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Background: Balance and mobility impairments are prevalent post-stroke and

a large number of survivors require walking assistance at 6 months post-stroke

which diminishes their overall quality of life. Personalized interventions for gait

and balance rehabilitation are crucial. Recent evidence indicates that stroke

lesions in primary motor pathways, such as corticoreticular pathways (CRP) and

corticospinal tract (CST), may lead to reliance on alternate motor pathways as

compensation, but the current evidence lacks comprehensive knowledge about

the underlying neural mechanisms.

Methods: In this study, we investigate the functional connectivity (FC) changes

within the motor network derived from an individualized cortical parcellation

approach in 33 participants with chronic stroke compared to 17 healthy controls.

The correlations between altered motor FC and gait deficits (i.e., walking

speed and walking balance) were then estimated in the stroke population to

understand the compensation mechanism of the motor network in motor

function rehabilitation post-stroke.

Results: Our results demonstrated significant FC increases between ipsilesional

medial supplementary motor area (SMA) and premotor in stroke compared to

healthy controls. Furthermore, we also revealed a negative correlation between

ipsilesional SMA-premotor FC and self-selected walking speed, as well as the

Functional Gait Assessment (FGA) scores.

Conclusion: The increased FC between the ipsilesional SMA and premotor

regions could be a compensatory mechanism within the motor network

following a strokewhen the individual can presumably no longer rely on themore

precise CST modulation of movements to produce a healthy walking pattern.

These findings enhance our understanding of individualized motor network

FC changes and their connection to gait and walking balance impairments

post-stroke, improving stroke rehabilitation interventions.
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Introduction

Balance and mobility impairments are common issues in post-

stroke populations. About thirty percent of survivors are unable

to walk without some assistance at the 6-month mark post-

stroke (Thom et al., 2006; Asaka et al., 2008; Lloyd-Jones et al.,

2009). Slower walking speed normally leads to limited community

ambulation (Perry et al., 1995; Lord et al., 2004; Fulk et al., 2010),

which further results in a diminished quality of life (Kaffenberger

et al., 2022). Impaired balance can give rise to falls (Tilson et al.,

2012; Bower et al., 2019) or fear of falls (Goh et al., 2016),

and limited independence in walking (Au-Yeung et al., 2003;

Mackintosh et al., 2005). Therefore, it is crucial to design effective

gait and balance rehabilitation interventions tailored to the unique

levels of impairment in each individual. However, due to a limited

understanding of the underlying neural mechanisms of impaired

balance and mobility after stroke, there remains a knowledge

gap concerning how to individualize rehabilitation intervention to

address specific balance and mobility deficits following stroke.

Stroke lesions of primarymotor pathwaysmay result in reliance

on alternate motor pathways, which are typically associated with

greater motor impairments. Corticoreticular pathways (CRP) and

corticospinal tract (CST) are typically involved in movement

control and muscle coordination (Smith et al., 2019; Maslovat et al.,

2020). CST is involved in the control of muscle activity during

walking in individuals without a neurological injury (Schubert

et al., 1997; Capaday et al., 1999; Petersen et al., 2012). Animal

studies have shown that pyramidal tract neurons that are the

origin of the CST, modulate muscle activity during walking, and

activity of pyramidal tract neurons in cats increases substantially

while stepping over obstacles compared to steady state walking

(Drew, 1993). Whereas the CRP has bilateral projections to the

spinal cord. Therefore, CRP is likely responsible for a general

motor pattern (Matsuyama et al., 2004) augmented by a more

precise CST modulation of movements (Drew et al., 2004) such

as negotiating obstacles or uneven terrain, seen during community

walking. Previous studies on upper extremity motor function show

that damage to the motor pathway by a stroke will enhance

the connectivity of CRP as compensation for the reduced white

matter integrity of CST, which usually accompanies a compromised

motor coordination (Bradnam et al., 2013; Schulz et al., 2017;

Karbasforoushan et al., 2019). Aligning with these findings, our

recent study revealed that individuals who relied more on the

CRP fibers as a compensatory mechanism following damage to

CST on the lesioned hemisphere had more pronounced balance

and mobility impairments (Srivastava et al., 2022). Considering the

majority of CST fibers have their origins in the primary motor

cortex (M1) whereas the CRP fibers stem from the premotor

and supplementary motor area (SMA) (Jang and Seo, 2014; Jang

and Lee, 2019), disrupted CST by a stroke lesion could lead

to a compensatory greater reliance on alternate motor pathways

responsible for a general bilateral motor pattern, with a potential

tradeoff of the compensation being greater gait and balance deficits.

