior probability for classification. We found that the best fit for
global SOs in our study is achieved by summing three sinusoidal
waves with 10 adjustable parameters and an electrode montage
consisting of AF7, F6, P2, and PO7.

The results of this study have several implications. First,
we show that targeting global SO can be engineered based on
stimulation waveform, duration, and electrode montage. This idea
can generalize to the design of stimulation protocols for different
applications, beyond our specific interest in sleep global SOs, such
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FIGURE 5

CD of EEG (red color) in stage SWS and tACS simulation (blue color), from 500ms before to 500ms after the SOs trough, for 4t = 20ms. Panels are
related to waveforms: (A): W1; (B): W2; (C): W3; (D): W4.

as the application of brain stimulation in depression (Alexander
et al., 2019) and Parkinson’s disease (Del Felice et al., 2019).
Second, our results provide a specific stimulation protocol that can
be used in future studies to investigate the effects of global SO
stimulation on memory consolidation. Third, our approach can be
applied to other SO types (Frontal and Local) to develop targeting
stimulation paradigms, which could then be used to causally test
their role in cognition in experiments. More broadly, we propose
that model-based stimulation paradigms are essential to enable
causal evaluation of different space-time presentations of brain
rhythms, and can be generalized to other naturally occurring waves,
such as sleep spindles.

Including an offset parameter in the waveforms in this study
allows the stimulation paradigms, in addition to tACS, to be
adaptable for SO-tDCS protocol, which is another method used for
memory consolidation (Paßmann et al., 2016). This demonstrates
the generalizability of our approach in stimulation protocol design
for other types of stimulation methods, beyond tACS. In addition
to sinusoidal and square waveforms, which are common brain
stimulation signals in literature (Marshall et al., 2011; Bueno-Lopez
et al., 2019; Fehér et al., 2021; Jones et al., 2023), we examine signals

of higher complexity, including sum of sinusoidal waveforms and
polynomial waveforms, which can be easily generated through
Arbitrary Waveform Generators, allowing users to tailor spectral
or temporal properties of the signal (Baig et al., 2013). Our analysis
also showed that the accuracy of the stimulation protocol depended
on 4t values, and that there was at least one condition (square
waveform, 4t 100ms and stage 2 sleep) in which our algorithm
could not design a stimulation protocol that targeted global SOs
at all, at least within the chosen (and very broad) parameter search
regions. In addition to the four different waveforms that we report
in this work, we conducted an analysis for targeting global SOs
with a Gaussian waveform and found that, while the Gaussian
waveform can be used for small 4t, it is not successful for 4t
greater than 50ms. This demonstrates that choosing a waveform
requires attention and consideration, and not all waveforms are
applicable for brain stimulation. Our approach in stimulation
protocol designing, by evaluating the applicability of using a
waveform, can help in choosing the desired waveform according
to data.

This study leverages the assumption that the CD of brain
regions can linearly change according to the amplitude of the
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stimulation waveform, driven by user constraints of ROAST and
other finite-element based approaches, such as SimNIBS (Saturnino
et al., 2015), as they do not consider the initial CD of brain
regions that can be calculated from EEG. We also confined
our search region for finding the optimal electrode montage to
the standard electrodes of the 10−20 system for the sake of
problem simplicity. Despite this smaller range, compared to other
systems, we still found optimal matches for all waveform types
considered. Future studies could increase the number of candidate
electrodes to potentially improve the efficiency of the stimulation
protocol and possibly its adaptability to a broader range and more
complex type of waveforms. This study utilized default values
for tissue conductivity in simulating ROAST due to the absence
of individuals’ MRI data. This approach may overlook inter-
individual variability in tissue conductivity profiles, influenced
by factors such as skull thickness and cortical morphology. To
improve our modeling, employing individuals’ MRI data instead
of the MNI 152 head model to measure current density during
spontaneous SOs, while considering individual tissue conductivity,
could enhance the accuracy of estimating the current source
in brain regions. This would address inter-individual variability
more effectively when designing a stimulation protocol. This
study focused on modeling and optimizing a tACS protocol
considering the SO space-time profile of 22 healthy volunteers
during sleep. While the present study did not develop personalized
brain stimulation protocols, its results provide a framework for
developing personalized brain stimulation protocols based on
an individual’s specific SOs space-time profile (by isolating the
procedures to data only derived from one person). In contrast
to a one-size-fits-all approach, personalized brain stimulation
protocols are hypothesized to increase the efficacy of the treatment,
potentially reducing the duration and intensity of the stimulation

TABLE 2 Optimal electrode montage and waveform parameters for each
stimulation waveform in Figure 5 to target global SOs within the defined
search regions.

