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Self supervised learning based
emotion recognition using
physiological signals

Min Zhang* and YanLi Cui

Computer College, Huanggang Normal University, Huanggang, Hubei, China

Introduction: The significant role of emotional recognition in the field of

human-machine interaction has garnered the attention of many researchers.

Emotion recognition based on physiological signals can objectively reflect

the most authentic emotional states of humans. However, existing labeled

Electroencephalogram (EEG) datasets are often of small scale.

Methods: In practical scenarios, a large number of unlabeled EEG signals are

easier to obtain. Therefore, this paper adopts self-supervised learning methods

to study emotion recognition based on EEG. Specifically, experiments employ

three pre-defined tasks to define pseudo-labels and extract features from the

inherent structure of the data.

Results and discussion: Experimental results indicate that self-supervised

learning methods have the capability to learn e�ective feature representations

for downstream tasks without any manual labels.
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1 Introduction

Emotional recognition in humans is considered a research theme spanning multiple

fields including neuroscience, psychology, health sciences, and engineering. Emotion

recognition models will aid in establishing high-precision emotional recognition

systems and developing various derivative applications in emotional understanding and

management. With the increasingly rapid development of artificial intelligence, the issue

of emotional recognition has also garnered more and more attention. For instance, in the

field of human-machine interaction, accurately recognizing human emotional states is a

key technology (Jia et al., 2021a).

As early as 1884, Mr. William James, the pioneer of American functional psychology

and pragmatist philosophy, provided some elucidation on the definition of emotion. In his

view, emotions are merely sensations caused by abnormalities in a part of the body. The

cognition of emotion is triggered by physiological changes in humans. No psychological

change is not caused by a bodily change, and emotional changes inevitably follow changes

in some sensory organ (Jia et al., 2020). Over the past 100 or more years of research, the

scientific community still does not have a systematic definition of emotion. Some believe

that emotion is a psychological experience that people generate when facing external

things. Accompanying this psychological experience will produce a series of physiological

changes, such as fluctuations in EEG signals. However, the most fundamental components

of emotion have always been unanimously recognized by scholars, which mainly include:

(1) When an emotion occurs, there must be some kind of physical change; (2) Emotion is

controlled by consciousness; (3) The expression of emotion is actually a self-evaluation

of what has already happened. When faced with the same thing, different people will
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have different feelings and emotional expressions. These

three components also imply the direction of emotion

recognition research.

Early emotion recognition technologies mainly relied on non-

physiological signals produced by the human body, such as

voice, gestures, and facial expressions. As emotion recognition is

applied in more fields, subjects gradually began to deliberately

hide their true emotions in external features such as facial

expressions, speech, and behavior, bringing certain challenges to

emotion recognition research based on non-physiological signal

data. Therefore, researchers began to focus the solution of

emotion recognition on physiological signals that are difficult

to disguise. According to neuropsychological and psychological

research, electroencephalogram (EEG) can not only reflect various

electrical activities and functional states of the human brain,

but it can also reflect effective information about the emotional

state of humans (Zhou et al., 2023), and the activity of

the cerebral cortex has a huge impact on the production of

emotions (Jia et al., 2022c). However, other physiological signals,

such as electrooculogram(EOG), electrocardiogram (ECG), and

electromyogram (EMG), are indirect reactions caused by emotions

and usually lack reasonable evaluation standards and have lower

emotion recognition accuracy (Chanel et al., 2011; Jia et al., 2022b).

In comparison, EEG signals have become the main research force

for the emotion recognition problem due to their advantages of

being easy to collect, high authenticity, and strong reliability.

However, existing labeled EEG emotion datasets are generally

small in scale, posing challenges for emotion recognition based on

EEG signals.

To address these challenges, this paper adopts a self-supervised

learning method to perform EEG emotion recognition using a

small amount of labeled data. The experiments define pseudo

labels using three pre-tasks to extract features from the structure

of the data itself. From the experimental results, the self-

supervised learning method has the ability to learn effective

feature representations for downstream tasks without any manual

labels and also shows its potential in the emotion recognition

problem. Therefore, improving the classification performance and

generalization ability of self-supervised learning methods in the

emotion recognition problem remains a challenge worth exploring.

