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Deep brain stimulation (DBS) is a neuromodulatory therapy that has been FDA 
approved for the treatment of various disorders, including but not limited to, 
movement disorders (e.g., Parkinson’s disease and essential tremor), epilepsy, 
and obsessive-compulsive disorder. Computational methods for estimating 
the volume of tissue activated (VTA), coupled with brain imaging techniques, 
form the basis of models that are being generated from retrospective clinical 
studies for predicting DBS patient outcomes. For instance, VTA models are used 
to generate target-and network-based probabilistic stimulation maps that play 
a crucial role in predicting DBS treatment outcomes. This review defines the 
methods for calculation of tissue activation (or modulation) including ones 
that use heuristic and clinically derived estimates and more computationally 
involved ones that rely on finite-element methods and biophysical axon 
models. We define model parameters and provide a comparison of commercial, 
open-source, and academic simulation platforms available for integrated 
neuroimaging and neural activation prediction. In addition, we review clinical 
studies that use these modeling methods as a function of disease. By describing 
the tissue-activation modeling methods and highlighting their application in 
clinical studies, we provide the neural engineering and clinical neuromodulation 
communities with perspectives that may influence the adoption of modeling 
methods for future DBS studies.
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1 Introduction

Deep brain stimulation (DBS) is a neuromodulatory therapy that has been used to treat 
various neurological disorders for over 40 years. DBS was first introduced throughout the late 
1980s and 1990s by Benabid and colleagues as an alternative to lesional surgery for treating 
medication refractory Parkinson’s disease (PD) (Benabid et  al., 1989, 1991, 1996, 1998; 
Benazzouz et al., 2000). In 1997, the FDA approved the use of thalamic DBS to treat PD tremor 
and essential tremor (Aum and Tierney, 2018) and the adoption of neuromodulation for 
movement disorders spread quickly soon after. Following its success in treating motor 
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symptoms, DBS was studied for its utility in treating psychiatric 
disorders, beginning in 1999 when Nuttin and colleagues examined 
the impact of DBS in four patients with obsessive-compulsive disorder 
(OCD) (Nuttin et  al., 1999). Over the last few decades, the FDA 
further approved the use of DBS for OCD and epilepsy (Nuttin et al., 
1999). Currently, researchers are exploring the use of DBS for other 
psychiatric disorders, such as Tourette syndrome, major depressive 
disorder, eating disorders, substance use and addiction, chronic pain, 
tinnitus, Alzheimer’s disease, and anxiety disorder (Lee et al., 2019).

DBS is rapidly growing as a neuromodulatory therapy for many 
medication-refractory neurological diseases and it is estimated that by 
2019 over 160,000 people had received DBS world-wide with a 
projected growth of more than 12,000 new implants per year (Lee 
et al., 2019). DBS can be very effective in select patients with fewer 
adverse events compared to traditional lesional procedures. DBS has 
progressively entered the clinical sphere as a predominant and 
effective solution for medication-resistant and refractory motor and 
psychiatric conditions (Mayberg et al., 2005; Greenberg et al., 2006; 
Schlaepfer et  al., 2008; Malone et  al., 2009; Parastarfeizabadi and 
Kouzani, 2017).

Methods to optimize the clinical benefit of DBS for individuals 
with various diseases are a major topic of current research in the field 
of brain neuromodulation therapy. Data-driven models made from 
retrospective studies of populations of patients are beginning to allow 
for more precise clinical guidance on surgical placement of DBS leads 
and programming of stimulation parameters of the electrodes (Wong 
et  al., 2020). However, as more practitioners adopt the available 
methods, it becomes increasingly important for the community to 
understand their limitations and assumptions. The modeling tools 
including those that predict the extent of tissue activated by the 
stimulation (i.e., volume of tissue activated (VTA)) and its 
corresponding use in neuroimaging procedures that make it relevant 
to disease target structures or connected networks fall within this 
scope. By contextualizing VTA in the history of neuromodeling with 
respect to DBS and by analyzing how it works, we can demystify its 
function in an attempt to improve understanding for use in future 
clinical studies and practices. Similarly, by analyzing instances in 
which VTA with neuroimaging has been used clinically, we  may 
extract its use in the progression of DBS therapy and identify areas in 
which advances in modeling are needed.

1.1 Overview of the VTA and its use with 
neuroimaging

The VTA approximates the spatial extent of the modulatory 
influence of a voltage field arising from stimulating electrode/s on 
neighboring neural tissue. It is visualized as a volume and is a useful 
metric with which to compare overlap with specific anatomical brain 
structures or fiber tracks connecting distant brain regions. This 
volume does not accurately represent the microscopic biophysical 
reality of cell-specific activation near the DBS lead; however, it has 
become a very useful tool for the study and prediction of clinical 
impact of DBS therapy. How the volume is calculated and the 
differences that lie there-in are discussed in Section 2.

The utility of the VTA is dependent on imaging the brain. Wårdell 
et al. provide a detailed review of imaging and modeling technologies 
for DBS (Wårdell et al., 2022). In short, the DBS lead location with 

respect to anatomical structures of the individual must be identified 
with pre-operative MRI for anatomy and post-operative MRI or CT 
scans for lead localization. Existing neurological atlases then need to 
be warped to the patient’s brain images to provide spatial reference 
points (Wårdell et al., 2022). Additionally, pre-operative MRI scans 
with diffusion tensor imaging (DTI) provide extra information that 
can be used to define local anisotropic tissue electrical conductivity 
values that can inform the VTA calculation (Tuch et al., 2001; Butson 
et al., 2007). This additional specificity can make for a more accurate 
VTA estimation, especially when patient-specific data is used (Malaga 
et  al., 2021, 2023). However, DTI methodological parameters 
including voxel size and resolution can introduce error (Rodrigues 
et al., 2018). For example, when using VTA models that do not assume 
a uniform and homogenous tissue, the acquisition quality and 
parameters of the DTI sequences can impact the resulting distribution 
of the electric field and ultimately the shape of the VTA.

1.1.1 Target-based stimulation mapping
The initial use of VTA calculations, besides its role in the design 

and characterization of electrode/lead geometries (Butson and 
McIntyre, 2005b), was to determine to what extent target brain 
structures were affected by the electrical stimulation through viewing 
the overlap between the predicted VTA and the anatomical structure 
(McIntyre et al., 2004b), as depicted in Figure 1A. This vein of research 
has evolved into using data-driven approaches (Figure 1B), where 
populations of patient data provide probabilistic estimates of DBS 
efficacy and are used to help define optimal “sweet spots” for 
stimulation targets (Butson et al., 2011; Cheung et al., 2014; Eisenstein 
et  al., 2014; Dembek et  al., 2017; Reich et  al., 2019). Different 
approaches have been used to cluster the patient data for development 
of probabilistic maps of stimulation efficacy, including using 
thresholding or voxel-wise statistical methods. Dembek et al., suggest 
that voxel-wise statistics that base outcome in a certain voxel against 
average clinical outcomes is a promising method in that it provides the 
most consistent results for different scenarios (Dembek et al., 2022). 
Other work highlighting the influence of nuances in methods within 
voxel-wise statistical approaches (Nordin et al., 2022) shows that this 
facet of DBS research is also still being refined. Probabilistic 
stimulation maps for prospective use in which an individual’s 
predicted VTA may be tuned via stimulation parameter selection for 
optimal mapping to a disease-specific probabilistic stimulation atlas 
will enable optimization for stimulation programming and lead 
placement and may reduce the amount of clinical trial and error.

1.1.2 Network-based stimulation mapping
Alternatively, to get a better understanding of the underlying 

mechanisms of DBS with respect to network activity, researchers 
introduced techniques of using the VTA to seed calculations that 
determined which distant brain regions were either structurally or 
functionally connected to the stimulation site. For example, DTI 
information can be used to reconstruct and approximate axonal fiber 
tracts that reveal structural network connectivity throughout the brain 
(Horn et al., 2014). In this method, representations of individual fiber 
tracts that pass through the VTA are identified and traced to cortical 
or other distant brain areas (Figure 2A). Additionally, another method 
correlates the blood-oxygen-level-dependent (BOLD) brain signal at 
the voxel level via whole brain functional MRI (fMRI) with voxels 
within the VTA to identify distant regions that are functionally 
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connected to the VTA area (Al-Fatly et al., 2019). The two methods 
are conceptually depicted in Figure 2. Both methods may be used 
within a population study to result in independent network-based 
stimulation atlases/maps. VTAs can also be used to compute these 
network metrics at a cohort level within a framework known as a 
“connectome.” A connectome represents group-averaged structural or 
functional connectivity data that can either be patient-and disease-
specific or normative—meaning a standardized dataset generated 
from a large collection of healthy volunteers.