Function Parameters Electrode montage

W1 A = 0.1250
f = 1.2061
∅ = 2.3037
O = 0.2467

F7, F2, O1, PO8

W2 A1 = 0.0899
f1 = 1.1558
∅1 = −0.6966
A2 = 0.1028
f2 = 0.1171
∅2 = 1.2957
A3 = 0.2092
f3 = 1.2754
∅3 = 2.6255
O = 0.3500

AF7, F6, P2, PO7

W3 A = 0.3825
C = 0.2441
∅ = 0.5061
O = 0.0430

F7, F4, P1, P4

W4 p1 = 0.5377
p2 = 0.6044
p3 = 0.5707

p4 = − 0.2658
∅ = − 0.6812

Fp1, F6, P3, O2

sessions, as well as the overall cost of treatment (van Bueren
et al., 2021; Hollunder et al., 2022; Soleimani et al., 2023).
Therefore, studies about developing personalized tACS for memory
consolidation should be pursued in the future.

The high amplitude of the electrical current in tES limits
the ability of EEG to effectively monitor brain activity during
stimulation, thus limiting our ability to gain insights into the
effects of tES on various brain regions in real time. To address this
limitation, our model-based approach provides precise predictions
of the impact of tES on the brain. This enables us to learn from
brain signals and optimize the effects of tES during the stimulation
procedure. Given the absence of MRI data for the participants, we
leveraged a mixed head model generated using the MNI ICBM152
package in Brainstorm. In future datasets, the inclusion of MRI data
will likely enhance the accuracy of source localization approaches
and hence improve current density estimation. Consequently, we
expect that applying our method to datasets that include both
sleep EEG and MRIs of participants taken within a short delay
from the sleep EEG would result in increased accuracy in our
proposed stimulation modeling. While this study completes the
analytical and modeling step of identifying a candidate stimulation
paradigm, the efficacy of our stimulation protocol in improving
memory consolidation remains to be tested in future experimental
studies. Experimentally assessing the similarity/difference between
global SO currents and those induced by our global-SO-targeting
stimulation is essential. If successful, this study could pave the way
to future studies that can validate findings in a clinical setting and
investigate the long-term effects of global-SO-targeting stimulation
on memory consolidation.

It is worthwhile to clarify the novelty of our perspective in
brain stimulation modeling, specifically targeting SOs, compared
to current studies. Closed-loop stimulation studies typically apply
stimuli near the initiation of SOs to enhance and prolong
subsequent evoked SOs driven by the stimuli (Ketz et al., 2018;
Robinson et al., 2018; Esfahani et al., 2023), without any focus on
the spatial propagation of the evoked SOs. This study proposes
a stimulation approach where the evoked activity in the brain is
modulated by stimulation with a specific focus on eliciting specific
SO propagation patterns over both time and across electrodes, as
similar as possible to spontaneous global SOs. Thus, our approach
builds and expands on existing approaches, by targeting both the
temporal and spatial profile of SOs. This model-based strategy aims
to ensure that all brain regions involved in spontaneous global SOs
will be stimulated at a level consistent with spontaneous global SO
activity. This perspective on brain stimulation can be generalized to
target other types of physiological events in the brain.

In conclusion, our study introduces a model-based approach to
develop stimulation protocols for tES, addressing interindividual
variability and targeting specific physiological events in the brain.
We achieve this by learning from brain signals and optimizing the
simulated current effects of the stimulation. Our results suggest that
closed-loop tES can be used not only to target SOs based on their
timing and frequency range, but also to consider their space-time
profiles. The presented generative approach enables the selective
targeting of global SOs, and study provides an optimal stimulation
paradigm for future investigations into the effects of global SOs
stimulation on memory consolidation. This work, by introducing
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a novel method for designing stimulation protocols, sheds light on
the optimal and efficient approach to brain stimulation.
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