2 Related work

The field of Brain-Computer Interfaces (BCIs) has attracted

increasing attention from researchers, with the advancement of

machine learning and the growing integration across multiple

disciplines. Emotional Brain-Computer Interface researchmethods

have also gradually shifted from traditional machine learning

techniques toward deep learning.

In the early stages of emotion recognition research, the focus

was mainly on using facial expressions, gestures, and voice audio

as non-physiological signals for emotion recognition and analysis.

Initial studies relied onmanually extracted features from voice data,

but these features were often too shallow to accurately identify

human emotions. With the advent of deep learning, Abdel-Hamid

et al. (2014) applied convolutional neural networks to voice-based

emotion recognition. To further improve the accuracy of emotion

recognition models, Huang et al. (2014) and Mao et al. (2014),

employed stacked autoencoders (SAE) before convolutional neural

networks to extract emotional features. Trigeorgis et al. (2016)

proposed an end-to-end speech emotion recognition system,

which combined Long Short-Term Memory (LSTM) networks

with convolutional neural networks (Hochreiter and Schmidhuber,

1997), significantly improving the accuracy of emotion recognition.

During its developmental phase, emotion recognition research

began incorporating physiological signals. Researchers mostly used

traditional supervised learning methods for recognition tasks.

For example, Atkinson and Campos (2016) initially extracted

features from multi-channel EEG signals and then used Support

Vector Machines (SVM) for downstream task classification. Verma

and Tiwary (2017) first preprocessed EEG signals using Kernel

Principal Component Analysis (KPCA), and then utilized K-

nearest neighbors and Radial Basis Function (RBF) based SVMs for

classification. Zheng et al. (2014) first extracted differential entropy

features from multi-channel EEG data, and then employed deep

learning models for training and proposed Hidden Markov Models

as an auxiliary method.

Moreover, individual differences have a considerable impact

on network training. Thus, research on cross-subject emotion

recognition methods is crucial for practical applications. This

requires the model to extract common features from data across

different subjects to enhance cross-subject performance. Some

studies have explored emotion recognition issues for cross-subjects

using techniques such as adaptive learning, transfer learning, active

learning, multi-source weighted adaptation, feature assessment,

and selection (Chung et al., 2011; Zander and Jatzev, 2011;

Mühl et al., 2014; Chen et al., 2019; Lan et al., 2019). Over

the past few years, the convenience and availability of EEG

monitoring devices have significantly increased, thus generating

an ever-growing amount of physiological signal data requiring

interpretation. Traditionally, supervised learning models have been

used for classifying and predicting physiological signals, achieving

high performance through extensive labeled datasets. However,

acquiring labeled physiological signals incurs high economic and

time costs. Noise in the data and the complexity of the human

brain also make annotating physiological signals challenging,

potentially leading to large disparities in expert annotations or

label noise. Therefore, a learning mode that does not depend

on manual labels is essential. Researchers are naturally focusing

on unsupervised learning methods that do not require any label

information. However, traditional unsupervised learning methods

do not perform as quantifiably well as supervised learning methods

in downstream tasks.

Self-supervised learning is a form of unsupervised learning

that leverages the inherent structure of unlabeled data to

provide supervisory signals. Self-supervised learning methods

use pretext tasks to reformulate unsupervised learning problems

into supervised learning problems, thereby both eliminating the

constraint of labels and maintaining the quantifiable advantages

of supervised learning. Furthermore, as self-supervised learning

relies on the data itself, the features it learns are more universally

applicable (Oord et al., 2018). So far, the applications of self-

supervised learning have been mostly concentrated in the field
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of computer vision, where it has become the state-of-the-art in

many vision tasks. It has also achieved some success in natural

language processing for text classification. However, these fields

already have ample labeled data. In contrast, EEG signals, where

labeled data are extremely limited, require self-supervised learning

methods to solve their classification and prediction issues. Self-

supervised learning methods in EEG analysis involve leveraging

the inherent structure of electroencephalogram (EEG) data to train

models without relying on manual annotations. These approaches

typically define auxiliary tasks that exploit temporal and spatial

relationships within the EEG signals to generate pseudo-labels.