Recent developments in brain imaging techniques allow for

investigating functional connections within specific functional

networks using resting-state functional magnetic resonance

imaging (rs-fMRI). Capitalizing on this approach, multiple

prior studies have demonstrated that functional connectivity

(FC) in SMA and premotor network plays important roles

in regulating normal gait (Fukuyama et al., 1997; Hamacher

et al., 2015; Lu et al., 2015; Yuan et al., 2015; Poole et al.,

2019) and balance (Wittenberg et al., 2017). These functional

networks are altered after a stroke. Specifically, increased FC

of ipsilesional SMA (Sharma et al., 2009) and contralesional

premotor cortex (Johansen-Berg et al., 2002; McPherson et al.,

2018) were observed in stroke populations, and are associated with

greater upper extremity motor impairment. Collectively, these

findings suggest that increased FC between SMA, premotor, and

other motor regions could potentially serve as a compensatory

mechanism following neurological injury, however, there

is no information on the relationship of gait and balance

impairment with altered functional cortical connectivity following

a stroke.

In the present study, our goal is to systematically investigate

altered functional connections within the motor network and

explore their relationship to the gait and walking balance deficits

in individuals with chronic stroke. Based on previous literature

we hypothesize that in comparison to healthy individuals stroke

survivors will demonstrate greater connectivity in the ipsilesional

SMA and premotor regions which will be negatively associated

with walking balance and speed. We extracted 16 motor network-

related parcels from a previously reported individualized cortical

parcellation approach based on each single participant’s resting-

state fMRI data (Wang et al., 2015; Zhao et al., 2023). These

individual motor parcels were then used as regions of interest

(ROIs) to estimate the FC between brain regions within the

motor network and compared between stroke participants and

healthy controls. Last, we quantified the relationship between

FC changes in the motor network and gait deficits (i.e.,

walking speed and walking balance) in the stroke population.

The findings from this study will deepen our knowledge

of individualized motor network FC changes and how they

relate to gait and walking balance impairments following a

stroke, which may pave the way for improving treatment in

stroke rehabilitation.

Methods

Participants

The research database registry of the Center of Biomedical

Research Excellence in Stroke Recovery (IRB approved for data

sharing) was queried for all participants with chronic stroke (>6

months) for whom we had resting state fMRI, overground walking

speeds, and functional gait assessment (FGA) scores from various

studies approved by the Institutional Review Board of the Medical

University of South Carolina. This study included 33 participants

with chronic stroke (mean age: 63.82 ± 10.15 years; 22 males)

and 17 similarly-aged healthy individuals (mean age: 58.76 ±

10.66 years; 7 males). Demographics and clinical characteristics are

described in Table 1.
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TABLE 1 Demographic information and clinical characteristics.

Control
(n = 17)

Stroke
(n = 33)

#p value

Age (years) 58.76± 10.66 63.82± 10.15 0.11

Gender (M/F) 7/10 22/11 0.08

Lesion side (L/R) - 19/14 -

∗FGA - 18.13± 5.79 -

GaitSS (cm/s) 137± 23 79± 26 <0.0001

FMA-LE 26.33± 4.51

BBS 48.28± 6.83

ABC 59.09± 25.94

M, male; F, female; L, left; R, right; I, Ischemic; H, Hemorrhage; FGA, Functional Gait

Assessment; GaitSS, Self-selected Speed; FMA-LE, Fugl-Meyer Lower Extremity; BBS, Berg

Balance Scale; ABC, Activities-specific Balance Confidence.
∗FGA, FMA-LE, BBS, and ABC scores have only been quantified in the stroke populations.
#p values were estimated using a two-sample t-test for age and GaitSS, and using a two-

proportion z-test for gender.