In summary, VTA computations in conjunction with advanced 
neuroimaging has allowed for much insightful information to 

be gleaned from population-based retrospective studies. The field is 
on the verge of being able to use the results of these studies to perform 
clinical predictions that could aid in the presurgical planning of lead 
placement and reduce programming time after implantation. This 
technology will enable clinician guidance that is individualized to each 
patient. However, as precision is necessary for patient-specific 
applications, the errors and assumptions within the modeling methods 
need to be  fully understood. In this review, we  highlight key 
differences in the methodologies and biophysical foundations of 
current VTA models (Section 2), identify the VTA/neuroimaging 
models used in a collection of disease-specific clinical studies (Section 

FIGURE 1

The use of VTA and structural neuroimaging in clinical retrospective studies. (A) Conceptual drawing of one patient’s VTA calculation compared (voxel-
wise) with a neuroanatomical atlas to estimate the influence of stimulation on target structures. (B) Representative probabilistic results from a 
population of patients that show correlation of VTAs with clinical outcomes (efficacy of treatment with minimal side-effects). Red denotes high 
correlation with clinical efficacy while yellow denotes low correlation. The image of the brain was taken from standard template image (MNI 152 
brand).

FIGURE 2

The use of VTA and connectivity mapping in retrospective studies. (A) White-matter fiber tracts intersecting the VTA enable estimation of connectivity 
with distant brain regions including the cortex. (B) The fMRI voxels included in the VTA are correlated with whole-brain fMRI to map functional 
connectivity in a single individual. (C) Either technique for connectivity mapping may be used in retrospective studies of populations of patient groups 
to result in a data-driven network-based connectivity atlas for a specific disease. Red denotes high correlation with clinical efficacy while yellow 
denotes low correlation.
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3), and comment on trends and use-cases (Section 4). The errors and 
biases found in the methods for target-or network-based stimulation 
mapping are not discussed in detail in this review.

2 Calculating the VTA

DBS stimulation hardware provides rectangularly shaped stimulus 
waveforms, which may be voltage or current-controlled (Amon and 
Alesch, 2017). However, traditionally, voltage-controlled waveforms 
have been used clinically and thus many of the VTA approximation 
methods are based on voltage input parameters. The waveform is in 
the form of pulse trains with pulse width on the scale of tens to 
hundreds of microseconds and pulse frequency in the low hundreds 
of Hz (Volkmann et al., 2006). These stimulation (or programming) 
parameters including pulse shape (such as monophasic or biphasic) 
are needed to define the VTA around one or multiple stimulating 
electrodes. Frequency has been shown to have minimal effects on the 
physics-based calculation of the VTA (Duffley et al., 2019) and thus is 
usually neglected in VTA estimation methods. Different electrode 
configurations such as monopolar (i.e., one stimulating electrode with 
respect to a distant ground electrode), bipolar (one stimulating 
electrode with respect to an adjacent ground electrode), or multiple 
monopolar are also possible. Figures 3A,B capture these parameters. 
Figure  3A shows examples of monophasic and biphasic stimulus 
waveforms with negative (cathodic) leading pulses and Figure 3B 
shows examples of monopolar or bipolar electrode configurations on 
a typical DBS lead (such as the Medtronic 3387 lead) with four 
cylindrical electrode contacts. In the monopolar configurations, the 
ground contact is the internal pulse generator (IPG) and is usually 
modelled as the outer boundary in FEM simulations (Butson and 
McIntyre, 2005b; Aström et al., 2009).

Existing research-grade, commercial, and open-source simulation 
toolboxes that couple the VTA estimations with neuroimaging data 
employ a variety of methods to compute the VTA. As a result, the term 
“VTA” has taken on several definitions across the literature and 
commercial platforms. Each VTA model has inherent assumptions 
and limitations, which may make one model more appropriate than 
another for certain clinical DBS studies. In this section, we  will 
highlight the major assumptions and limitations for the major VTA 
approaches; but first we present historical context with respect to 
modelling neural activation and DBS.

2.1 Modeling neural activation—historical 
context

Computational models used to predict neural excitation have 
evolved considerably since 1907 when Louis Lapicque first described 
the integrate-and-fire model (IF) as a tool to simulate the spiking 
activity of neuronal membranes using a parallel capacitor and leak 
resistor (Abbott, 1999). Hodgkin and Huxley provided a more 
complex equivalent circuit model of the cell membrane of the squid 
giant axon that incorporated the dynamics of specific ion-channels 
constituting the action potential (Hodgkin and Huxley, 1952). 
Incorporating a Hodgkin and Huxley-style membrane model, Wilfrid 
Rall developed a mathematical model by which to simulate the 
electrophysiology of realistic morphologies of neurons including the 

soma, dendritic tree, and axon (Rall, 1962). Using cable and core-
conductor theory (Rall, 2011), his work set the stage for multi-
compartment cable models of neurons and axons that are widely used 
today in computational neuroscience.

Regarding DBS, multi-compartment cable models were first used 
to try to elucidate the therapeutic mechanism of action of the 
stimulation. Four theories were tested with biophysically accurate 
models of thalamocortical relay neurons (including soma, dendrites, 
and axon) (McIntyre et  al., 2004a). Of the four theories, three 
hypothesized that electrical stimulation inhibited neuronal responses 
through (1) blockade of voltage-gated currents in the neurons, (2) 
synaptic inhibition of neurons, or (3) synaptic transmission failure due 
to transmitter depletion. The fourth theory suggested that electrical 
stimulation directly modulated the pathological network activity via 
modulation of surrounding neural tissue—an informational lesion. 
McIntyre et al. showed that physics-based computational modeling 
results compared with functional imaging and neural recording 
suggest that the fourth theory is most probable (McIntyre et  al., 
2004a,c). However, there is still much ambiguity in the biological 
mechanisms that underlie the effectiveness of DBS for various diseases 
(Lee et al., 2019). Nevertheless, computational modeling studies also 
showed that the axon (or “fiber of passage”) was most important to 
model since it could be  most easily depolarized by electrical 
stimulation and was the primary conduit for action potential 
propagation (McIntyre et  al., 2004a,c). Based on these findings, 
researchers began to use modeling to predict an approximated volume 
of tissue activated (VTA) surrounding the active DBS contact as a 
function of stimulation parameters. Since biophysically accurate, 
physics-based models are computationally expensive and require 
specific computing skills, methods to calculate a VTA manifested in a 
myriad of flavors with different levels of approximations.

2.2 FEM-based models

Generally, a top-level distinction can be drawn between VTA 
methods that either need an extra computational tool that uses the 
finite element method (FEM) to compute the voltage field and/or 
its spatial derivatives as input to its VTA model, or ones that do not 
(Figure 4). The papers referenced in Figure 4 and described in 
Sections 2.1–2.3 are the seminal papers describing new VTA 
methods or new increments to known methodologies; it is not 
intended to be  comprehensive of all papers published on 
VTA methods.

The finite-element method is commonly used to numerically 
solve for the voltage field, V, resulting from a stimulating electrode 
in a 3-dimensional conductive medium defined by conductivitys 
σ, which can be  real or complex to incorporate frequency 
dependence in a tissue model (i.e., capacitive effects). The 
differential equation solved by FEM tools to calculate the VTA is 
the Laplace equation:

 ∇ ⋅ ∇ =σσ V 0,  (1)

with boundary conditions that reflect the stimulation voltage or 
current at electrode contacts. FEM-based models are dependent on 
the physical parameters that incorporate the geometry of the DBS 
lead, tissue heterogeneity and anisotropy, and the presence of 
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encapsulation tissue around the lead due to a foreign body immune 
reaction. Figure 3D depicts these parameters. Typically, these FEM 
simulations are time-independent and thus the time dependence of 
the voltage waveform (Figure 3A) or nonideal capacitive effects of the 
electrode/electrolyte interface (Brug et al., 1984; Butson and McIntyre, 
2005a; Miocinovic et al., 2009) as seen in Figure 3C are not modeled 
in the FEM simulation. Time-dependent effects—the capacitively 
filtered stimulus waveform and the programming parameter pulse 
width—are usually taken into account using separate methods (e.g., 
incorporated into the equivalent circuit-based field-axon simulation), 
but can be incorporated in FEM simulations using Fourier methods; 
e.g., the OSS-DBS simulation framework has this capability (Butenko 
et al., 2020).

As a secondary distinction between VTA methods within the 
FEM branch (Figure 4), FEM-derived values of the voltage field are 
used to compute the VTA via heuristic models or ones derived from 
multicompartment axon models (i.e., field-axon). Field-heuristic 
models, discussed in the following section, couple a FEM solution of 
field values (i.e., 1st spatial derivative of the voltage field) with clinical 
data of DBS effectiveness.

