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Introduction: The combination of transcranial magnetic stimulation (TMS) 
and electroencephalography (EEG) allows researchers to explore cortico-
cortical connections. To study effective connections, the first few tens 
of milliseconds of the TMS-evoked potentials are the most critical. Yet, 
TMS-evoked artifacts complicate the interpretation of early-latency data. 
Data-processing strategies like independent component analysis (ICA) and 
the combined signal-space projection–source-informed reconstruction 
approach (SSP–SIR) are designed to mitigate artifacts, but their objective 
assessment is challenging because the true neuronal EEG responses under 
large-amplitude artifacts are generally unknown. Through simulations, 
we quantified how the spatiotemporal properties of the artifacts affect the 
cleaning performances of ICA and SSP–SIR.

Methods: We simulated TMS-induced muscle artifacts and superposed them 
on pre-processed TMS–EEG data, serving as the ground truth. The simulated 
muscle artifacts were varied both in terms of their topography and temporal 
profiles. The signals were then cleaned using ICA and SSP–SIR, and subsequent 
comparisons were made with the ground truth data.

Results: ICA performed better when the artifact time courses were highly 
variable across the trials, whereas the effectiveness of SSP–SIR depended on 
the congruence between the artifact and neuronal topographies, with the 
performance of SSP–SIR being better when difference between topographies 
was larger. Overall, SSP–SIR performed better than ICA across the tested 
conditions. Based on these simulations, SSP–SIR appears to be more effective 
in suppressing TMS-evoked muscle artifacts. These artifacts are shown to 
be highly time-locked to the TMS pulse and manifest in topographies that differ 
substantially from the patterns of neuronal potentials.

Discussion: Selecting between ICA and SSP–SIR should be  guided by the 
characteristics of the artifacts. SSP–SIR might be better equipped for suppressing 
time-locked artifacts, provided that their topographies are sufficiently different 
from the neuronal potential patterns of interest, and that the SSP–SIR algorithm 
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can successfully find those artifact topographies from the high-pass-filtered 
data. ICA remains a powerful tool for rejecting artifacts that are not strongly 
time locked to the TMS pulse.
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transcranial magnetic stimulation, electroencephalography, data analysis, artifact 
rejection, independent component analysis, signal-space projection, modelling, 
simulation

Introduction

Transcranial magnetic stimulation (TMS) is a technique that 
allows the safe and non-invasive activation of the human cortex 
(Barker et  al., 1985). A strong current pulse is passed through a 
stimulating coil, positioned above the cortical region of interest. This 
current pulse immediately generates a time-varying magnetic field 
around the coil, which in turn induces an electric field within the 
brain. With strong enough stimulation intensity, the induced electric 
field depolarizes neurons sufficiently to cause them to fire action 
potentials (Ilmoniemi et  al., 1999). The TMS-generated cortical 
activity can be  measured directly with concurrent 
electroencephalography (EEG) recordings (Ilmoniemi and Kičić, 
2010; Tremblay et al., 2019; Hernandez-Pavon et al., 2023). However, 
the EEG data are often compromised by TMS-evoked muscle artifacts; 
the induced electric field can activate scalp muscles resulting in short-
lived but high-amplitude artifact signals right after the TMS pulse 
(Mutanen et al., 2013).

TMS-evoked muscle artifacts can be minimized during recordings 
to an extent by optimizing the location and orientation of the TMS 
coil (Mutanen et al., 2013). However, when targeting certain regions 
of interest, such as Broca’s area, the online minimization is not feasible 
due to the proximity of the scalp muscles (Korhonen et al., 2011; 
Mutanen et  al., 2013). Korhonen et  al. (2011) tested independent 
component analysis (ICA) for identifying and removing the muscle 
artifacts. The ICA methodology has been further elaborated for this 
application in many later articles (Hernandez-Pavon et al., 2012, 2022; 
Metsomaa et al., 2014; Rogasch et al., 2014).

ICA can be mathematically explained using the standard linear 
model for measured EEG data (Eq. 1). The measured data Y  can 
be written in terms of the brain signals Ybrain, artifact signals Yart , and 
noise N.

 Y Y Y N= + +brain art  (1)

With ICA, the measured data can be decomposed into statistically 
independent components:

 Y AS= , (2)

where A is the mixing matrix, holding in its columns the potential 
patterns (or topographies) of the underlying independent components, 
and S holds the time courses of the independent components on its 
rows. If we can recognize which components reflect mostly artifacts 
in Eq. 2, we can separate the mixing matrix into brain and artifact 

mixing matrices, Abrain  and Aart , respectively, and simply clean the 
data as follows:

 

Y A S A S A S
Y Y A S

= + +
⇒ ≈ −

brain brain art art noise noise

brain art art

,

.  (3)

Note that we have omitted noise N  from the further discussion  
(Eq. 3). With noise, we refer to longer-lasting, relatively stationary signal 
disturbances, such as line noise at 50/60 Hz or thermal noise (or Nyquist 
noise), whereas artifacts are typically shorter-lasting signal deflections. 
Noise could be  either cancelled by removing such independent 
component that reflect noise (A Snoise noise ), or using other standard 
preprocessing steps, such as Fourier filtering, if the frequency spectra of 
noise and neuronal signals do not overlap considerably.

ICA is a powerful technique for unmixing multidimensional data 
into a set of components if the latent components are truly 
independent. However, this assumption is most likely violated 
(Metsomaa et al., 2014) in TMS-evoked EEG potentials (TEPs) (Paus 
et al., 2001; Lioumis et al., 2009) as both the muscle artifacts and direct 
transcranial reactions to the electric field are time locked to the same 
TMS pulse.