Clinical assessments

Clinical assessment in this study includes the Functional

Gait Assessment (FGA) (Wrisley et al., 2004) used to evaluate

balance during walking. It is a 10-item test where each item is

scored on an ordinal scale from 0 to 3, with 0 being severe

impairment and 3 being normal ambulation. It has an excellent

test-retest reliability (Lin et al., 2010), as well as excellent interrater

and intrareader reliability in stroke populations (Thieme et al.,

2009). Participants also completed three trials of walking across

a GAITRite at a comfortable walking speed (CIR Systems, Inc.;

Franklin, NJ) to determine overground self-selected walking speed

(Gait-SS). GAITRite is a walkway system that contains pressure

sensors embedded in a roll-up mat to produce an active area

24 inches wide and 168 inches long to capture gait parameters,

and has good test-retest reliability in stroke population (Kuys

et al., 2011). All clinical assessments were conducted by trained

physical therapists.

MRI data acquisition

Imaging data were collected using a 3T Siemens Trio or Prisma

scanner (Siemens Healthcare, Erlangen, Germany) with a 12-

channel head coil. Structural MRI scans in this study include a

T1-weighted imaging using anMPRAGE sequence (TR= 2,300ms,

TE = 2.26ms, FA = 8◦, FOV = 256, voxel size = 1 × 1 × 1 mm3)

and a T2-weighted FLAIR imaging (TR= 9,000ms, TE= 95ms, FA

= 130◦, FOV = 220, voxel size = 0.4 × 0.4 × 4 mm3). Functional

MRI data were collected using a gradient-echo echo-planar imaging

sequence (TR= 2,200ms, TE= 35ms, FA= 90◦, FOV= 192, voxel

size= 3× 3× 3mm3). All participants had one run of resting-state

fMRI scan (4.5 mins) during which they were instructed to lay still,

keep their eyes open, and stay awake.

MRI data preprocessing

The fMRI data were preprocessed using a previously described

analysis pipeline (Peng et al., 2023b), which included the following

steps: (1) slice timing correction (Statistical Parametric Mapping,

SPM2; www.fil.ion.ucl.ac.uk/spm/software/spm2/), (2) rigid body

correction for head motion (FMRIB Software Library, FSL v5.0.4;

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), (3) normalization for global

mean signal intensity across runs, (4) bandpass filtering (0.01

to 0.08Hz), and (5) nuisance signal regression of head-motion

parameters and whole-brain, ventricular, and white matter signals.

Structural data were preprocessed using the FreeSurfer

v5.3.0 software package (https://surfer.nmr.mgh.harvard.edu/).

For each participant, the surface mesh of the cortical mantle

was reconstructed from the structural T1-weighted image and

then registered to a common spherical coordinate system. The

preprocessed functional data were then registered to the FreeSurfer

“fsaverage6” cortical surface template, which consisted of 40,962

vertices in each hemisphere. Spatial smoothing was performed

in surface space with a 6-mm full width at half maximum

Gaussian kernel.

Lesion masks

Stroke lesion masks were manually drawn by a neurologist

based on each participant’s T2-weighted FLAIR images using

MRIcron software (https://www.nitrc.org/projects/mricron). The

lesion masks were then projected onto the MNI152 space

through the transmission matrix derived from a co-registration

between T2, T1, and the MNI152 template using SPM software.

The lesion overlap map was then created by summing up

the binarized lesion masks of all participants within the

MNI152 space (Figure 1). Moreover, we also compared the

lesion overlap map with brain segmentations derived from

the Harvard-Oxford cortical and subcortical structural atlases

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and calculated the

lesion frequency (maximum frequency) within each brain region.

Participants with cortical lesions were excluded from the

further analyses.