2.2.1 Field-heuristic
With least computational complexity out of the FEM-based 

models, field-heuristic VTA models use computational methods to 
define iso-contours or iso-surfaces of electric field values that correlate 
with perceived clinical efficacy. Hemm et  al. first introduced this 
method to help visualize the extent of the VTA by correlating 
calculated 2D field contours with MR brain images and therapeutic 
DBS parameters in patients with leads in the internal globus pallidus 
(GPi) for dystonia therapy (Hemm et  al., 2005a,b). They used a 
homogenous, isotropic tissue conductivity model and surmised that 
for numerous patients using monopolar, double monopolar, or bipolar 
electrode configurations, the absolute value of electric field vector of 
0.2 V/mm was a good estimate of GPi coverage.

Aström et al. further evaluated this method of using the computed 
electric field in an FEM model and a heuristic threshold value of 0.2 V/
mm to help visualize a VTA using a heterogenous tissue model 
(Aström et al., 2009). Their paper states that “[this method] should 
only be interpreted as a boundary of tissue, where the electric field 
(absolute value of the 3D vector) is 0.2 V/mm or larger, and not as the 

FIGURE 3

Parameters that influence the calculation of the VTA. (A) Typical DBS leads can have various stimulating electrode configurations including monopolar, 
bipolar and multimonopolar. (B) Typical stimulus waveforms consist of cathodic monophasic or cathodic biphasic voltage controlled or current 
controlled pulses with user defined pulse amplitude and pulse width. (C) The capacitive nature of the electrode interface, usually modeled as capacitor 
or a constant phase element (CPE) will filter a voltage-controlled stimulus pulse. (D) The volume conductor in a finite element model can have 
materials that model the brain tissue and tissue encapsulation layer with various representations of electrical conductivity.
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volume of tissue influenced by the stimulation,” but nonetheless was 
used to help explain stimulation-induced side effects of DBS for 
Parkinson’s disease therapy in one patient. The FEM model was used 
to compute the maximum electric field in 3D space with a 
heterogenous model space of white and grey matter (σ  = 0.06, 
0.09 S/m, respectively) based off of patient-specific MRI data and with 
normalized stimulus voltages (reduced by a factor 0.89) to 
accommodate for non rectangular stimulus waveforms from the IPG 
(Butson and McIntyre, 2007), but no tissue encapsulation was 
modeled. The 0.2 V/mm threshold value was based off of two clinical 
inferences: (1) the isolevel of 0.2 V/mm was within a clinically effective 
radius of 2–5 mm in the STN as given by (Volkmann et al., 2006) for 
Parkinson’s disease therapy using conventional monopolar 
programming and (2) Hemm’s early work with calculated electric field 
values and GPi stimulation for dystonia (Hemm et al., 2005a,b).

Choosing a single electric field threshold to compute a volume is 
inherently dependent on the FEM model parameters (e.g., tissue 
conductivity, heterogeneity, etc.) and thus prone to large variability, 
plus that it does not take into account time dependency on stimulus 
waveforms. However, many clinical studies (referenced in Section 3) 
use the 0.2 V/mm electric field threshold as a VTA metric as it is a 
straight-forward method.

2.2.2 Field-axon—grid geometry
The other types of FEM models couple field information to 

multicompartment models of myelinated axons. One subset of these 
models place axons in a grid perpendicular to the long axis of the DBS 

lead (i.e., grid geometry) and estimate a volume based on the extent 
of activation of individual axons at certain stimulation parameters 
(e.g., voltage, pulse width, and sometimes pulse train frequency and 
capacitive effects of the tissue or electrode interface that shape the 
waveform). Another subset of field-axon models, pathway activation 
models, make use of more realistic axon pathways via MRI-based 
tractography (Coenen et al., 2012) and will be discussed in more detail 
in Section 2.2.3.

Butson and McIntyre (2005a) developed the first of the grid-
geometry field-axon models. Building on earlier work (McIntyre et al., 
2004b), they performed a simulation study that used 
multicompartment models of a 5.7 mm diameter myelinated axon 
(McIntyre et al., 2002) to predict action-potential excitation from 
monopolar cathodic stimulation of a Medtronic 3387/3389 DBS 
electrode for a single pulse width of 90 μs over a range of isotropic 
tissue conductivities and encapsulation conductivities. Fibrotic tissue 
encapsulation was modelled in the FEM model as a space adjacent to 
the lead with a range of lower conductivities (by a factor of 2, on 
average) than the bulk tissue. In subsequent work (Butson and 
McIntyre, 2005b), Butson and McIntyre again used the same 5.7 mm 
myelinated axon grid-model to predict activation for multiple pulse-
width cathodic monopolar signals in a homogeneous isotropic 
medium with conductivity equal to 0.3 S/m; however, their goal was 
to define an analytical equation fit to their simulation results that 
would decrease the time and computational complexity of VTA 
prediction. They make use of the activating function (Rattay, 1986), 
which is the second spatial derivative of voltage (∇2V ), and shown to 

FIGURE 4

Classification of seminal papers on modeling methods for volume of tissue activated or pathway activation based on using finite-element methods 
(FEM) or not. Further classification can be made with axon biophysical models (field-axon) or not (field-heuristic) and then an even further classification 
between axons placed on a grid in conventional VTA and axons defined by tractography. The grey lines denote dependence of one model on the 
former. The groups of models can be assigned levels of computational complexity and biophysical accuracy or tunability as seen in the chart (bottom 
left).
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be a useful value to define a threshold since it is relatively constant 
over a range of electrode designs (Butson and McIntyre, 2005b). Their 
result was a response curve of activating function thresholds for the 
individually placed axons as a function of the product of stimulus 
amplitude and pulse width. Because of their axisymmetric simulation, 
a 2-D contour line based on an activating function value for specific 
stimulus voltage amplitude and pulse width parameters can be rotated 
around the lead to define the 3-D VTA. Their work instantiated a 
look-up-table (LUT) approach for fast prediction of VTAs based on 
stimulation parameters (pulse amplitude and width). The 2005b 
model was limited in that only isotropic media with conductivity of 
0.3 S/m was used in the FEM, and thus does not apply in heterogeneous 
and anisotropic models. Cicerone (Miocinovic et  al., 2007), an 
academic software coupling VTA with neuroimaging software that has 
been commercialized by Boston Scientific as GUIDE, uses 
precompiled data from simulations using methods from the above 
studies to provide fast computation for a number of monopolar 
electrode settings. The effects of electrode interfacial impedance 
(Butson and McIntyre, 2005a) are incorporated in Cicerone.

In an effort to compare electric field thresholds with activating 
function thresholds and to analyze the effect of other considerations 
such as fiber diameter, Åström et al. used multicompartment cable 
models coupled with FE modelling (Åström et al., 2015). Their model 
used slightly different biophysical parameters for the axon model than 
used by the Butson-McIntyre models and employed a single cable 
model instead of a double cable model; however, the fibers were 
similarly placed in a grid perpendicular to the DBS lead. Also, the 
FEM simulation used an isotropic conductivity of 0.1 S/m in the 
volume conductor. Their study suggested that isosurfaces generated 
by electric field thresholds and activating thresholds could be used to 
approximate the VTA defined by field-axon simulations. They also 
show that the electric field (1st spatial derivative of voltage) rather 
than the activating function (2nd spatial derivative) is a simplified 
metric by which to define VTA threshold values, supporting their 
earlier work (Aström et al., 2009) because it is largely independent of 
stimulation amplitude for large diameter fibers for a specific pulse 
width. Thus, their method when used for fast prediction, could also 
entail a look-up table approach with computation of the electric field 
to estimate the VTA for a stimulus of a specific pulse width, only. Of 
note, their results for a fiber diameter of 3.5 mm matched simulation 
results for the Butson-McIntyre 5.7 mm diameter model. The nodal 
spacing, which turned out to be  a large factor in excitability, was 
similar for the individual axon models of the mentioned diameters. 
Two opensource packages use these results for fast computation. Lead 
DBS (Horn et al., 2014) and FastField (Baniasadi et al., 2020) compute 
VTAs from electric field isocontours based on data from Table 3 in 
Åström et al. (2015) for cathodic pulse widths of 30, 60, 90, and 120 μs 
and fiber diameters from 2 to 5 μm. In these cases the average electric 
field value, which corresponds to a voltage pulse amplitude of 3 V, is 
used as the VTA threshold metric.