By solving these tasks, the model learns to extract meaningful

features that are informative for downstream tasks such as emotion

recognition. Unlike supervised methods that require labeled data,

self-supervised learning allows for training on large amounts of

unlabeled EEG data, making it particularly useful in scenarios

where labeled data is scarce or expensive to obtain. Experimental

results have shown that self-supervised EEG analysis methods

can effectively learn representations that capture the underlying

patterns in the data, leading to competitive performance in

emotion recognition tasks. Overall, self-supervised learning offers a

promising avenue for advancing EEG analysis by enabling models

to autonomously discover relevant features and patterns from raw

EEG signals as shown in Figure 1.

3 Self-supervised learning-based
emotional recognition model

In supervised learning models, global optimization problems

of neural networks are typically solved using the backpropagation

algorithm. The abundance of labeled data and increasingly complex

neural network architectures have led to better performance in

supervised learning tasks. Therefore, the quality and quantity of

labels are key factors determining the efficacy of a model (Jia et al.,

2021b; Liu Y. et al., 2023; Liu et al., 2024).

However, in the biomedical field, manually annotated labels are

costly and noisy, and annotating large-scale data is time-consuming

(Liu S. et al., 2023; Ning et al., 2023). With the development

in medical research, it is becoming easier to acquire large

volumes of physiological signal data. To break free from the

constraints of manual labeling and make full use of physiological

signals, researchers have proposed a learning method based on

the information within the data itself, known as self-supervised

learning (Jaiswal et al., 2020).

As of now, the application of self-supervised learning methods

is mostly focused on image, speech, and semantic data. In these

fields, sufficient labeled data are available, making supervised

learning already highly competitive (Jia et al., 2022a; Liang et al.,

2023). In contrast, in areas where labels are hard to obtain, such

as physiological signal data, self-supervised learning has greater

potential (Krishnan et al., 2022).

Self-supervised learning is an unsupervised learning method

but can learn feature representation from unlabeled data, using

the structure of the data to provide supervisory information

(Zhai et al., 2019). In the field of computer vision, self-

supervised learning can extract cropped samples from images

using jigsaw puzzles techniques. These samples are then randomly

shuffled and fed into a trained neural network to recover

the original order. In the temporal domain, self-supervised

learning assumes that data changes are continuous and that

adjacent time windows correspond to the same label. This is

used to extract information from time-series data to predict

future frames.

In self-supervised learning, labels are generated through the

attributes of the data itself and are called pseudo-labels. These

pseudo-labels are produced for the sake of pre-task learning. The

method obtains supervisory information from original unlabeled

data mainly through pre-tasks to train the network. The trained

model is then transferred to downstream tasks. To achieve higher

model accuracy, fine-tuning is often required after the parameters

have been transferred. This process frees us from the constraints of

manual labeling. Therefore, the setting of pre-tasks plays a decisive

role in the effectiveness of self-supervised learning and is key to

its success (Jaiswal et al., 2020). Table 1 presents the algorithm of

self-supervised emotion recognition.

FIGURE 1

The overall framework in a schematic way.
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TABLE 1 The algorithm of the self-supervised emotion recognition.

Step Description

1 Preprocessing of physiological signals

2 Data segmentation and feature

extraction

3 Transforming generative model

problems into classification problems

3.1 Train CPC model to maximize mutual

information (Equation 1)

3.2 Use log-bilinear model (Equation 2)

3.3 Fit training objective (Equation 3)

4 Generating labeled samples through

Relative Position

4.1 Sample N samples given

hyperparameters τpos , τneg (Equation 4)

4.2 Generate labels yi using time index pairs

(ti , t
′
i) (Equation 5)

4.3 Aggregate features using gRP , calculate

absolute difference (Equation 6)

4.4 Predict labels yi using linear

discriminant model (Equation 7)

5 Temporal shuffling

5.1 Construct temporally ordered and

shuffled triples (Equation 8)

5.2 Feature combination through absolute

difference (Equation 9)

5.3 Obtain loss function for temporal

shuffling (Equation 10)

3.1 Contrastive predictive code

Contrastive predictive code (CPC) is a method for

unsupervised learning on high-dimensional data by transforming

generative modeling problems into classification problems. The

primary aim of the model is to learn feature representations that

encode the foundational shared information between different

segments of high-dimensional signals while discarding lower-

level, less important details. One of the challenges in predicting

high-dimensional data is that commonly used loss functions like

Mean Squared Error (MSE) and Cross-Entropy are generally

ineffective. Therefore, the CPC model is trained by maximizing

Mutual Information (MI). Mutual Information is often used to

represent the reduction in uncertainty of one random variable due

to the knowledge of another, as shown in Equation (1):

I(x; c) =
∑

x,c

p(x, c) log

(

p(x|c)
p(x)

)

= H(x)−H(x|c) (1)

Here, H(x) denotes the entropy of the event x, and c represents

the context vector. I(x; c) signifies the reduction in entropy of

x due to the introduction of c. Thus, maximizing the mutual

information between x and c is equivalent to reducing the

uncertainty of predicting x to the greatest extent, achieving an

improved prediction accuracy.