Mäki and Ilmoniemi (2011) introduced an alternative approach 
to suppress TMS-evoked muscle artifacts with signal-space projection 
(SSP) (Uusitalo and Ilmoniemi, 1997). SSP projects out those 
topographies from the EEG data that are likely to reflect artifacts. 
Mäki and Ilmoniemi (2011) estimated muscle artifacts topographies 
by taking the largest singular vectors of high-pass filtered data (cut off 
100 Hz, see Eqs. 4–6). This route could be  taken, assuming that 
neuronal EEG signals are mostly manifested at frequencies clearly 
below 100 Hz (Buzsaki and Draguhn, 2004) but electromyography 
signals show a broadband response. Thus, the high-pass filtered data 
should mainly consist of artifact topographies, rather than neuronal 
ones. After estimating the muscle-artifact topographies, an SSP 
operator was formed (Eq. 7). This operator projects the data onto a 
signal space orthogonal to the artifact topographies. While SSP 
effectively suppressed artifact signals, it also introduced distortions to 
the EEG-channel signals, thus complicating the physiological 
interpretation of the data (Mäki and Ilmoniemi, 2011). The reason for 
these distortions is best explained by Eqs. 9, 10; the original lead-field 
matrix L, which describes how neuronal activity is mixed in the EEG 
channel-space, is modified by the SSP-operator P. Mutanen et  al. 
(2016) introduced an additional step called source-informed 
reconstruction (SIR) to mitigate these signals distortions and to 
facilitate the interpretation of the artifact-cleaned EEG signals.
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The SSP–SIR approach is summarized in Eqs. 4–12. By high-pass 
filtering the data in Eq. 1 from 100 Hz, most of the high-passed data, 
H Y( ), consist of artifacts and noise (Eqs. 4, 5).

 H H H HY Y Y N( ) = ( ) + ( ) + ( )brain art  (4)

 H H HY Y N( ) ≈ ( ) + ( )art  (5)

If we  compute the singular value decomposition of the high-
passed data (Eq. 6), we can form a spatial filtering operator P (Eq. 7) 
that projects out the k most prominent artifact dimensions from the 
original data Y (Eq. 8).

 H Y U V( ) = ΣΣ T
 (6)

 P I U U= − 1 1: :k k
T

 (7)

 PY PY PN≈ +brain  (8)

Even if the spatial filter can remove artifact signals effectively from 
the data ( art 0≈PY ) we can see from Eq. 8 that the neuronal signals 
are distorted with the matrix P . However, we  can take this into 
account in the inverse estimation. If we write Ybrain in terms of the lead 
field L and the unknown brain activity X, generating the neuronal 
EEG signals

 Y LXbrain =  (9)

we can combine Eqs. 8, 9 to get:

 PY PLX PN= + . (10)

Again, omitting the remaining noise PN, which could 
be  suppressed using subsequent preprocessing steps if necessary, 
we  estimate the unknown neuronal activity X that produces the 
artifact-suppressed EEG signals by taking the pseudoinverse of PL:

 ( )† .=


PL PYX
 (11)

There are several ways to form the pseudoinverse ( )†PL . One 
option is using truncated singular value decomposition as in Mutanen 
et al. (2016). We can compute the final estimate for the brain EEG 
signals as follows:

 ( )†brain ≈Y L PL PY
 (12)

The reconstruction of original brain signals Ybrain  using Eq. 12 is 
called source-informed reconstruction (SIR) (Mutanen et al., 2016). 
The combined SSP–SIR approach is a spatial filtering method, which, 
unlike ICA, is not sensitive to the temporal correlation between the 

rejected artifact and the neuronal time courses, provided that spatial 
filter, ( )†L PL P  in Eq. 12, has been successfully estimated. Instead, 
already the original SSP publication showed that the success of SSP 
depends on the dissimilarity of the topographies to be projected out 
and the neuronal topographies that we want to preserve (Uusitalo and 
Ilmoniemi, 1997).

Since the introduction of ICA and SSP–SIR approaches, various 
research groups have adopted them. See, e.g., (Rocchi et al., 2018; 
Darmani et al., 2019; Belardinelli et al., 2021; Luo et al., 2023) for ICA 
and (Fernandez et al., 2021; Zazio et al., 2021; Bracco et al., 2023; 
Mosayebi-Samani et al., 2023) for SSP–SIR. However, it has been an 
open question how the performance of these alternative strategies 
compares with one another. In a recent study, Bertazzoli et al., 2021 
showed that the cleaning outcome depends on the selected methods. 
However, in the absence of a ground truth signal, it is impossible to 
conclude which of the preprocessed EEG signals better correspond the 
true underlying neuronal signals. The aim of this work is to test 
through simulations how the spatiotemporal properties of the 
TMS-evoked scalp-muscle responses affect the artifact-suppression 
performance of ICA and SSP–SIR.

Here, we  generated distinct TMS-evoked artifacts through 
simulation and subsequently overlaid them upon an authentic 
pre-processed TMS–EEG dataset, serving as the ground truth. 
We manipulated two principal artifact attributes: the artifact potential 
scalp patterns (or topographies) and the extent of inter-trial variability 
characterizing the trial-specific artifact time courses. The corrupted 
synthetic datasets were preprocessed using either the ICA or SSP–SIR 
technique. After the application of these correction methods, the 
preprocessed datasets and the reference ground truth were compared.