Individualized cortical ROIs parcellation

We parcellated each individual subject’s cortex into 92 regions

using an iterative approach which has been previously reported

(Wang et al., 2015; Zhao et al., 2023). Briefly, this individualized

cortical parcellation approach includes the following steps: (1)

creating 92 group-level cortical ROIs using k-means clustering on

resting-state fMRI of 1,000 healthy individuals from the Genomic

Superstruct Project (Holmes et al., 2015), (2) projecting the group-

level ROIs onto the individual cortex and refining the boundaries

of individualized ROIs using an iterative algorithm. During the

iterative algorithm, the distribution of inter-subject variability

and scanning signal-to-noise ratio were applied to weight the

parcellation attractors to define the individualized ROIs. In this

study, 16 motor-related ROIs were selected from the 92 ROIs
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FIGURE 1

Stroke lesion overlap. The stroke lesion overlap maps were respectively displayed in the transverse view and coronal view in MNI152 space. Note

that, for this lesion overlap map, all lesion masks were on their original hemisphere. The number at the upper-right corner of each figure indicates

the slice coordinates. L, left hemisphere; R, right hemisphere.
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FIGURE 2

Motor-related ROIs derived from cortical parcellation. Sixteen motor-related ROIs were selected from a parcellation of the human brain into 92 ROIs.

These ROIs were symmetrically located on both the left and right hemispheres. For each hemisphere, there were five primary sensorimotor (PriSM)

ROIs (i.e., PriSM-1, PriSM-2, PriSM-3, PriSM-4, and PriSM-5), two supplementary motor area (SMA) ROIs (i.e., Medial SMA and Lateral SMA), and one

premotor ROI (i.e., Premotor). Note that, the motor-related ROIs displayed here on the FreeSurfer fsaverage6 template are derived from a group-level

cortical parcellation on 1,000 healthy individuals from the Genomic Superstruct Project for a better illustration purpose to show their locations. In this

study, participant-specific ROIs, which were obtained from the individualized parcellation on each participant’s brain, were applied for the FC analysis.

to investigate the motor functional network changes in chronic

stroke (Figure 2). Specifically, 8 ROIs were on the left hemisphere

and the other 8 ROIs were on the symmetric locations on the

right hemisphere. For each hemisphere, the 8 ROIs consist of

five primary sensorimotor (PriSM) ROIs (i.e., PriSM-1, PriSM-

2, PriSM-3, PriSM-4, and PriSM-5), two supplementary motor

area (SMA) ROIs (i.e., Medial SMA and Lateral SMA), and one

premotor ROI (i.e., Premotor). FC was then estimated between

these motor-related ROIs. Note that, the FC was quantified at

the individual level using participant-specific ROIs, which derived

from an individualized cortical parcellation method and slightly

differ in shape and location across different subjects (see examples

of medial SMA and premotor ROIs in Supplementary Figure S1).

Statistical analysis

The laterality of stroke lesions plays an important role in stroke

rehabilitation (Liu H. et al., 2020; Peng et al., 2023a). To control the

effects of lesion laterality on motor FC changes in stroke, the FC of

subjects whose stroke lesions on the right hemisphere were flipped

to the left hemisphere. This procedure was to ensure all participants

had their stroke lesion on the left hemisphere—the ipsilesional

hemisphere. For healthy individuals, the FC analysis was carried

out in their original hemisphere (i.e., the left hemisphere of healthy

controls always matches the ipsilesional hemisphere for stroke,

and vice versa). A Wilcoxon rank sum test was then carried out

to compare the changes in FC of all motor-related ROIs between

stroke and healthy populations. Lastly, the relationship between

abnormal FC and gait measures was quantified using the Pearson

correlation (two-tailed). To control the effect of high-leveraged data

on correlation analyses, we also performed a Dfbetas analysis on the

dataset used for correlation analysis. Data points with Dfbetas value

larger than 3/sqrt(n) in absolute value were excluded. The findings

of correlation analysis derived from both the full data and the

high-leveraged points removed data were then reported. Shapiro-

Wilk test of normality was conducted to determine whether speed

and FGA for the stroke population are normally distributed. The

results indicate that the data is normally distributed (Speed; p =

0.796, FGA; p = 0.227). All the statistical results were corrected

for the multiple comparisons using the False Discovery Rate (FDR)

method. All the statistical analyses were performed usingMATLAB

software (version: R2018b; https://www.mathworks.com/products/

matlab.html).