Figure 2 depicts the architecture of the Contrastive Predictive

Code model. Taking an audio signal as an example, a non-

linear encoder genc first maps each xt within a time window to

a representation zt = genc(xt). The zt along with the related

information from previous moments in the latent space is then

input into the autoregressive model gar , producing the context

representation for the current moment ct = gar(z≤t). When

predicting zt+k k moments later using the current context ct , a

function fk(xt+k, ct) is proposed to denote the similarity between

the predicted ẑt+k from ct and the actual value xt+k. This should be

proportional to the ratio of the probability of the actual future value

xt+k to the probability of a randomly chosen data point:
p(xt+k|ct)
p(xt+k)

.

We model fk(xt+k, ct) using a log-bilinear model as:

fk(xt+k, ct) = exp(zTt+kWkct) (2)

Regarding the training objective, the model adopts the

following loss function:

LN = −EX

[

log

(

fk(xt+k, ct)
∑

xj∈X fk(xj, ct)

)]

(3)

where X = {x1, x2, ..., xN} is a set of samples. The pair (xt+k, ct)

can be viewed as a positive pair, while any pair (xj, ct) where

j 6= t + k is a negative pair. Thus, maximizing the loss function

is equivalent to maximizing the mutual information between

positive samples whileminimizing themutual information between

negative samples, aligning with the training objectives of themodel.

3.2 Relative position

For any integers p, q ∈ N, let [q] denote the set {1, 2, . . . , q},
and [p, q] represent the set {p, . . . , q}. Let T be the time index of a

multivariate time series S ∈ R
C×M , whereM is the number of time

samples and C is the dimension of each sample. Let y ∈ {−1, 1} be
the binary label for the training task.

To generate labeled samples from the multivariate time series

S, this method samples pairs of time windows (xt , xt′ ), where

xt , xt′ ∈ R
C×T , and T denotes the duration of each time window.

The first window xt is called the “anchor window.” Assuming

that a reasonable feature representation changes slowly over time,

adjacent windows should have the same labels. Based on this

assumption, given the hyperparameter τpos ∈ N that controls the

duration of positive samples and τneg ∈ N for negative samples

around each anchor window xt , we sample N samples:

ZN =
{

(xti , xt′i ), yi|i ∈ [N], (ti, t
′
i) ∈ T, yi ∈ Y

}

(4)

where Y ∈ {−1, 1}, and T is defined as

T ∈
{

(t, t′) ∈ [M − T + 1]2||t − t′| ≤ τpos or |t − t′| > τneg
}

3.3 Temporal shu	ing

The temporal shuffling (TS) method is a variant of the relative

position in the previous section. Two anchor windows xt and xt′′
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FIGURE 2

Contrastive predictive model architecture diagram.

are sampled from the positive context. Additionally, a third window

xt′ is sampled either between the two anchor windows or from

the negative context. Based on the position of the third window,

temporally ordered triplets (t < t′ < t′′) and temporally shuffled

triplets (t < t′′ < t′) or (t′ < t < t′′) are constructed. The label
at this point is defined based on whether the three-time windows

follow the order t < t′ < t′′, that is:

yi =
{

1, if t < t′ < t′′

−1, if t > t′ or t′ > t′′
(5)

The contrastive model gTS is defined as gTS :R
D × R

D ×
R
D → R

2D, which also implements feature combination through

element-level absolute differences:

gTS(hθ (x), hθ (x
′), hθ (x

′′)) = (|hθ (x)− hθ (x
′)|, |hθ (x

′)− hθ (x
′′)|)

∈ R
2D (6)

Replacing gRP with gTS in Equations (6–9) and introducing xt′′ ,

we obtain the loss function for the pre-task Temporal Shuffling:

L(2,ω,ω0) =
∑

(xt ,xt′ ,xt′′ ,y)∈ZN

log(1+ exp(−y[ωTgTS(hθ (x), hθ (x
′), hθ (x

′′))+ ω0])) (7)

4 Experiment

4.1 Dataset introduction

4.1.1 SEED dataset
The SEED dataset collected EEG data from fifteen participants,

including seven males and eight females, with an average age of

∼23 years. During the experiment, participants’ emotions were

elicited by watching video clips. The emotion labels are defined

as positive, neutral, and negative emotions, with five different

clips assigned to each emotion. All participants underwent three

EEG data recordings, with a 2-week interval between consecutive

experiments (Duan et al., 2013). Each time, participants were asked

to watch 15 video clips, each about four min long, to induce

emotions. The same 15 clips were used across all three recording

sessions. Thus, the dataset contains 15 physiological signals for each

participant from each recording, resulting in 45 physiological signal

datasets per participant after three sessions. Each physiological

signal was recorded using a 62-channel ESI NeuroScan device with

a sampling rate of 1,000 Hz, down-sampled to 200 Hz. There are

three labels in the dataset corresponding to the three emotions

(Zheng and Lu, 2015).

4.1.2 SEED-IV dataset
Prior to the experiment, the researchers carefully selected

72 video clips corresponding to four emotion labels: happiness,

sadness, fear, and neutral. Similar to the SEED dataset, 15

participants took part in the SEED-IV dataset collection. Each

participant attended the experiment at three different times,

watching 24 video clips in each session. Each video clip lasted about

120 s, with a 5-s preparation time before each clip and a 45-s

self-assessment period after each clip.

4.1.3 DEAP dataset
The DEAP dataset is an emotion dataset collected by the

University of Twente. Unlike the SEED dataset, this dataset

includes multimodal EEG data, comprising EEG, EMG, and EOG

signals (Koelstra et al., 2012). The DEAP dataset includes data

from 32 participants, half of whom are male and half female. The

experimental protocol is similar to SEED. During the experiment,

each participant watched 60-s music videos to elicit emotions. Each

EEG recording began with a 3-s preparation period, followed by

the 60-s video clip during which emotional EEG data was collected.

After the video playback, participants were asked to self-assess their

feelings of Valence, Arousal, Dominance, Liking, and Familiarity

based on their initial reactions. During the experiment, a short
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break was organized after watching 20 videos to check the signal

quality and inspect the equipment, ensuring the quality of the

collected EEG data. The EEG signals in the DEAP dataset were

collected using a 32-channel electrode cap, with a sampling rate set

to 512 Hz.

Before the experiment, data preprocessing was conducted to

extract the time-frequency features of the raw data using short-time

Fourier transform. The data were divided into five frequency bands,

and differential entropy (DE) features were computed separately

for each frequency band. All physiological signals were sampled

at 200 Hz. Each record in the dataset was segmented into 1-

s data segments. Evaluation was performed using 10-fold cross-

validation. The main hardware of the experimental platform is

GPU NVIDIA 3090, which has 24 GB of memory. Python for

deep learning and Numpy 1.22.3 for numerical computation. The

specialized EEG analysis library MNE Python was used for data

processing. These configurations contribute to the computational

process of EEG data processing, feature extraction, and subsequent

emotion classification tasks in the context of self supervised

learning paradigms.

Accuracy (ACC): accuracy is the most intuitive performance

measure in classification problems. It is the ratio of the number

of correct predictions to the total number of predictions.

Mathematically, it is expressed as:

ACC = Number of correct predictions

Total number of predictions
= TP + TN

TP + TN + FP + FN
(8)

where TP is true positives, TN is true negatives, FP is false positives,

and FN is false negatives.

F1 Macro Score: the F1 Macro Score is a common metric

in multi-class classification. It calculates the F1 score for each

class individually and then computes the arithmetic mean of these

scores. The F1 score is the harmonic mean of precision and recall.

For a single class, the F1 score is defined as:

F1 = 2× Precision× Recall

Precision+ Recall
= 2TP

2TP + FP + FN
(9)

The F1 Macro Score is then the average of the F1 scores for

all classes:

F1 Macro Score = 1

N

N
∑

i=1

F1i (10)

where N is the number of classes, and F1i is the F1 score for the

ith class.