One limitation of grid-geometry models is that isotropic tissue 
conductivity must be used since the volume is defined by revolving 
the contour created by individual fiber activation in the plane grid-
geometry. Later work by Butson et al. using the activating-function 
threshold approach showed that these models can be  adapted to 
accommodate anisotropic tissue conductivities, defined by DTI, and 
create 3D surfaces informed by the local conductivity (Butson et al., 
2007). How to best compute the second spatial derivative for a 3D 

volume was the topic of the latter two studies (Anderson et al., 2018; 
Duffley et al., 2019). The max eigenvalue of the Hessian matrix, which 
is the spatial partial second derivative of voltage, is used in these 
models to define a VTA volume that is independent of fiber 
orientation. Being that it uses the max value along any spatial 
direction, it could overestimate activation for realistic fiber trajectories; 
however, it is a very convenient method to use with anisotropic or 
heterogenous conductivity in FEM models. The absolute value of the 
3D electric field vector can similarly be used to define a VTA within a 
finite-element model with local conductivities defined by DTI data; its 
estimation could also lead to overestimation.

2.2.3 Field-axon—pathway activation models
Pathway activation models (PAM) define the axon pathways, 

from either patient DTI-based tractography information or 
structural connectome and pathway atlas data sets, and are not 
technically VTA models, as activation of discrete fibers near the DBS 
electrode are computed rather than a volume. However, they do 
predict axon/fiber activation as a response of DBS and the methods 
used for these models fall under the field-axon classification 
(Figure 4). Gunalan et al. used detailed FEM models with multi-
compartment axon models of 5.7 mm diameter to predict activation 
of axons in two corticofugal axonal pathways: the hyperdirect 
pathway and the internal capsule fibers of passage (Gunalan et al., 
2017). Their modeling results correlated well with effective clinical 
stimulation settings in that a portion of the hyperdirect pathway 
fibers were activated and none of the fibers in the internal capsule 
were activated, which corresponded well with clinical hypotheses 
for efficacy.

Since multi-compartment axon models are computationally 
intensive, subsequent work by Howell et al. (2019) developed a linear 
approximation to the multi-compartment axon model that allowed for 
much faster prediction of FEM-informed pathway-activation models. 
They presented empirical models for a range of axon diameters. 
Additionally, Golabek et al. developed another pathway-activation 
fast-prediction method using an artificial neural-network model for 
the 5.7 mm diameter axon (Golabek et al., 2023).

Field-axon VTA or pathway activation models are ostensibly the 
most tunable for the specific application and thus can be made specific 
to patient MRI information, but the computational complexity can 
be a barrier to entry for many practitioners and clinicians.

2.3 Non-FEM-based models

Some VTA models do not need FEM computation as input. They 
are based on empirical clinical studies and/or rely on relationships 
derived from physics-based multicompartment axon models and thus 
are inherently specific to the data from which they were derived. 
However, because of not having to perform extra computation, these 
models are extremely fast; nevertheless, they may also introduce error 
to the study if used outside of their limits.

Kuncel et  al. adapted an empirical model for neuron/axon 
activation that relates the threshold voltage to distance away from an 
electrode (threshold-distance relationship) for DBS for Parkinson’s 
disease (Kuncel et al., 2008). The empirical model, which was first 
determined for excitation of pyramidal-cell tracts in the cat motor 
cortex (Stoney et al., 1968) is described in Eq. 2. It assumes that the 
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threshold voltage for excitation, Vth , (which would represent the 
amplitude of the applied voltage pulse) is proportional (with constant 
k ) to the squared distance r from the electrode (which would represent 
the spherical radius of a volume of tissue activated) plus an offset v:

 V v krth = + 2
. (2)

Kuncel et al. tuned the empirical model based on paresthesia-
related side effects of monopolar (cathodic) stimulation in the Vim 
nucleus of the thalamus. The Kuncel model is specific to monopolar 
stimulation on a model 3387 Medtronic DBS lead, a 90 μs cathodic 
monophasic voltage pulse and comprises an average of results from 8 
subjects. Also, the influence of tissue and electrode impedance is 
inherently built into this model. Interestingly, as shown in Åström 
et al. (2015), the Kuncel model is equal to an electric field threshold 
value of 0.165 V/mm in isotropic media of 0.1 S/m.

Mädler and Coenen (2012) introduced another empirical model 
computing the VTA via a spherical radius from the middle of a 
monopolar DBS electrode as a function of stimulus voltage amplitude 
(Vth ) and electrode and electrode/tissue impedance by using the 
results of field-axon simulations in Butson and McIntyre (2005a). 
They fit a second order polynomial to the computational model results 
of the form:

 
V r k k r k k r k kth ,Ω Ω Ω Ω( ) = + + + + +0 1 2 3

2
4 4

2
,

 (3)

where r is the radius from the center of the electrode, k ’s are fitting 
constants, and W is the impedance of the system. Impedance values 
from Butson and McIntyre (2005a) were determined from in situ 
impedance measurement by the IPG stimulator at a frequency of 
30 Hz. Also, this model is specific to 90 μs cathodic monophasic pulse 
trains. According to Åström et al. (2015), this model is equivalent to 
an electric field threshold of 0.19 V/mm in isotropic media of 0.1 S/m 
when using an impedance of 1,000 Ohms, which is very close to the 
heuristic value of 0.2 V/mm.

Dembek et al. established another simple model to estimate the 
spherical radius, r , of VTA fit to Åström et  al.’s (2015) field-axon 
simulations that incorporate the effect of pulse width on electric field 
threshold (Dembek et al., 2017). Their model which is derived from 
Coulumb’s law is as follows:

 
r pw
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I

E
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given given
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 ∗
0 3

0 72

.

. ,

 
(4)

where I  is an applied stimulus current amplitude, pwreal  is the 
pulse width of the applied pulse, and pwgiven and Egiven are reference 
values of known correlation between pulse width and electric field 
threshold values. Dembek et al. used the values of 0.165 V/mm and 
pulse width of 90 μs for the “given” parameters that matched the 
empirical results from Kuncel et al. (2008) with the Åström et al. 
(2015) model for electric field threshold. If the impedance of the 
system is known (e.g., through measurement via the IPG), then a 
voltage amplitude instead of current may be used in this model. The 
Dembek et al. (2017) model generalizes monopolar, cathodic 
monophasic stimulation to user specified pulse widths to easily 
calculate a VTA.

The last of the non-FEM models is one by Chaturvedi et al. 
(2013), which uses large-scale computational simulation results 
stemming from the methods of Butson and McIntyre (2005a) and 
Miocinovic et  al. (2007) to train an artificial neural network to 
predict VTAs based on numerous user input parameters. The 
parameters include stimulus voltage amplitude, pulse width, high, 
medium, or low tissue encapsulation resistance, and electrode 
configuration (4 monopolar, 18 bipolar configurations). The 
training data consisted of FEM results using isotropic tissue 
conductivity of 0.2 S/m outside of the tissue encapsulation layer. 
This is the only non-FEM model able to accommodate bipolar 
electrode configurations.

2.4 Open-source, academic, and 
commercial simulation platforms

Providing the community with simulation tools that couple 
neuroimaging with VTA or pathway-activation calculation with 
reduced computational burden has been the intent of commercial and 
open-source platforms. Table 1 lists these simulation tools and their 
base VTA model and associated available user input parameters. All 
of these platforms stem from the academic works discussed in 
Sections 2.2–2.3 and many use simplified algorithms based on 
precomputed data from detailed field-axon simulation studies. 
Moreover, this table lists what type of neuroimaging/visualization 
capability is paired with VTA simulation (i.e., anatomical target 
structures and structural and functional network connectivity) within 
each tool.

Regarding open-source simulation packages, Lead-DBS, provides 
visualization of structural atlases as well as structural and functional 
network connectivity maps, gives the option to choose between four 
methods for VTA prediction, including three non-FEM models 
(Kuncel et al., 2008; Mädler and Coenen, 2012; Dembek et al., 2017) 
and a FEM-based field-heuristic LUT model representing data from 
Åström et al. (2015) and Horn et al. (2019). A more recent platform 
release by Lead-DBS includes field-axon grid-geometry and pathway-
activation capability via the OSS-DBS simulation tool (Butenko et al., 
2020; Neudorfer et  al., 2023). FastField (Baniasadi et  al., 2020) is 
another open-source toolbox with only co-visualization of structural 
atlases and VTAs, not network connectivity maps; but it provides 
extremely fast computation of electric fields via precomputed FEM 
models for a multitude of commercial monopolar or bipolar electrode 
configurations and fast computation of a VTA using an empirical 
model fit to data from Åström et al. (2015). Linköping University has 
an open-source modelling tool that combines an FEM solver, ELMA 
(Johansson et al., 2019), with a VTA and neuroimaging platform, 
DBviS (Wårdell et al., 2022). This tool allows for co-visualization of 
VTA surfaces with structural atlases and uses electric-field-heuristic 
VTA methods or VTAs defined by data from Åström et al. (2015) that 
observes the variability due to fiber diameter and stimulus pulse 
width. SciRun (SCI Institute, 2016) is an open-source platform from 
the University of Utah that couples an FEM solver with the biophysical 
solver Neuron (Hines and Carnevale, 2001) for modeling field-axon 
simulations. This tool may be combined with structural images or 
network connectivity atlases and is extensively used by the Butson 
research group. They also have developed simplified visualization 
programs that can be run on a tablet for fast computation and make 
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TABLE 1 Description of open-source, academic, and commercial VTA and neuroimaging visualization software platforms.