ICA is known to work well in cancelling ocular artifacts 
(Hernandez-Pavon et al., 2023). This can be explained by the sporadic 
nature of these artifacts; blinks and eye movements often occur at 
random instances across the trials, and thus, can be  expected to 
be  statistically relatively independent from the time-locked 
TMS-evoked activity. Hence, our hypothesis was that ICA would work 
better when the artifact time courses show greater inter-trial 
variability. In contrast, we expected SSP to be particularly sensitive to 
the topographical similarity between the artifacts and the neuronal 
ground truth data, but insensitive to the time courses and their inter-
trial variability. Finally, we hypothesized that TMS-evoked muscle 
artifacts recorded in real-world settings would exhibit high time-
locking to the TMS pulse and display topographies relatively 
incongruent with those of neuronal potential patterns.

Materials and methods

Measured TMS–EEG data

The TMS–EEG dataset, used in the simulations as a ground truth, 
consists of 173 accepted high-quality epochs, measured from a right-
handed 24-year-old female. Prior to the experiment, the participant 
provided a written consent. The research protocol was approved by the 
Ethics Committee of the Hospital District of Helsinki and Uusimaa 
and conformed with the Declaration of Helsinki. The participant was 
comfortably seated and instructed to fixate her gaze upon a centrally 
placed cross on the wall. Biphasic TMS pulses were targeted to the 
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right primary motor cortex using the navigated Nexstim eXimia 
system (Nexstim Oyj, Helsinki, Finland) and a figure-of-eight coil 
with an outer diameter of 70 mm. The single pulses were delivered at 
90% of the motor threshold, defined as the weakest stimulation 
intensity producing at least 5/10 motor-evoked potentials in the left 
abductor pollicis brevis with peak-to-peak amplitude of at least 50 μV.

EEG recordings were collected via a scalp array of 60 electrodes in 
the 10–20 montage. A reference electrode was affixed to the right 
mastoid, and the ground electrode was positioned on the skin surface 
above the right cheekbone. Electrode impedances were maintained 
below 5 kΩ. Concurrent EEG was acquired through the 
TMS-compatible Nexstim eXimia EEG system (Nexstim Oyj, Helsinki, 
Finland), which uses sample-and-hold circuitry, and thus, does not 
measure the TMS-pulse artifact (Virtanen et  al., 1999). The EEG 
amplifier applied band-pass filtering (0.1–350 Hz) to the analog voltage 
signals before the data were digitized at the 1,450 Hz sampling frequency.

To mitigate auditory artifacts resulting from the loud TMS-coil 
click (Nikouline et al., 1999; ter Braack et al., 2015; Rocchi et al., 2021), 
the participant was exposed to white noise throughout the experiment. 
The sound-pressure levels were calibrated to never exceed 90 dB, with 
the help of a calibrated phantom ear.

The neuronavigation, providing the spatial information for 
accurate TMS coil positioning, relied upon T1-weighted magnetic 
resonance imaging (MRI) scans. The MRI scans were captured 
employing a 1-mm MPRAGE sequence.

The collected data were pre-processed to clean any TMS-related 
noise and artifact signals to produce a clean set of TMS-evoked 
potentials that worked as a ground truth in the analysis. This specific 
dataset was chosen to serve as the ground truth, since the raw EEG 
signals suffered from very small TMS-evoked artifacts and the 
pre-processing could be kept minimal. The preprocessing consisted of 
the following 10 steps:

 1 Data epoching. The continuous raw EEG signals were divided 
into windows surrounding the TMS pulses. The dataset was 
divided into 3-s segments containing 1.5 s before and after 
each pulse.

 2 The average of a pre-stimulus period of −500 to −5 ms with 
respect to the TMS pulse was subtracted from the data to 
correct for any baseline shifts.

 3 The signal from each EEG channel was visualized and channels 
with visibly poor data quality (T3, C5, P1, P2) were removed 
from further analysis.

 4 The raw trials were visualized and epochs with visibly poor data 
quality were removed (19 in total).

 5 Each trial was detrended to reject slow drift, using robust 
detrending and third order polynomial model (de Cheveigné 
and Arzounian, 2018).

 6 The dataset was decomposed into independent components 
using the FastICA algorithm (Hyvärinen and Oja, 2000). 
We  rejected two components corresponding to the lateral 
ocular movements and blink artifacts. Note that the data were 
baseline-corrected before ICA to ensure reliable separation of 
TMS-evoked data into independent components; due to the 
non-stationary nature of event-related EEG data, centering 
over the whole epoch time window could lead to spurious 
correlations between the latent components, and thus, hinder 
the performance of ICA (Hernandez-Pavon et al., 2022).

 7 Since the removal of ocular artifacts may lead to changes in the 
baseline, the baseline correction was redone after ICA.

 8 The SOUND algorithm (Mutanen et al., 2018) was used to 
detect and suppress noise from extracranial sources and to 
interpolate the missing signals in the rejected channels in 
step 3. The SOUND algorithm utilized the three-layer spherical 
head model with theoretical 10–20 channel locations (Mutanen 
et al., 2018, 2020) and the regularization parameter was set to 
λ = 0.1 (Mutanen et al., 2018).

 9 Remaining TMS-evoked muscle artifacts were suppressed with 
the SSP–SIR approach (Mutanen et al., 2016). The SSP–SIR 
algorithm utilized the three-layer spherical head model with 
theoretical 10–20 channel locations (Mutanen et  al., 2016, 
2020) and the two singular vectors spanning most of the 
artifact subspace were identified as artifactual (Mutanen 
et al., 2016).

 10 The data were low-pass filtered using a finite-impulse response 
filter with a cut-off frequency of 80 Hz to remove high-
frequency content of the signal, which is unlikely to be caused 
by neuronal activity (Delorme and Makeig, 2004). After the 
low-pass filtering, the data were upsampled to 5,000 Hz.