4.2 Feature extraction

For the collected EEG signals, it is typically necessary to extract

relevant features that are effective for downstream tasks. These

extracted features then serve as the basis for subsequent learning

and classification tasks. Therefore, the feature extraction stage

plays a significant role in EEG signal emotion recognition studies.

Extracting appropriate emotion features provides key support for

the downstream classification tasks.

Due to the plethora of EEG signal features, effective features

are often mixed with some irrelevant or redundant ones. These

extraneous features tend to increase computational overhead and

can negatively impact the model’s generalization capability. Thus,

even after feature extraction, feature selection remains necessary.

In the initial stages of EEG signal research, researchers typically

classified based on the power spectral density feature. As research

has deepened, an increasing number of feature extraction methods

have been introduced. Common ones include differential entropy,

asymmetry difference, asymmetry ratio, and anterior-posterior

electrode ratio. In this study, we use the most widely applied

and effective feature—differential entropy, also known as the DE

feature. Division of frequency bands: δ (1–4 Hz), θ (4–8 Hz), α

(8–13 Hz), β (13–30 Hz), γ (30–100 Hz).

Entropy, a concept borrowed from physics, is commonly used

in statistics to measure the uncertainty of a random variable X. The

Shannon entropy H(X) is calculated as shown in Equation (11),

where p(x) represents the probability of event x, and I(x) =
log2(p(x)):

H(X) =
M
∑

x=1

p(x)I(x) = −
M
∑

x=1

p(x) log2(p(x)) (11)

While Shannon entropy is applied to discrete variables, for

continuous EEG signals, differential entropy is introduced to

calculate their complexity as shown in Equation (12).

h(X) = −
∫ t

X
f (x) log(f (x))dx (12)

where f (x) is the probability density function of the random

variable X.

Given that EEG signals divided into specific frequency bands

essentially follow a Gaussian distribution [21], by substituting the

probability density function fX∼N(µ,σ 2)(x) = 1√
2πσ

e
− (x−µ)2

σ2 into

the above equation, we obtain the calculation formula for the EEG

signal DE feature as shown in Equation (13):

h(X) = −
1
∫

X

1√
2πσ

e
− (x−µ)2

σ2 log

(

1√
2πσ

e
− (x−µ)2

σ2

)

dx

= 1
2 log(2πeσ

2) (13)

4.3 Results analysis

To verify whether the self-supervised learning method is

genuinely applicable to EEG data to achieve the purpose of

eliminating the constraints of manual labels, we applied the results

of pre-training of the previous task to three emotion datasets

(SEED, SEED-IV, and DEAP), and compared their performance in

downstream tasks with the supervised learning method described

earlier. To control experimental variables, we used the CNN

network from previous experiments as the feature extractor and

trained using different methods (CPC, RP, TS) to extract features

from unlabeled data. The experimental results are shown in Table 2.

The baseline percentages for SEED, SEED-IV, and DEAP were

33.3%, 25.0%, and 25.0%, respectively. We have transformed DEAP

into a four classification task based on the common data processing

methods used in the past. Specifically, we have chosen Valence and
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TABLE 2 SSL classification results in downstream emotion recognition tasks.

RP TS CPC Baseline

SEED Accuracy/Std (%) 35.49/0.43 35.91/1.46 51.90/4.63 33.33

F1_macro/Std (%) 34.41/1.27 35.11/1.69 50.12/5.75 33.33

SEED-IV Accuracy/Std (%) 28.51/1.02 29.64/1.05 33.21/4.34 25.00

F1_macro/Std (%) 27.89/1.06 28.59/0.08 30.89/4.51 25.00

DEAP Accuracy/Std (%) 52.76/5.08 50.11/4.65 55.21/6.62 25.00

F1_macro/Std (%) 48.89/2.82 48.27/5.66 44.83/4.86 25.00

TABLE 3 SSL classification time in downstream emotion recognition

tasks.

RP TS CPC

SEED s/epoch 1.59 1.60 1.58

SEED-IV s/epoch 1.32 1.31 1.30

DEAP s/epoch 1.49 1.35 1.31

Arousal as the two main dimensions of emotional research. These

numerical data values range from 0 to 10. Therefore, 5 is usually

used as a threshold to binarize each dimension. Therefore, DEAP

was transformed into a four class task with a baseline of 25%.