Software platform VTA method Electrode type Tissue/FEM parameters Waveform parameters Neuroimaging 
visualization with VTA

Open-Source

Lead DBS

Non-FEM: Kuncel et al. (2008), 

Mädler and Coenen (2012), 

Dembek et al. (2017)

Monopolar (Medtronic 

3387, 3389)
See VTA method

Cathodic monophasic, 90 μs or variable pulse 

width; variable voltage amplitude

Anatomical target, structural 

network connectivity, functional 

network connectivity

FEM: Field-heuristic or LUT 

based on Åström et al. (2015) 

data

Monopolar, bipolar

User-defined: variable 

heterogenous isotropic 

conductivity (grey/white matter)

Field-heuristic: voltage or current amplitude; 

LUT VTA parameters: cathodic pulse width 30, 

60, 90, 120 μs, axon diameter (2–5 μm)

FEM: field-axon (Butenko et al., 

2020)
User defined: any User defined: any User defined: any

FastField

FEM: Field-heuristic or 

algorithm based on Åström 

et al. (2015) data

Monopolar and 

multimonopolar for 12 

electrodes from 4 different 

vendors

User defined: variable isotropic, 

homogeneous conductivity

Field-heuristic: voltage or current amplitude; 

LUT VTA parameters: cathodic monophasic, 

30, 60, 90, or 120 μs pulse width, variable 

amplitude

Anatomical target

ELMA+DBStim

FEM: Field-heuristic or LUT 

based on Åström et al. (2015) 

data

Monopolar, bipolar

Isotropic, heterogenous 

conductivity; with or without 

tissue encapsulation

Field-heuristic: voltage or current amplitude; 

LUT VTA parameters: cathodic pulse width 30, 

60, 90, 120 μs, axon diameter (2–5 μm)

Anatomical target

SciRun
FEM: field-axon (or Hessian 

matrix, Duffley et al., 2019)
User defined: any User defined: any User defined: any

May be combined with anatomical 

target and structural connectivity

Academic

Cicerone

Non-FEM LUT: based on 

Butson and McIntyre (2005b) 

and subsequent work

Monopolar (Medtronic 

3387, 3389)

Electrode capacitance accounted 

for, isotropic homogenous tissue 

conductivity 𝜎=0.3 S/m, user 

adjustable: encapsulation 

impedance

Cathodic monophasic, user adjustable: voltage 

or current amplitude, pulse width, pulse 

frequency

Anatomical target

StimVision v2

Non-FEM: based on Chaturvedi 

et al. (2013)

FEM: pathway activation, 

Howell et al. (2019)

Monopolar, multipolar 

and multi-monopolar 

(MDT 3387, MDT 3389, 

ABT 6172, BSN 2202)

Homogeneous isotropic 𝜎=0.2 S/m, 

tissue encapsulation layer 

𝜎=0.1 S/m

Cathodic monophasic with built in effect of 

electrode capacitance; user adjustable: stimulus 

amplitude, pulse width

Anatomical target, structural 

network connectivity

Commercial

SureTune 4 (Medtronic)
Non-FEM LUT: based on 

Åström et al. (2015) data
Monopolar Homogeneous isotropic 𝜎=0.1 S/m

LUT VTA parameters: cathodic pulse width 30, 

60, 90, 120 μs, axon diameter (2, 2.5, 3 μm)

Anatomical target, structural 

network connectivity

Guide (Boston Sci.)

Non-FEM LUT: based on 

Butson and McIntyre (2005b) 

and subsequent work

Monopolar, Guide XT: 

directional

Electrode capacitance accounted 

for, isotropic homogenous tissue 

conductivity 𝜎=0.3 S/m, user 

adjustable: encapsulation 

impedance

Cathodic monophasic, user adjustable: voltage 

or current amplitude, pulse width, pulse 

frequency

Anatomical target

Vercise Neural Navigator with 

STIMVIEW XT (Boston Sci.)

Non-FEM LUT: based on 

5.7 μm diameter fiber (MRG 

model) field-axon simulations, 

grid geometry

Monopolar, bipolar and 

directional (Boston Sci. 

leads)

Homogeneous isotropic 𝜎=0.2 S/m, 

tissue encapsulation layer 

𝜎=0.1 S/m

Cathodic monophasic, incorporates electrode 

capacitance, user adjustable: current amplitude, 

pulse width

Anatomical target
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use of a server–client setup and computation via SciRun (Butson et al., 
2013; Vorwerk et al., 2020).

As mentioned previously, the activating-function look-up-table 
method stemming from Butson and McIntyre (2005b) constituted the 
academic software Cicerone (Miocinovic et  al., 2007), which was 
developed into the commercial tool, GUIDE, by Boston Scientific 
(Horn, 2017). StimVision is another academic software from the 
McIntyre lab that has versions stemming from Chaturvedi et al. 
(2013), the neural-network-based VTA predictor (Noecker et  al., 
2018), and most recently including the fast, pathway-activation model 
of Howell et al. (2019) and Noecker et al. (2021). The second version 
of StimVision uses the CIT168 human MRI brain atlas (Pauli et al., 
2018) and the Petersen et al. axonal pathway models (Petersen et al., 
2019) with patient-specific MRI information. It offers VTA estimations 
from a large variety of precomputed electrode configurations plus 
fiber activation using the Howell et al. (2019) driving-force predictor 
algorithm on modelled fibers in 9 general axonal pathways. It is a 
computationally efficient platform suited for detailed patient-specific 
modeling for retrospective or prospective clinical studies. SureTune is 
a commercial software package from Medtronic that provides VTAs 
in comparison to structural atlases and the ability to show fiber tracts 
for structural network connectivity with SureTune 4; it uses 
precomputed FEM data and visualizes estimated VTAs for 2, 2.5 and 
3 μm fiber diameters for various stimulation amplitudes and pulse 
widths based upon data from Åström et al. (2015) and Johansson and 
Zsigmond (2021). Boston Scientific continues to incorporate more 
capability in their commercial software packages. The latest, Vercise 
Neural Navigator with STIMVIEW XT, is FDA approved and provides 
VTA estimation with co-visualization of anatomical targets for any 
monopolar, bipolar or directional electrode configuration for their 
DBS leads. Their platform allows for user input of stimulus current 
amplitude and pulse width and is based on precomputed data using 
field-axon (grid geometry) simulations following the methods of 
Butson and McIntyre (2005b) with FE model parameters of 0.2 S/m 
isotropic heterogenous brain tissue conductivity and 0.1 S/m for the 
tissue encapsulation layer (Malekmohammadi et al., 2022).

3 State-of-the-art in clinical studies

Over the last 10 years, many clinical DBS studies have been 
performed that use VTA methods with neuroimaging techniques to 
help define target sweet spots, understand the effect of current spread 
as it relates to unwanted side effects, and/or determine network 
activity to better define the mechanism of action, for example. This 
section details a sample of the insights gained by the community as a 
function of neurological disorders by such studies.

3.1 Parkinson’s disease

Since Parkinson’s disease (PD) was the first to be FDA approved 
for DBS therapy, this disease has ostensibly the most studies for it 
regarding DBS effectiveness, and thus an interesting progression of 
model-informed insight can be seen. An early study by Maks et al. 
showed that through patient-specific VTA simulation with methods 
stemming from Butson and McIntyre (2005b) and Butson et al. (2007) 
a region of the dorsal STN including white matter tracts dorsal to that 

region was correlated with improvement in overall motor symptoms 
based upon the Unified Parkinson’s Disease Rating Scale (Maks et al., 
2009). Alberts et  al. and Frakenmolle et  al. then showed decent 
propensity for using VTA-modeling for prospective DBS 
programming (i.e., stimulus amplitude and pulse width) via small-
cohort studies that assessed patient therapeutic scores with and 
without VTA-based programing settings maximized for overlap with 
the regions found in Maks et al. (Alberts et al., 2010; Frankemolle 
et al., 2010). Both of those studies also addressed reduced cognitive 
function as a side-effect of non-optimal stimulation. Other studies 
used VTA overlap with anatomical structures to assess verbal fluency 
in STN DBS (Åström et al., 2010; Mikos et al., 2011) and with DBS in 
the globus pallidus (GP) (Dietz et al., 2013).