The ground truth dataset also underwent post-hoc preprocessing 
using an alternative pipeline that did not depend on the SSP–SIR 
algorithm. This was done to confirm that any observed differences 
between the ICA and SSP–SIR cleaning were not attributable to bias 
in preparing the ground truth data. That is, in the primary pipeline, 
SSP–SIR was used to suppress both the real and the simulated artifacts. 
The post-hoc preprocessing pipeline was the same, except that the use 
of ICA (step 7) was extended in suppressing also muscle artifacts, 
which were originally handled by the SSP–SIR (step 9), respectively. 
The independent components corresponding to TMS-evoked muscle 
artifacts were detected using the automated algorithm (Rogasch et al., 
2017). In total, two components were detected as TMS-evoked 
muscle artifact.

In addition to the simulations, we analyzed open-source TMS–EEG 
data (Hussain et al., 2019) to characterize real-world muscle artifacts and 
compare their properties with the simulated artifacts presented here. This 
study was approved by the National Institutes of Health Combined 
Neuroscience Section IRB, and all subjects provided their written 
informed consent before participating. The open-source data were 
collected from 20 healthy individuals who received 600 monophasic 
single TMS pulses to the right primary motor cortex, specifically 
targeting the FDI representation area, at 120% of their motor threshold 
intensity. The TMS (MagStim 2002, MagStim Co. Ltd., United Kingdom) 
was directed using neuronavigation (BrainSight, Rogue Research, 
Montreal) with a TMS-compatible 30-channel EEG system (BrainAmp 
MR+, Brain Vision). This dataset was selected for analysis because the 
stimulation location matched that of our ground truth data, and the 
relatively high stimulation intensity ensured the presence of muscle 
artifact contamination in most datasets when appropriate preprocessing 
steps to suppress these artifacts were not implemented. The real-world 
muscle artifact data were processed using the same preprocessing 
pipeline as the ground truth data, with the exception that steps 8–10 were 
omitted to maintain a favorable artifact-to-brain signal ratio. In addition, 
since the EEG data in this case were recorded without the sample-and-
hold amplifier (Virtanen et al., 1999), the time interval (−1 to 5 ms) 
containing the TMS-pulse artifact was replaced with zeros after 
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preprocessing step  1. Robust detrending should not cause filtering 
artifacts around the rejected TMS-pulse-artifact interval, as it inherently 
ignores data segments with abrupt changes in signals when modeling 
baseline drifts. Additionally, we ensured this through visual inspection. 
Following the preprocessing, the rejected time interval was interpolated 
using shape-preserving piecewise cubic interpolation for illustration 
purposes. To ensure a high artifact-to-brain signal ratio, subjects 
exhibiting TMS-evoked muscle artifacts with a maximum peak-to-peak 
amplitude of less than 250 μV were excluded. This resulted in 17 datasets 
being retained for the artifact characterization analysis. At the end of 
preprocessing, the first 300 accepted trials were retained from each 
dataset to balance the dataset sizes. For a detailed description of the data 
collection of the open-source data, please refer to the original publication 
(Hussain et al., 2019).

Muscle-artifact simulation

In this study, we conducted simulations to replicate TMS-evoked 
muscle artifacts. Each artifact dataset comprised 1,000 data points, 
sampled at a rate of 5,000 Hz, encompassing the temporal range of 
−50 to 150 ms relative to the TMS pulse initiation. A total of 173 
random trials were included in the artifact dataset. The temporal 
profiles were modeled using Daubechies order-4 wavelets at scale 4. 
The Daubechies wavelets were chosen due to their similarity to real 
muscle artifacts observed in TMS–EEG data (Mutanen et al., 2013). 
As these simulated wavelets have sharp time courses, they also 
exhibited a broad-band frequency response comparable to actual 
muscle artifacts when analyzed with classic Fourier-based methods 
(Mutanen et al., 2016). This property is important when estimating 
artifact topographies from high-pass filtered data (cut-off 100 Hz) as 
done in SSP–SIR. The onset of the artifact was aligned with the 
initiation of the TMS pulse. To introduce variability across trials, 
we used a similar approach as introduced in Atti et al. (2023): the 
parameter α was manipulated, ranging from 0 to 1 (see Eq. 13). A 
value of 0 indicated consistent phase across trials, while α = 1 produced 
trial time courses with completely randomized phase (maximal 
trial variability).

The artifact time course a ti ( ) for a trial i can be written as:

 a t t S ti s i s i( ) = −( ) ( ) + −( )1 α φ α φ ϕ , (13)

where α is the inter-trial variability index given values from 0 to 1, 
φs t( ) is the Daubechies order-4 wavelet, at scale 4, Si is the random 
sign with values 1 or −1, and ϕi is the trial-specific random translation 
bounded between 0 and 10 ms. We restricted the random translation 
to 10 ms to ensure that the simulated artifact deflection remained 
within the first 20 ms. This is consistent with findings that real 
TMS-evoked muscle artifacts typically peak within the first 20 ms 
following a TMS pulse, as characterized in Mutanen et al. (2013). 
Representative artifact time courses are shown in Figure 1.

To extend the muscle artifact to a multidimensional signal 
consisting of 60 channels, we multiplied the trial-specific time courses 
a ti ( ) with a simulated muscle artifact topography. We simulated 9 
different artifact topographies, all located on the right side of the head, 
as the stimulation of right M1 is likely to activate mainly the right 
lateral scalp muscles (Mutanen et al., 2013). The topographies were 
drawn from an anatomical head-model-based lead field of the subject, 

from sources within the right hemisphere. This placement of cortical 
current sources yielded bipolar lateral potential patterns akin to those 
typically associated with real muscle artifacts. To simulate artifact 
topographies with different spatial frequencies, we  used different 
conductivity contrasts between the skull and the skin/brain. In total, 
11 different skull-to-skin/brain-conductivity contrasts were tested; 1, 
1/20, 1/40, 1/60, 1/80, 1/100, 1/120, 1/140, 1/160, 1/180, 1/200. 
Consequently, a spectrum of realistic topographies emerged, with 
varying degrees of aligning with the underlying ground truth neuronal 
topographies (see Figure 2 for examples). The alignment was measured 
in terms of the angle (°) between the 60-dimensional artifact and 
neuronal signal vectors (topographies). We  calculated the angle 
between each variant of the artifact topography and the ground truth 
TEP topographies at each time point within the first 100 ms following 
the TMS pulse. Next, we determined the minimum angle within this 
time interval by calculating the 5th percentile across the studied time 
points. Finally, since there were nine unique artifact topographies for 
each skull–skin contrast, from which the artifact topography was 
sampled for each simulation run, we computed the median of the 
minimum angles.