Results

Stroke lesion overlap

Stroke lesion overlap maps are displayed in the MNI152

template in Figure 1. All the stroke lesions were in their original

hemisphere, in which 19 participants have lesions in the left

hemisphere while 14 participants have lesions in the right

hemisphere. The stroke lesions are mainly located in the basal

ganglia regions as well as the white matters connected to the

sensorimotor cortex. The detailed lesion frequency within each

brain region is shown in Table 2.

Functional connectivity of ipsilesional SMA
and premotor increases in stroke

Ipsilesional medial SMA demonstrated significantly increased

FC to the ipsilesional premotor in participants with chronic stroke

compared to healthy individuals (Figure 3A; Wilcoxon rank sum
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TABLE 2 Lesion frequency in di�erent brain areas.

Regions Lesion frequency (%)

Left
hemisphere

Right
hemisphere

Total

Cerebral White
Matter

27.27 21.21 48.48

Cerebral Cortex 21.21 6.06 27.27

Lateral
Ventrical

9.09 3.03 12.12

Thalamus 18.18 12.12 30.3

Caudate 15.15 6.06 21.21

Putamen 24.24 15.15 39.39

Hippocampus 9.09 6.06 15.15

Amygdala 9.09 6.06 15.15

Accumbens 6.06 3.03 9.09

Brain stem - - 12.12

test with FDR correction for multiple comparisons, ∗∗∗p = 0.0004,

z = 3.523). To increase the transparency of the results, FC

comparisons of all motor ROIs are also shown in Figure 3B.

Increased ipsilesional SMA-premotor
connection is associated with gait deficits

Ipsilesional SMA-premotor FC was found negatively correlated

with both Gait–SS (Figure 4A; r = −0.355, p = 0.042, 95%

confidence interval [−0.623 −0.014]) and FGA scores in

participants with chronic stroke (Figure 5A; r = −0.486, p =

0.019, 95% confidence interval [−0.748−0.092]). All these findings

indicated that higher ipsilesional SMA–premotor FC is associated

with gait deficits. Additionally, to increase the reproducibility of

the findings, we also performed a control analysis by rerunning

the correlation analysis with high-leveraged data points removed.

The correlation between ipsilesional SMA-premotor FC and Gait-

SS is no longer significant (Figure 4B; r = −0.169, p = 0.354,

95% confidence interval [−0.489 −0.191]) while there is still

a significantly negative correlation between ipsilesional SMA–

premotor FC and FGA scores (Figure 5B; r = −0.457, p =

0.032, 95% confidence interval [−0.737 −0.044]). These findings

indicated that the high-leveraged data points may potentially

affect the correlation analysis between FC and Gait-SS, which is

recommended to be further verified by future clinical trials with a

larger sample size and broader motor impairment data.

Discussion

In this study, we investigated the altered FC within the motor

network in chronic stroke and quantified its relationship to walking

ability and walking balance. Our results demonstrated significant

FC increases between ipsilesional medial SMA and premotor in

stroke compared to healthy controls. Additionally, we also observed

a negative correlation between ipsilesional SMA-premotor FC and

self-selected walking speed, as well as the FGA scores. These

findings align with our initial hypothesis suggesting that an

increase in FC between the ipsilesional SMA and premotor regions

could serve as a compensatory mechanism within the motor

network following a stroke when the individual can presumably

no longer rely on the CST to produce the healthy walking pattern.

Additionally, this compensation seems stronger (higher level of

ipsilesional SMA-premotor FC increase) in individuals who exhibit

more severe impairments in gait and walking balance performance.

Enhanced FC between ipsilesional SMA and premotor cortex

may suggest the increased contribution of alternate motor

pathways as a consequence of CST damage by stroke lesion.

Previous literature on white matter integrity of motor pathways

has shown that compared to healthy controls, individuals with

stroke who have decreased CST integrity also have increased

integrity of motor pathways originating from ipsilesional SMA and

premotor cortex (Rüber et al., 2012). Furthermore, individuals who

have greater damage to the CST demonstrate increased structural

connectivity between the primary motor network and premotor

area (Schulz et al., 2017), suggesting a greater reliance on the

premotor network that is dependent on the CST lesion load.

The results from the current study on FC of the motor network

further support the view that ipsilesional SMA and premotor cortex

contribute toward motor recovery as a compensatory mechanism

following a stroke lesion.