With the addition of more sophisticated combinations of VTA 
and neuroimaging, targets were better defined, and networks 
associated with optimal therapy and side effects were identified. The 
first study that defined the method of probabilistic stimulation 
mapping of a cohort of patient-specific VTAs, albeit made from 
normative structural atlases (Butson et al., 2011) reinforced the results 
of Maks et  al.; and they defined further specificity between 
improvements in rigidity and bradykinesia as a function of spatial 
regions in the STN. Vanegas-Arroyave et al. performed a seminal 
study that used DTI tractography and VTA to give network-based 
information on the mechanism of action of therapeutic STN DBS 
(Vanegas-Arroyave et  al., 2016). They used patient-specific 
tractography from 3 T MRI of all 22 patients and the simple, non-FEM 
VTA method of Mädler and Coenen (2012) and surmised that the 
dentato-rubro-thalamic tract, zona incerta and/or pallidothalamic 
tract directed towards the thalamus contributed to clinically effective 
DBS based upon the therapeutic window established during 
monopolar review. Another study assessing structural connectivity via 
tractography and VTA looked for the network effect of speech 
disturbances in STN DBS (Mahlknecht et al., 2017). Their VTA and 
neuroimaging modeling done via SureTune (Medtronic, MN) was 
used to depict overlap of corticospinal and corticobulbar tracts. The 
corticospinal and corticobulbar tracts in this study were derived from 
patient-specific tractography and then averaged across the group. This 
information was leveraged to determine that the activation of the 
internal capsule was inversely correlated with the resting motor 
thresholds of the contralateral orbicularis oris muscle and first dorsal 
interosseus muscle, in the face and the hand, respectively (Mahlknecht 
et al., 2017). Horn et al. then perfromed a study of both structural and 
functional network-connectivity seeded by VTA for STN DBS (Horn 
et al., 2017). They used the FEM-based VTA model available in Lead 
DBS at a threshold value of 0.2 V/mm with tractography either from 
a normative connectome generated from a large database of healthy 
subjects or a normative connectome generated from a database of 90 
PD patients matched for sex and age. They showed that connectivity 
results were similar with both the healthy and PD connectomes and 
that effective STN DBS largely echoed the results found in Vanegas-
Arroyave et  al. More specifically, the supplementary motor area 
(SMA), anterior cingulate, and medial prefrontal cortex were 
correlated with effective DBS for overall motor improvement, while 
M1 was negatively correlated. Their study also paved the way for 
probabalistic network-based atlases made from large populations in 
retrospective studies. Importantly, their study also showed that the 
connectivity profiles (or network-based atlases) derived from one 
cohort could be  used to predict clinical efficacy in independent 
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cohorts. Around the same time, Akram et al. perfromed a study that 
used SureTune-derived VTAs and a voxel-wise statistical approach for 
a target-based probabilistic stimulation map and structural 
connectivity analysis for STN DBS. The tractography was patient-
specific and they surmised the following details: the central portion of 
the superior STN is most effective for tremor, while stimulation in 
medial and posterior areas, within the superior portion, gives highest 
improvements in bradykinesia and rigidity; also connectivity to M1 
appears to predict improvement in tremor, SMA predicts improvement 
in bradykinesia, and both SMA and the prefrontal cortex (PFC) 
predicts improvement in rigidity (Akram et  al., 2017). Of note, 
Dembek et al. later proposed a “sweet spot” slightly more dorsal and 
lateral than that of Akram et al. using a similar voxel-wise statistical 
approach for probabilistic mapping with VTA estimations via the Lead 
DBS framework using a FEM-heuristic approach with heterogenous 
tissue conductivity for white and grey matter and an electric field 
threshold value of 0.2 V/mm and was also able to cross-validate this 
model in a completely independent second cohort (Dembek et al., 
2019). During cross-validation, the model was found to explain 20% 
of the variance in motor score improvement in the independent 
cohort (p < 0.001). Another study used non-atlas-based patient-
specific VTA estimation for voxel-wise probabilistic stimulation maps 
of DBS efficacy for PD (Malaga et  al., 2021). Using true patient-
specific MRIs for structure segmentation and anisotropic conductivity 
they calculated VTAs via electric-field threshold values as a function 
of stimulation parameter given by Åström et al. (2015) and mapped 
optimal stimulation locations to be regions dorsomedial to the STN, 
near the posterior half of the nucleus.

Lin et al. performed a study with patient-specific tractography and 
non-FEM VTA via Lead-DBS and used machine learning (random 
forest classifiers) to characterize specific connectivity features with DBS 
outcome (Lin et al., 2020). They found the thalamus, hippocampus, 
pallidum, M1, SMA, and the superior frontal gyrus (SFG) all 
corresponded with effective DBS contacts. Additionally, the concept of 
using machine learning to classify and/or provide a predictive model 
for DBS effectiveness based on VTA-based neuroimaging data is a topic 
of interest and has been implemented for STN DBS in another recent 
study (Chen et  al., 2022). Other recent work use VTA-seeded 
connectivity maps to take closer look at side effects including 
depression in STN DBS (Irmen et  al., 2020), stimulation-induced 
dysarthria (SID) during STN DBS (Dayal et al., 2020), and SID in GPi/
GPe DBS (Tsuboi et al., 2021).

There are fewer studies using pathway activation models in the 
literature, but they pose to give more nuanced information on the 
mechanism of action. Butenko et al. suggest using PAM to define a 
profile of pathways whose balanced activation alleviates the profile of 
symptoms (Butenko et al., 2022). Their study results show that is not 
key to activate/modulate a single specific tract (such as the hyperdirect 
pathway alone) but instead a specific array of tracts connecting or 
passing the STN including the pallidothalamic projections: the ansa 
lenticularis and lenticular fasciculus (Butenko et al., 2022).

3.2 Essential tremor

DBS programming for tremor suppression in essential tremor 
(ET) is one of the most straightforward procedures in 

neuromodulation. There is direct visual feedback for tremor 
suppression that responds in real time (on the order of seconds) to 
guide DBS programmers. However, the challenge in DBS for ET lies 
in maximizing tremor suppression while minimizing stimulation 
induced side effects. Here, several groups have tried using VTA 
models to solve this task. For example, similar to Tsuboi’s 
characterization of stimulation induced dyskinesia in PD, Petry-
Schmelzer et al. sought to determine the brain network fingerprint of 
stimulation induced dysarthria in ET patients as well as build a 
predictive model for stimulation related speech intelligibility after 
thalamic DBS (Petry-Schmelzer et al., 2021). FEM-based VTAs were 
used to evaluate structural connectivity using a discriminative fiber 
tract analysis within a normative connectome. The model was able to 
demonstrate that 64% (p < 0.001) of the variance resulting from 
stimulation induced speech unintelligibility could be explained by the 
identified fibers (Petry-Schmelzer et al., 2021). The authors also found 
that the majority of stimulation induced dysarthria was associated 
with motor cortex or cerebellar modulation. This study highlights the 
capability of using VTA to create fiber filtering algorithms that can 
identify brain networks implicated through stimulation.

Target-based probabilistic stimulation maps derived by VTA 
modeling have shown potential in reducing the clinical programming 
and optimization for DBS in ET and in assessing optimal targets for 
side-effect suppression. Åström et al. explored how VTA models could 
be leveraged to predict effective electrode contacts when specifically 
targeting the caudal zona incerta (Åström et al., 2018). Åström et al. 
created atlas-based FEM-based VTA models coupled with an axon 
cable model in an isotropic, homogenous tissue medium (Åström et al., 
2018). The VTA-based model was able to predict the exact clinical 
contact 60% of the time and match within the top 2 options 83% of the 
time. In a recent study, Malaga et al. show that added patient specificity 
by using patient MRI DTI data for defining the microstructure of the 
brain regions instead of atlases and unique DTI-informed tissue 
conductivity to generate the VTAs for probabilistic stimulation 
mapping helped explain undesirable side effects (Malaga et al., 2023). 
They used an FEM-heuristic VTA model with threshold of 0.2 V/mm 
and found that the patient-specific structure-based VTA performed 
better than atlas-based VTA prediction in explaining sustained 
paresthesia. 94% of the patient-specific VTAs overlapped with sensory 
thalamus estimates compared to only 74% of the atlas-based VTAs.