It is important to note that the head model employed was not 
specifically designed to accurately mimic the intricate physiology of 
scalp muscle fibers. The MRI-based three-layer head model was 
utilized purely as a phenomenological model to create muscle artifact 
topographies that exhibited varying degrees of correlation with the 
underlying neuronal potential patterns.

The ground truth dataset is visualized in Figure 3A, which also 
illustrates the data after adding simulated artifacts to the dataset 
(Figure 3B). As seen in Figure 3, before the adding the artifact data, 
consisting of the trial time courses and topography, the artifact data 
was scaled to result in maximum peak-to-peak amplitudes of 
approximately 250 μV. The effect of artifact amplitude on the 
effectiveness of artifact suppression was also tested under both low 
and high amplitude artifact conditions, with peak-to-peak amplitudes 
of 50 μV and 1 mV, respectively.

Data analysis

We simulated 121 distinct artifact types, derived from the 
combination of 11 unique topographical conditions, with varying 
degrees of similarity with the neuronal topographies, and 11 
different inter-trial-variability scenarios. For every artifact type, 100 
random representations were generated. Each representation 
consisted of 60 channels, 1,000 time points, and 173 trials. During 
each simulation, the topography was selected at random from a 
predetermined subset of 9 lateral, tangential current sources, with a 
predefined contrast between the skull and skin. Although the set  
α -value ensured that trial time courses exhibited roughly analogous 
inter-trial variation, the precise time courses for each trial differed 
with every simulation run. The simulated artifact representations 
were superposed on the ground truth TMS–EEG dataset. 
Subsequently, the dataset containing these artifacts was processed 
using either the ICA or the SSP–SIR algorithm. No other 
preprocessing methods were used at this stage.

For the ICA processing, trials were concatenated, and the FastICA 
algorithm was employed to decompose the dataset into 60 
independent components (Hyvärinen and Oja, 2000). We utilized the 
symmetric approach in combination with the tanh contrast function. 
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To retain the objectivity of the data-cleaning approach, we allowed the 
ICA to function optimally; we subtracted the independent component 
from the artifactual dataset that exhibited a topography most closely 
resembling the true simulated artifact potential pattern.

The three-dimensional artifactual dataset was also processed 
separately with SSP–SIR. As the simulated artifacts did not average 
well in such studied scenarios where time-locking to the TMS pulse 
was low, each trial was cleaned independently with SSP–SIR. In the 
SIR step, we  utilized the three-layer spherical head model with 
theoretical 10–20 channel locations (Mutanen et al., 2016, 2020). That 
is, a different head model was used for SSP–SIR than the one used for 
simulating the artifact topographies. SSP–SIR identified artifact 
topographies from data high-pass filtered at a cutoff of 100 Hz, 
utilizing a time window of −10 to 30 ms relative to TMS onset. To 
allow SSP–SIR to function optimally, we  projected out the signal 
dimension, demonstrating the best correlation with the known 
simulated artifact topography. As implemented in the open source 
data-analysis tools (Mutanen et al., 2020), SSP–SIR was set to suppress 
artifact topographies only during the early time window of −10 to 
30 ms. The transition between the suppressed and untouched data was 
smoothened with a 10 ms median filter.

We quantified the cleaning performance of ICA and SSP–SIR by 
calculating the mean relative error (RE) between the true ground truth 
and the uncovered neuronal signals (Eq. 14). This calculation was 
performed by comparing the cleaned dataset with the ground truth 

signal for each trial over a time interval from 0 to 50 ms, and then 
averaging the trial-specific relative error scores:
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where y tc
i
 ( )  and y tci ( ) are the cleaned and the ground-truth signals 

measured at trial i, at time t, in channel c, respectively, and Nt and Nc are 
the number of trials and channels, respectively. Later time intervals were 
not included in the main analysis because of the way the SSP–SIR 
correction was implemented; any responses later than 50 ms should be left 
completely unaltered, and thus, SSP–SIR should trivially perform better 
than ICA. However, we  confirmed this prediction in an additional 
analysis by quantifying RE using the time interval 50–100 ms, where the 
maximum amplitude of the simulated artifact was set to ~250 μV.

By choosing to average these trial-specific scores instead of directly 
quantifying the relative error between the average TEPs, we minimized 
the potential bias in the RE metric due to the inter-trial variability of 
the artifact. The chosen approach ensured that the conditions of large 
inter-trial variability, which hinder the effective averaging of simulated 
artifacts (as illustrated in Figure 1), do not skew the RE metric. To 
statistically evaluate the impact of trial variability and topographical 

FIGURE 1

Representative examples of simulated muscle-artifact time courses. (A) Muscle-artifact time courses with perfect inter-trial consistency (no inter-trial 
variability α  =  0). The top panel displays the mean muscle artifact time course, while the color-coded bottom panel illustrates the variations across 
trials. (B) Muscle-artifact time courses with maximal inter-trial variability (α  =  1). Similar to A, the top panel displays the mean muscle artifact time 
course, and the color-coded bottom panel depicts the variations across trials. Due to the high inter-trial variability, the amplitude of the average signal 
in B is significantly lower than in A. All the amplitudes shown in the figure are in arbitrary units (a.u.).
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similarity on the efficacy of the cleaning methods, we conducted a 
two-way ANOVA on log-transformed RE, the topographical similarity 
and inter-trial variability as factors. ANOVA was applied separately for 
ICA and SSP–SIR. Before running ANOVA, the transformed data were 
inspected visually with histograms and box plots for approximate 
normality and homoscedasticity. Because the ANOVA test was run in 
all three tested artifact-amplitude conditions, the p-values were 
corrected for multiple comparison with the Bonferroni method.