A compensatory increase in the SMA-premotor region

connections likely associated with a larger CRP-modulated

locomotor control leads to a gross muscle coordination pattern and

worse locomotor performance. In the current study, an increased

FC between SMA and premotor cortex led to slower walking

speeds and worse walking balance performance perhaps reflecting

a reliance on alternative motor pathways following CST damage.

CRP plays an important role in controlling gross motor activities

including walking and postural movements (Matsuyama et al.,

2004). Increased connectivity of CRP is associated with gross

muscle synergies such as mass flexion-extension patterns (Li et al.,

2019), limiting the ability to independently activate muscles out of

a mass flexion-extension synergy. The use of gross motor synergies

leads to poor locomotor (Clark et al., 2010) and balance (Allen et al.,

2019) performance in individuals with stroke. As discussed earlier,

CRP tracts originate primarily from the premotor cortex and SMA

(Jang and Lee, 2019), thus, we believe that increased connectivity

of ipsilesional SMA-premotor regions in the current study is

indicative of a greater CRP contribution in locomotor control. This

likely leads to the use of mass flexion-extension patterns instead

of the independent muscle activation patterns typically seen in

healthy individuals (Clark et al., 2010), thus resulting in slower

walking speeds and poor walking balance control represented by

lower FGA scores.

The converging evidence between our results in the current

study and the previous structural MRI study of gait and balance

(Srivastava et al., 2022) suggests additional support for our
findings. These studies will provide novel insights toward future
experimental paradigms to use rs-fMRI as a biomarker for patient

stratification for brain stimulation protocols. Despite the promising
effects of cortical stimulation on the improvement of lower limb

motor function or walking balance (Madhavan and Shah, 2012;
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FIGURE 3

Functional connectivity between ipsilesional premotor and medial SMA increases in stroke patients. (A) Group comparison indicated that FC between

ipsilesional premotor and medial SMA significantly increased in stroke patients compared to healthy controls (Wilcoxon rank sum test with FDR

correction for multiple comparisons, ***p = 0.0004, z = 3.523). The ROIs displayed here are group-level ROIs on the FreeSurfer fsaverage6 template

to illustrate the location of ROIs. (B) To increase the transparency of the results, FC comparisons of all eight ipsilesional motor ROIs and eight

contralesional motor ROIs between stroke participants and healthy controls were calculated through the Wilcoxon rank sum test, and the p-values

were displayed in the matrix. The color shown in the figure represents the -log10P to help distinguish the significance of the comparison findings.

Chang et al., 2017), due to the large variability in stroke lesions

and remodeling of neural networks following stroke, there is no

consensus on what cortical electrode placements (Seamon et al.,

2022) or stimulation parameters (Kindred et al., 2020) would

be most effective. Previous studies on upper extremity motor

recovery after stroke have shown that greater ipsilesional (Sharma

et al., 2009) or contralesional functional activation in regions

corresponding with CRP motor pathways i.e., SMA and premotor

cortex is associated with worse functional outcomes (Johansen-

Berg et al., 2002; McPherson et al., 2018). Increased contralesional
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FIGURE 4

Functional connectivity of premotor and medial SMA is negatively correlated to walking speed. The walking speed of all participants was quantified at

their self-selected walking speed (Gait-SS) via a GaitRite system (CIR Systems Inc., Franklin, JN). (A) FC between medial SMA and premotor is

negatively associated with both the Gait-SS (Pearson correlation, r = −0.355, p = 0.042, 95% confidence interval [−0.623 −0.014]) across all

participants with chronic stroke. (B) By removing the high-leveraged data points, the correlation between ipsilesional SMA-premotor FC and Gait-SS

is no longer significant (r = −0.169, p = 0.354, 95% confidence interval [−0.489 −0.191]). The ROIs displayed here are group-level ROIs on the

FreeSurfer fsaverage6 template to illustrate the location of ROIs.