VTA-based predictive models have also been utilized to refine 
surgical precision and predict therapeutic outcomes. Middlebrooks 
et  al. employed FEM-derived VTA models within a normative 
connectome framework to derive structural connectivity indices for 
97 ET patients undergoing unilateral thalamic DBS (Middlebrooks 
et al., 2021). These indices, derived from VTA modeling, facilitated 
the creation of a unique spatial connectivity “fingerprint” for each 
subject, which was then applied in a leave-one-out cross-validation 
scheme to prognosticate the percentage of tremor reduction post-
DBS. The connectivity “fingerprint” demonstrated a significant 
correlation with tremor suppression (R = 0.41, p < 0.0001) and robustly 
predicted outcomes in a completely independent cohort of 14 ET 
patients (R  = 0.59, p  = 0.028). Subsequent analysis of the model 
indicated that the neural regions most indicative of tremor suppression 
coincided with the dentato-rubro-thalamic tract (DRTT). The authors 
concluded that the DRTT can be leveraged as an anatomic region of 
interest for future tremor intervention.
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3.3 Epilepsy

Medication refractory generalized epilepsy is another challenging 
field that has benefited from VTA analyses to guide neuromodulation 
therapy. Although many brain networks such as the default mode 
network (DMN) have been implicated, identifying a common 
epileptic origin remains elusive and difficult (Cataldi et al., 2013). 
Previous electrophysiology studies have suggested that epileptic 
pathogenesis may originate from the centromedian nucleus of the 
thalamus (CM) and be  modulated by the anterior nucleus of the 
thalamus (ANT). DBS of these targets have shown promise in clinical 
trials but there remains significant variability in seizure outcomes 
(Salanova et al., 2015). Several studies have employed VTA based 
models to test these hypotheses and explain the variance seen in 
clinical studies. Middlebrooks used FEM-based VTAs (using 0.2 V/
mm threshold for activation following Horn et  al., 2017) from 6 
patients with refractory epilepsy as seeds for a functional connectivity 
analysis within a normative connectome to try to explain the 
variability in seizure response after ANT DBS (Middlebrooks et al., 
2018). This method revealed that 3 patients who were strong 
responders, defined as seizure frequency reduction by at least 50%, 
had much stronger connectivity to the DMN compared to the other 3 
patients who did not have a strong response after ANT DBS. Similarly, 
Torres Diaz et al. conducted an FEM-based VTA study (using 0.2 V/
mm threshold for activation following Horn et  al., 2017). They 
incorporated both structural and functional connectivity mapping in 
10 patients with generalized epilepsy who received CM DBS (Diaz 
et al., 2021). By using the VTA as a seed for both patient-specific 
diffusion MRI and normative resting state fMRI, Torres Diaz et al. 
identified a well-delineated network comprised of sensorimotor and 
supplemental motor cortices, the brainstem, and cerebellum that 
correlated with the greatest seizure reduction. Interestingly, both 
structural and functional connectivity analyses converged to a similar 
network, illustrating how VTA-based network analyses can refine the 
region of interest for targeted neuromodulation. However, the use of 
non patient-specifc VTA modeling in these studies may not accurately 
capture the axonal modulation in these dense thalamic nuclei and this 
effect may be  further amplified using a normative connectome. 
Charlebois addressed this issue by employing an enhanced VTA 
model using FEM based upon electrical conductivity derived from 
patient specific DTI sequences and incorporating an encapsulation 
area around the lead. Additionally, they utilized activation function 
thresholds that were obtained from biophysical field axon models 
which are derived from stimulation parameters (following methods 
in Butson and McIntyre, 2007 and Duffley et al., 2019). These VTAs 
were used as seeds for structural connectivity analyses across both a 
normative connectome and patient-specific connectome in 22 patients 
implanted with an RNS neurostimulator (NeuroPace, Mountain View, 
CA) (Charlebois et al., 2022). Through this technique, Charlebois 
found that there was no significant correlation between the normative 
connectivity map and seizure reduction (r = 0.28, p = 0.09), but there 
was a significant correlation between the patient-specific connectivity 
map and seizure reduction (r = 0.74, p < 0.0001). These studies provide 
an excellent showcase of the impact VTA and tractography model 
selection has on connectivity results and how factors such as disease 
pathology and network complexity may play a role in how connectivity 
studies should be designed in the future.

3.4 Dystonia

While DBS for dystonia can be incredibly effective, the time 
course for improvement can be highly variable and up to 25% of 
patients may be non-responders (Isaias et al., 2009; Volkmann 
et al., 2012). Although there is a consensus to target the motor 
region of the GPi, the degree of variability in patient outcomes 
necessitates an urgent need to better understand neuromodulation 
in dystonia. Cheung combined FEM-based field-axon VTA 
models (following Butson et  al., 2007) into a target-based 
probabilistic stimulation atlas to map the optimal regions of 
stimulation in GPi DBS for dystonia (Cheung et al., 2014). Patient-
specific VTAs were transformed into normalized template space 
and thresholded to include only voxels that provided at least 75% 
improvement and were shared by at least 75% of the cohort. This 
technique identified a region in the center of the posterior portion 
of the GPi that was associated with the greatest dystonia 
improvement. This study demonstrates how VTAs can be used to 
guide DBS targeting from a broad spatial perspective and 
characterize general anatomic trends/relationships. As the authors 
cautioned, however, this technique was designed to simulate the 
region of influence from DBS therapy and makes no assumptions 
regarding disease specific pathology or patient specific 
connectivity. It is simply aimed to define the anatomic regions 
most frequently modulated by DBS. Reich et al. expanded on this 
approach and used FEM-based VTAs (via SureTune), methods 
from Åström et al. (2015), which used homogenous isotropic 
conductivity as well as a single cable axon model to create a target-
based probabilistic stimulation atlas from a much larger cohort of 
105 patients (Reich et al., 2019). This atlas was also transformed 
into normalized template space but identified a different region 
compared to Cheung et al.—the ventroposterior GPi as well as the 
surrounding white matter tissue. Although the authors offer 
several explanations for these differences, including limitations of 
image processing and the use of voxel-wise statistics rather than 
a threshold, this also highlights the limitations of FEM-based 
VTAs being used as a static approximation of the DBS electric 
field and converting this information into a 3D volume. The 
authors rightly point out that using VTAs in this manner would 
highlight a “volume” of neural tissue rather than a “target.” 
However, later work by the same group (Soares et al., 2021) using 
predictions based on the same computational methods 
corroborated the ventroposterior GPi as the target sweet spot for 
isolated dystonia and combined dystonia patients. Their study 
also stated that only 32% of the variance in patient outcomes 
could be predicted by their model and cautioned that this type of 
model alone would not be sufficient for clinical prediction.

3.5 Obsessive compulsive disorder

VTA-seed-based connectivity maps have also been used in 
OCD DBS to guide the target selection and DBS programming 
optimization processes. As OCD is a heterogenous condition and 
thought to be  a neurologic disorder that results from multiple 
overlapping dysfunctional neural networks, connectivity mapping 
has emerged as a useful to tool to highlight regions of interest that 
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are most associated with clinical improvement. As most clinical 
trials in OCD DBS typically have less than 20 patients, many 
connectivity studies employ the use of normative connectomes as 
a foundation for their analysis. In scenarios where the study 
population is limited, the strength of VTA seeding within a 
normative connectome is highlighted as patient-specific 
tractography of a small cohort would otherwise be too noisy to 
interpret. Baldermann and Li both used FEM-based VTA (Lead-
DBS and/or SureTune) structural connectivity analyses within a 
normative connectome to illustrate that specific connectivity 
profiles could be  generated that predict clinical outcomes 
(Baldermann et al., 2019; Li et al., 2020). Both studies detected 
relevant fiber tracts within the anterior limb of the internal capsule 
that led to the identification of a unified hyper direct pathway 
connecting the dorsal anterior cingulate cortex to the anteromedial 
subthalamic nucleus. Li further challenged the generalizability of 
this model by cross-predicting clinical outcomes from completely 
independent cohorts from other institutions. Gadot combined the 
results of the FEM-based VTA (via Lead-DBS) connectivity with 
discriminative fiber tract analysis to predict the clinical outcomes 
of another independent cohort of 10 patients in a rank-based 
fashion (Gadot et al., 2023). Gadot’s model was able to accurately 
predict the ranked order of improvement in the 10 patients 
(Spearman correlation r = 0.75, p = 0.013), demonstrating the 
utility of VTA based models even within normative connectomes.