Finally, we  characterized the properties of real-world 
TMS-evoked muscle artifacts, analyzing an additional artifactual 
TMS–EEG datasets. This was done to assess which simulated artifact 
variants most closely resembled real-world muscle artifacts. To assure 

that signal space angles in real-world data were comparable to those 
in the simulation analysis, it was crucial to transform the real-world 
data into the same 60-dimensional sensor space corresponding to the 
ground truth and simulated artifact data. We  employed the 
minimum-norm estimation (MNE)-based extrapolation technique 
(Ilmoniemi and Numminen, 1992), widely utilized in previous MEG 
literature (Numminen et al., 1995; Burghoff et al., 2000; Wang and 
Oertel, 2000; Wübbeler et al., 2001; Knösche, 2002; Ross et al., 2011; 
Marhl et al., 2022). This approach was chosen due to its alignment 
with the principles of electromagnetic modeling in EEG signals, as 
opposed to the common practice of spline surface interpolation. 
Unlike spline interpolation, which can violate Maxwell’s equations, 

FIGURE 2

Representative examples of simulated muscle artifact topographies. The three rows correspond to three distinct locations of the muscle artifact 
potential patterns (selected from a total of 9 drawn patterns). The three columns depict variations in the skull-skin conductivity ratio (0, 100, and 200 in 
these examples). As the conductivity ratio increases, there is a gradual decrease in the spatial frequency of the topographies. Consequently, this 
increases the similarity between the artifact topographies and the underlying neuronal potential patterns.
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MNE interpolation ensures compatibility with the known or assumed 
source volume and head geometry, thereby producing EEG patterns 
that accurately reflect the underlying physiological processes. In 
MNE, we employed a spherical three-layer head model (Mutanen 
et al., 2016, 2018). To prevent MNE extrapolation from attenuating 
the original signals, we utilized a very low regularization level in the 
Tikhonov-regularized MNE of λ = ( )−

10
5
trace

TLL , where L 
represents the spherical head-model-based lead field matrix. To 
concentrate the analysis on the muscle artifact signals, TEPs before 
the SOUND step, from the time interval 0 to 50 ms after the TMS 
pulse, were separated into component using singular value 
decomposition. Y U VT0 50− =ms Σ . The first column vector of the U  
matrix was identified as the muscle artifact topography. The 
corresponding artifact time courses for trials k could be computed as 
S U Y
1 1

k k= T . In this analysis, the artifact was extracted directly from 
the TEP datasets without employing the same high-pass filtering step 
as in the SSP–SIR procedure, to avoid introducing a bias in favor of 
SSP–SIR. Given that the muscle artifacts present in the original data 
were substantial, measured in hundreds to thousands of microvolts, 
simply isolating the first singular component from the original 
dataset should ensure a considerably high artifact-to-brain signal 
ratio for the subsequent artifact characterization process. 
We evaluated the inter-trial variability of real muscle artifacts by 
computing the inter-trial coherence (ITC) (or phase-locking factor) 
(Tallon-Baudry et  al., 1996) within the estimated artifact time 
courses. Note that the ITC values have an opposite convention 
compared to our inter-trial variability index α; ITC = 1 means perfect 

inter-trial phase alignment whereas α = 1 indicates fully random trial-
specific phases. Furthermore, we estimated the similarity between the 
artifactual and neuronal topographies. To improve the signal-to-
noise ratio of the neuronal topographies, the data were passed 
through the SOUND algorithm. We  then computed the angle 
between the estimated artifact topography U1 and the potential 
patterns at each trial and time point. Without the SOUND filtering, 
the angle between the muscle-artifact topography and the rest of the 
EEG would likely have captured, at least partially, angles related to 
plain recording noise. Furthermore, the utilization of SOUND here 
also enhanced the direct comparability between the results obtained 
with the real-world artifactual data and the analysis addressing the 
simulated artifacts and ground truth data.

Results

Both the ICA and SSP–SIR methods demonstrated efficacy in 
removing artifacts under favorable conditions. Figure 4 provides a visual 
representation of the cleaning results for an example dataset. Figure 5 
depicts the relative error due to artifact rejection within the 0–50 ms 
time interval after the TMS pulse, illustrating the varying sensitivities of 
ICA and SSP–SIR across different artifact conditions. The figure clearly 
demonstrates the differential responses of the two methods to specific 
artifact characteristics; SSP–SIR was particularly sensitive to the shape 
of the artifact topography, whereas the performance of ICA depended 
more strongly on the inter-trial variability of the artifact.