From the results in Table 3, we can clearly see that there are

distinct differences in the effectiveness of the features extracted

by the three pre-tasks when used for classification. In the

SEED dataset, the RP pre-task in the three-way classification

experiment is equivalent to having no classification ability.

However, the CPC method shows significant potential. The

accuracy of the CPC method in the three-way classification

problem can reach 51.90%, indicating that the self-supervised

learning method has the capability to learn useful representational

features for downstream tasks without any manual labels.

For different datasets, different pre-tasks demonstrate

varied effects in downstream emotion recognition tasks.

Overall, the CPC method is relatively stable across the three

datasets.

In this paper, we propose to apply the self-supervised learning

method, which does not require manual labels for learning, to

the emotion recognition problem. By defining labels for the

original data through three pre-tasks: Relative Position, Temporal

Shuffling, and Contrastive Predictive Code, we learn feature

representations through pre-training from the data itself. Through

experimental results, we can see that different pre-tasks have

distinct classification effects on downstream tasks. The results

of the Contrastive Predictive Code method indicate that the

self-supervised learning method can learn useful representational

features for downstream tasks without any manual labels.

Comparisons of results between RP, TS, and CPC were subjected

to Wilcoxon pairwise tests. All combinations were corrected

for multiple testing, indicating the validity of the conclusions.

The purpose of the test is to demonstrate the effectiveness of

the CPC method in improving results. RP vs. CPC (p-values

= 0.001). TS vs. CPC (p-values = 0.001). We provide more

details on the computational time required to apply the entire

self supervised learning framework on each dataset as shown in

Table 3.

5 Limitations and future directions

Integrating model interpretability into the framework is indeed

a crucial aspect, especially in domains like neuroscience where

understanding the underlying neural mechanisms is essential. The

ability to discern between meaningful neurophysiological features

and irrelevant artifacts is paramount for ensuring the reliability

and validity of the decoding process, particularly in tasks such as

emotion classification.

The approach of incorporating ad-hoc interpretable elements

into neural networks (Borra et al., 2019, 2022, 2023b; Zhao

et al., 2019), as explored in studies like those by Borra et al.,

represents a promising direction. By designing networks with

built-in mechanisms for identifying relevant spatial and frequency

neural signatures, researchers can enhance the interpretability

of the model’s decisions. These interpretable elements not only

facilitate understanding the model’s inner workings but also aid

in identifying which features contribute most significantly to the

decoding task.

Moreover, the utilization of deep learning frameworks

equipped withmodel explainability techniques (Schirrmeister et al.,

2017; Lawhern et al., 2018; Farahat et al., 2019; Vahid et al.,

2020; Borra and Magosso, 2021; Borra et al., 2021, 2023a) such

as saliency maps, layerwise relevance propagation, and SHapley

Additive exPlanations (SHAP) further enhances the interpretability

of neural network models. These methods provide insights into

how the model arrives at its predictions, offering valuable clues

about which input features are influential in driving the decision-

making process.

In the future development of our framework, we acknowledge

the importance of integrating interpretability techniques to

enhance the transparency and trustworthiness of the decoding

process. By incorporating methods like those mentioned above, we

aim to provide neuroscientists with not only accurate decoding

results but also meaningful insights into the neural substrates

underlying the observed phenomena. This approach will not only

improve the interpretability of our framework but also foster

greater collaboration and understanding betweenmachine learning

and neuroscience communities.

6 Conclusion

Over the past few decades, emotion recognition, due to

its crucial role in the field of human-computer interaction,

has always been favored by researchers. Meanwhile, with the
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development of artificial intelligence, neuroscience has received

unprecedented attention. EEG signals, because of their objectivity

and accuracy, have gradually been introduced into the field of

emotion recognition. This paper primarily bases its research on

EEG signals and explores different emotion recognition methods

onmultiple emotion datasets. Considering the cost and reliability of

manually labeled EEG signals, this paper proposes the application

of a self-supervised learning method for emotion recognition that

doesn’t require manual labels. Labels are defined for the original

data through three pre-tasks: Relative Position, Temporal Shuffling,

and Contrastive Predictive Code, and feature representations are

learned through pre-training from the data itself. Through the

experimental results, we can see that different pre-tasks have

distinct classification effects on downstream tasks. The results

of the Contrastive Predictive Code method indicate that the

self-supervised learning method can learn useful representational

features for downstream tasks without any manual labels.
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