4 Discussion

4.1 General themes and limitations

Within specific neurological disorders, the use of VTA-informed 
neuroimaging to suggest sweet spots for DBS targets and/or 
activation of connected fiber tracts that innervate distant cortical 
and subcortical regions has advanced the field of DBS 
neuromodulation. Generally, the field has adopted the use of 
retrospective clinical data to make VTA-informed models of target 
or network-based maps that quantify the probability of effective 
patient outcome (i.e., probabilistic stimulation atlases) to provide 
more insight on the condition and in some cases to predict patient 
efficacy in independent patient cohorts based on lead placement 
and DBS parameters. However, despite the added benefit these 
data-driven models have provided, the models cannot fully explain 
the degree of variability in clinical outcomes.

Limitations to the modeling techniques that contribute to error 
come from uncertainties in both the neuroimaging side of modeling 
as well as the VTA/pathway activation side. On the imaging side 
there is inherent error in the following methods: co-registration of 
DBS leads from pre-and post-operative brain MRI or CT scans, 
warping of established atlases of target brain structures to individual 
patients, using a normative structural atlas or connectome versus 
patient-specific microstructure and fiber tract information, and 
DTI-based tractography estimation (e.g., probabilistic or 
deterministic). On the VTA side, one obvious source of error is that 
the volume defined by the VTA is unphysical as the true spatial 
nature of the axon pathways are not included. Gunalan et al. showed 
that when comparing pathway-activation models to VTA models 
that calculated fiber-tract overlap to define structural network 

connectivity, there was a large discrepancy between the results 
(Gunalan et al., 2018). Further, if the VTA is assumed to provide a 
good estimate of spatial activation, then differences within the 
parameters chosen for FEM-based VTAs can also contribute to 
variation. The parameter choices include using isotropic, 
anisotropic, homogeneous, and/or heterogenous tissue 
conductivities (whose values for specific materials may vary 
between studies), modeling a high resistive encapsulation region 
around the lead or not, modeling the capacitive effects of the 
electrode interface and time nature of the stimulus pulse trains 
including frequency or not, and the choice to use heuristic threshold 
levels or one derived or defined by axon models add variation and 
error in the final model.

Regarding FEM-based models, the choice of how to model the 
brain tissue with respect to electrical conductivity has seen much 
variation in the literature. Early on, it was shown that inclusion of 
a high resistivity tissue encapsulation area adjacent to the DBS lead 
in isotropic tissue models made significant changes to the resulting 
VTA (Butson et al., 2006). In later studies, tissue anisotropy was 
evaluated via pathway activation models of neural axons. 
Chaturvedi et al. showed that anisotropy of the tissue outside the 
encapsulation region, as defined by local DTI-informed 
conductivity tensors will further influence (i.e., a reduction of the 
spatial extent of axonal activation), which more closely matched 
clinical estimates of stimulation (Chaturvedi et  al., 2010). 
Additionally, Howell and McIntyre compared models of 
heterogeneity (i.e., white and grey matter), anisotropy, and 
frequency effects to isotropic homogeneous conductivity models 
and found that inclusion of anisotropy had the largest effect 
followed by heterogeneity (Howell and McIntyre, 2016). They also 
showed that different methods to compute anisotropic conductivity 
tensors, with methods that did or did not incorporate influence of 
a measured load impedance (i.e., electrode interface effects), 
resulted in differences in neural activation prediction. Moreover, 
dielectric dispersion (i.e., modeling a complex conductivity, 
σ ωε+ j ) had the smallest effect (<1% mean average difference) 
within anisotropic models. In their study, a tissue encapsulation 
region was present in the isotropic cases but not in the others. In a 
recent study, Liu et al. show how patient-specific anisotropic tissue 
conductivity in VTA-based models contribute to significant patient 
variation across a cohort of 40 patients as well a significant 
deviation from isotropic conductivity-based models (Liu et  al., 
2024). Out of the three commercial software platforms listed in 
Table  1, all use homogeneous isotropic brain tissue with three 
different values for conductivity and only two (Guide and Vercise 
Neural Navigator) incorporate a tissue encapsulation layer. One 
more aspect to point out, the complexity of the volume conductor 
of the head model and its grounding scheme for monopolar 
stimulation can also contribute to differences in voltage field 
calculations and thus VTA or pathway activation results especially 
if the overall impedance value measured via the IPG is used to tune 
the model (Grant and Lowery, 2009).

Regardless of all of these model-specific variabilities, one aspect 
to point out is that if neuroimaging methods use average information 
from population groups and normative structural atlases or 
connectomes for probabilistic maps, we believe that the extent of VTA 
specificity (e.g., FEM or not, field-axon or heuristic threshold, etc.) 
will have less of an effect on the variation of the outcome prediction 
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by such a model, as the variability due to averaging across a population 
may be  larger than variability introduced in VTA methodologies. 
Moreover, modeling studies that use atlases for determination of 
DTI-based conductivity tensors in FEM VTA or PAM predictions in 
retrospective studies could erroneously alter the local conductivity for 
a specific patient and thus add error to the group-based probabilistic 
map. For true patient-specific applications, the choice of the 
mentioned model parameters will likely contribute a great deal to the 
accuracy of the VTA or pathway activation prediction.

Regarding the use of VTA-informed neuroimaging methods (i.e., 
target vs. connectivity-based), it is interesting to see that within the 
different disorders, some modeling paradigms are more consistently 
used than others. For PD and ET both target-based and network-
based probabilistic stimulation mapping have been used by the 
community and some combine both methods (Akram et al., 2017; 
Tsuboi et al., 2021). On the other hand, recent work on dystonia has 
been focused on target-based analyses and not network/connectivity 
to fine tune the sweet spots for stimulation in the GPi, leading to 
question if differences in target results by different groups could 
be  resolved with the addition of network-based mapping used in 
conjunction. And recent studies for epilepsy and OCD have only used 
VTA-based network/connectivity mapping to provide insight. 
Pathway activation models that provide information on network 
connectivity are seen even more seldom in the literature, potentially 
because of the computational complexity of the method.

4.2 Future of neuromodeling for DBS

Understanding the brain within the context of neurological 
disorders and neuromodulation therapy is clearly challenging and 
subject to many individual idiosyncrasies; however, it is impressive 
how VTA-based neuromodeling, regardless of the VTA method, has 
been able to provide added detail for target sweet spots, regions of 
fiber tracts that correlate with unwanted side effects, and more 
insight into the mechanism of action for effective DBS with much 
consensus between multiple studies. One of the key features that is 
apparent in the literature is the notion that predictive models can 
be garnered from population/group results of retrospective studies 
for a particular disorder. The extent to which those models 
(probabilistic stimulation atlases, target-and/or network-based) 
need to be  fine-tuned for a more precise predictive model is a 
question yet to be answered. Recent work by Johnson et al. show that 
the added specificity of pathway-activation models with patient-
specific structural connectivity analysis yielded robust metrics for 
prediction of patient outcome for GPi DBS for Tourette syndrome, 
which is a disorder that has had high variability of patient responses 
to DBS treatment (Johnson et  al., 2021). Also, Hollunder et  al. 
suggest a paradigm shift in how group-based atlases are used for the 
end patient (Hollunder et al., 2022). They suggest the creation of 
network-based atlases/templates from population studies for the 
disease symptom (e.g., tremor, rigidity, cognitive flexibility, anxiety) 
rather than just the disease, and then those templates can be added 
together to create guidance for personalized DBS target and 
stimulation. And the recent work by Malaga et al. promotes the use 
of patient-specific microstructure (vs. atlas-based) in addition to 
patient-specific tissue conductivity to create better informed target-
based probabilistic stimulation atlases (Malaga et al., 2021, 2023).

Modeling of tissue activation coupled with neuroimaging 
techniques form the computational basis for predictive models 
generated from group retrospective studies as well as for establishing 
the patient baseline data for personalized medicine that makes use of 
predictive models. The degree to which the predictive model is 
accurate for an individual should be highly influenced by the level of 
patient accuracy of the data from the tissue activation/modulation 
model and the neuroimaging methods (e.g., for generation of brain 
structures and fiber pathways). New retrospective studies that will 
generate target-based or network-based probabilistic stimulation 
maps might indeed benefit from more accurate patient-specificity for 
brain structures and fiber tracts. Innovation in DTI-based methods 
would serve to increase model accuracy. If patient-specific parameters 
are used for target-based studies, then the VTA method should also 
be most accurate/specific and employ field-axon simulations, which 
are dependent on stimulation parameters, rather than field-heuristic 
or non-FEM VTA models. Moreover, there is a lack of clinical 
comparative studies that evaluate the influence of PAM vs. VTA-based 
network connectivity mapping, for example. The field would be greatly 
served if more comparative studies using different neural activation/
modulation approaches were performed.

Furthermore, it is essential to validate the strength and general 
applicability of these models through carefully planned and extensive 
prospective clinical trials. Conducting such trials is vital for 
establishing credibility with clinicians, which in turn, will promote the 
incorporation of these models into routine clinical practice.
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