FIGURE 3

The ground truth TMS–EEG dataset before (A) and after (B) superimposing the simulated artifact signals. The top panel displays the global mean field 
amplitude (Lehmann and Skrandies, 1980) of the average TMS–EEG responses. The central panels depict the mean time courses from all 60 channels 
in a butterfly plot. The bottom panels present topographies at specific latencies, indicated by the dashed vertical lines. Here, the chosen artifact signals 
represent a scenario with perfect inter-trial consistency (no inter-trial variability α = 0) and an artifact topography that possesses the highest spatial 
frequency (indicating the smallest similarity to the underlying ground truth signals).
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As predicted, SSP–SIR resulted in very small RE for the time interval 
50–100 ms after the TMS pulse, ranging from 0.06 to 0.18%. However, 
ICA also performed well within this time interval, yielding RE values of 
just 0.4 to 1.6%. This suggests that with ICA the possible overcorrection 
was mainly emphasized in the early time interval (data not shown).

The overall results remained consistent when the preprocessing of 
the ground truth data relied on ICA instead of SSP–SIR for muscle 
artifact rejection (data not shown). This suggests that the use of SSP–
SIR in the preprocessing of the ground truth data did not introduce 
bias in favor of SSP–SIR in the simulations.

We simulated artifact topographies as cortical current sources 
using a three-layer head model with varying skull conductivities. This 
phenomenological model produced artifact topographies that 
exhibited varying degrees of similarity to the underlying neuronal 
potential patterns. Because the neuronal activity fluctuates over time, 
most of the ground truth topographies in the first 100 ms following 
the TMS pulse demonstrated only weak correlations with the 
simulated artifact topography. However, among the top  5% most 
correlated time samples, the signal space angle between the artifact 
and neuronal signals ranged between 70° and 44°. This was sufficient 
to introduce clear trends in the simulations, revealing particularly the 
sensitivity of SSP–SIR on the topographical congruence between the 
artifact and neuronal topographies (see Figure 5).

ICA is particularly sensitive to inter-trial 
variability

As clearly demonstrated in Figure 5, ICA displayed a heightened 
sensitivity to inter-trial variability. Additionally, the topographical 
shape of the artifacts also influenced the cleaning performance to an 
extent. The results from the two-way ANOVA confirmed that both 
inter-trial variability and topographical similarity significantly 

influenced the relative error between the cleaned and the ground truth 
signal, with p-values less than 0.001. However, when examining the 
effect sizes, inter-trial variability predominantly accounted for the 
observed variance with a notable effect size, whereas topographical 
similarity had a substantially lower effect size (see Table 1 for all the 
effect sizes and p-values). Importantly, our analysis did not reveal any 
significant interaction between the topographical and trial-variability 
characteristics. The amplitude of the artifact did not affect the overall 
trend of the results (see Figure 5 and Table 1), although expectedly, RE 
overall increased with the amplitude of the artifact.

The performance of SSP–SIR depends 
strongly on the shapes of the artifact 
topographies

SSP–SIR exhibited a pronounced sensitivity to topographical 
similarity (see Figure 5). However, inter-trial variability also played a 
role in determining the cleaning outcome. The two-way ANOVA 
results mirrored this observation, indicating that both inter-trial 
variability and topographical similarity significantly influenced the 
relative error when compared to the ground truth signal (see Table 1). 
In terms of effect sizes, topographical similarity emerged as the 
dominant factor as opposed to the inter-trial variability (Table 1). Like 
in the ICA analysis, no significant interaction was detected between the 
two studied artifact properties. However, the effect sizes overall were 
much smaller for the SSP–SIR compared to ICA, suggesting more 
consistent performance for the SSP–SIR across the studied conditions. 
The amplitude of the simulated artifact did not change the nature of the 
statistical results. However, as with ICA, RE overall increased with the 
amplitude of the artifact. Furthermore, with the very large artifact 
(1 mV peak-to-peak-amplitude) also the inter-trial variability started 
to play a more significant role (see Figure 5 and Table 1).

FIGURE 4

The ground truth data, presented in Figure 3A, after being superposed with simulated artifacts (see Figure 3B) and subsequently cleaned using SSP–SIR 
(A) or ICA (B,C). (B) Shows the ICA-corrected signals in the same y-axes with the SSP–SIR-corrected data for direct comparison, whereas panel C 
shows the full extent of the ICA results. SSP–SIR can recover especially the global mean field amplitude and channel time courses well in ideal 
conditions. The topographies are also recovered adequately, albeit they suffer from mild attenuation due to spatial filtering. ICA was able to clearly 
attenuate even the time-locked artifacts, but there are still clear residual artifact signals left. ICA performed much better in suppressing artifacts that 
varied across the trials (inter-trial variability α ≈1) compared to the visualized condition, (inter-trial variability α = 0), but as the variable artifacts do not 
average well, visualizing them as average butterfly plots and GMFA curve is not informative.
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FIGURE 5

The mean relative error (RE) between the true ground truth signal and the recovered TMS–EEG responses at the three different tested artifact 
amplitudes as a function of the signal-space angle between the artifact and neuronal topographies and the inter-trial variability (α ). The smaller the 
angle between the artifact and neuronal topographies, the more similar they are. Panels A,C,E, show the performances of SSP–SIR when rejecting a 
50  μV, 250  μV, or 1  mV amplitude artifact, respectively. Panels B,D,F show the corresponding results for ICA. To provide a clear illustration of the 
variability in results, we applied a log10 transformation to the relative error values. For instance, values of 1, 0, and −1 here correspond to relative errors 
of 1,000, 100, and 10%, respectively. Note that the colormap scales for different panels differ; the RE of SSP–SIR is overall lower than that of ICA.
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Real TMS-evoked muscle artifacts are 
strongly time-locked, and their 
topographies correlate only weakly with 
neuronal potential patterns

All in all, the analysis of the real-world artifactual data 
demonstrates that TMS-evoked muscle artifacts are strongly time-
locked and manifest themselves in EEG as lateralized topographies, 
which differ substantially from the neuronal potential patterns. An 
example of a real-world muscle artifact is illustrated in Figure 6. In 
the time domain, the muscle artifact signals were seen as early 
biphasic responses that were highly replicable and consistent across 
the trials. This high consistency resulted in ITC values near one, 
indicating perfect phase locking. On the other hand, the artifact 

topography differed substantially from the other EEG potential 
patterns. Based on the inspection of real-life muscle artifacts, the 
most realistic scenario in the simulated cases is the one with 
maximum angle between the artifact and ground truth neuronal 
topographies of 70° and close to minimal inter-trial variability  
α ≈ 0. The results obtained from all the studied artifactual TMS–EEG 
datasets are summarized in Figure 7.