FIGURE 5

Higher functional connectivity between ipsilesional premotor and medial SMA demonstrated worse balance during walking in stroke patients. (A)

Functional Gait Assessment (FGA) was used to assess the balance of walking in stroke patients. FC between ipsilesional premotor and medial SMA is

negatively correlated to the FGA scores in stroke patients (Pearson correlation, r = −0.486, p = 0.019, 95% confidence interval [−0.748 −0.092]). (B)

After removing the high-leveraged data points, there is still a significantly negative correlation between ipsilesional SMA-premotor FC and FGA (r =

−0.457, p = 0.032, 95% confidence interval [−0.737 −0.044]). The ROIs displayed here are group-level ROIs on the FreeSurfer fsaverage6 template to

illustrate the location of ROIs.

SMA activity associated with greater lower extremity strength

was also observed by Enzinger et al. (2008). Additionally, stroke

survivors with a complete CST and CRP injury and inability

to walk at the time of stroke can regain their walking ability

following increased contralesional CRP connectivity (Jang et al.,

2013; Jang and Cho, 2022). We believe that in the event of

a complete CST and CRP lesion leading to complete loss of

motor function, stroke survivors would compensate by mostly

relying on contralesional CRP and would likely walk with poor

walking ability. Therefore, similar to our interpretation of the

connectivity of motor pathways, we speculate that with ipsilesional

M1 damage, ipsilesional SMA and premotor cortex gain more

importance in modulating motor function. But in the event

that ipsilesional M1 as well as SMA and premotor cortex are

unable to function appropriately, motor control shifts more toward

contralesional SMA and premotor cortex as a compensatory

mechanism. Another important consideration is the altered

interhemispheric interaction following stroke. This mechanism of

cortical reorganization suggests that in individuals with greater

damage to cortical structures, SMA and premotor cortex have a

facilitatory influence on the ipsilesional M1, and this influence

is inhibitory in individuals with minimal damage to promote

maximal motor recovery (Di Pino et al., 2014). Additionally,

although we flipped the lesion of all stroke participants to the
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same side in the current study to control the effects of lesion

laterality on motor FC changes, it is worth noting that some other

studies suggested that the laterality of stroke lesions is not always

discriminant for motor rehabilitation (Chae and Zorowitz, 1998;

Chen et al., 2000, 2003; Glymour et al., 2007). Future studies on

individuals with mild, moderate, and severe motor impairment

are needed to completely understand the interplay between lesion

size/location, interhemispheric interaction, and compensatory

remodeling. In addition, experimental paradigms for gait and

walking balance rehabilitation that pair neuromodulation with

diffusion and rs-fMRI to develop an individualized treatment

should be pursued.

Limitations

An advantage of rs-fMRI is that it can be performed in

stroke survivors with severe deficits to evaluate brain networks,

therefore, it has been identified as a developmental priority in

stroke recovery and rehabilitation (Boyd et al., 2017). However,

there are some limitations in the current study that need to be

considered while interpreting the results. First, although rs-fMRI

scans in the current study were collected for a duration of

4.5min (and it would be ideal to have a longer recording), these

results serve as preliminary information for future studies with

longer rs-fMRI scans. Another limitation is that participants in

the current study on average had mild to moderate locomotor

impairment (Gait-SS = 79 ± 26 cm/s). Note that, there is one

post-stroke participant who has better motor performance than

others, which could potentially affect the results of the correlation

analysis. It would be ideal to have a larger sample size in future

clinical trials by enrolling more post-stroke individuals with

either more severe or less motor impairments to better depict the

relationship between motor performance and cortical functional

connectivity changes. Moreover, a small percentage of CST fibers

also originate from the premotor area (Liu J. et al., 2020), so there

is a possibility that an increase in SMA-premotor regions could

be a consequence of increased CST fibers from alternate cortical

regions besides the primary motor cortex. However, we believe

this would not result in worse locomotor performance as is the

case with relying on alternating motor pathways such as CRP.

Lastly, impaired walking speeds and poor balance can also be

associated with factors other than cortical connectivity such as

cognitive impairment (Ursin et al., 2019), spasticity (Soyuer and

Öztürk, 2007), and altered connectivity in the subcortical regions

(Qin et al., 2022) following stroke. However, a comprehensive

identification and examination of the aforementioned limiting

factors for walking speed and poor walking balance is

beyond the scope of this study and needs to be addressed in

future studies.
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