Discussion

We analyzed how the spatiotemporal attributes of to-be-rejected 
artifacts determine the data-cleaning capacities of ICA and SSP–
SIR. Through the simulations, where distinct TMS-evoked artifacts 

TABLE 1 The ANOVA results for the tested artifact amplitudes.

Artifact amplitude SSP–SIR ICA

Inter-trial 
variability

Topographical similarity Inter-trial 
variability

Topographical similarity

50 μV p < 0.001

η2 = 0.004

p < 0.001

η2 = 0.105

p < 0.001

η2 = 0.652

p < 0.001

η2 = 0.002

250 μV p < 0.001

η2 = 0.012

p < 0.001

η2 = 0.057

p < 0.001

η2 = 0.536

p < 0.001

η2 = 0.002

1 mV p < 0.001

η2 = 0.043

p < 0.001

η2 = 0.115

p < 0.001

η2 = 0.516

p < 0.001

η2 = 0.002

FIGURE 6

Properties of real muscle artifacts in an example real-world artifactual dataset. (A) Inter-trial coherence (ITC) shows a very strong consistency across 
the trials (top panel), reflected in the biphasic trial responses (bottom panel). (B) The muscle artifact created a bipolar topography, emphasized in the 
right lateral channels. (C) When quantifying the similarity between the artifact topography and the neuronal potential patterns across the measured 
trials and time span, a vast majority of the angles vary between 80 to 100°, which is larger compared to any of the simulated cases (see Figure 5).
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were superposed on a genuine TMS–EEG dataset, we  could 
quantitatively compare the uncovered signals with the ground 
truth. The results offer insights into the differential sensitivities of 
ICA and SSP–SIR. Our findings suggest that ICA functions 
optimally when the artifacts show pronounced inter-trial variability. 
This observation confirmed our initial hypothesis, affirming that 
ICA can separate artifacts that are relatively independent of time-
locked TMS-evoked activity. Conversely, SSP–SIR is sensitive to the 
topographical congruence between the artifact and neuronal 
signals, but insensitive to the inter-trial variability, validating our 
initial expectations. Regardless of the artifact amplitude, ICA 

primarily showed sensitivity to inter-trial variability, while the 
performance of SSP–SIR largely depended on the topographical 
shape of the artifact. As expected, both methods demonstrated 
improved performance with lower artifact amplitudes. The 
amplitude-simulation results mirror our practical experience: 
suppressing artifacts of a few hundred microvolts is often feasible, 
but the potential for artifact suppression rapidly diminishes as the 
amplitude approaches the millivolt scale.

SSP–SIR exhibited increased sensitivity to inter-trial variability 
when dealing with high artifact amplitudes. This heightened 
sensitivity can be traced back to the calculation process of RE. When 

FIGURE 7

TMS-evoked muscle artifacts demonstrated consistent characteristics across the 17 studied real-world datasets. (A) Across all datasets, the artifact 
exhibited a focal topography, particularly emphasized in the right lateral channels. (B) The scatter plot illustrates the ITC values across subjects and 
frequencies (see Figure 6A), with the red solid line indicating the mean ITC as a function of time. The muscle artifacts consistently showed very strong 
ITC values immediately following the TMS pulse. (C) The violin plots display the distribution of the angle between the artifact topography and neuronal 
potential patterns across subjects and trials. The white dots, horizontal lines, and vertical lines represent the median, mean, and lower and upper 
whiskers, respectively. These violin plots indicate that most of the studied artifact–neural topography angles predominantly lie between 80° and 100°.
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the inter-trial variability of artifacts was minimized (set to 0), any 
remaining artifacts were most noticeable around 6 ms. This 
coincided with instances where the ground truth signal exhibited 
relatively low amplitudes (as illustrated in Figure  3), leading to 
larger RE values. Conversely, when inter-trial variability was high, 
residual artifacts also appeared around 10 ms in some trials. This 
occurred precisely when the ground true signal reached its 
maximum GMFA (1.5 μV). As a result, the RE values in those trials 
were comparatively lower. Thus, when averaging the RE values 
across trials, the overall RE slightly decreased under conditions of 
high inter-trial variability.

While the estimated effect sizes aligned with our hypotheses, 
they highlighted considerable differences between the two tested 
methods. Notably, the effect sizes indicated that the influence of 
variation in different artifact properties was smaller for SSP–SIR 
than it was for ICA, which was very strongly influenced by variation 
in the inter-trial variability of the artifact. Irrespective of the varied 
artifact parameters, SSP–SIR maintained a more uniform 
performance in revealing the underlying ground truth with small 
relative error values overall. A critical assumption underlying SSP–
SIR is that muscle-artifact signals have a consistent topography 
across the different temporal frequencies. The simulations here 
always maintained this consistency, which could have potentially 
skewed the results in favor of SSP–SIR. When applying SSP–SIR in 
real world, it is often necessary to reject several artifact components, 
possibly due to slight variations in the artifact topography as a 
function of temporal frequency.

In theory, the ground truth data could contain some real residual 
artifacts, which, if correctly suppressed, might be  mistakenly 
interpreted as overcorrection of the “neuronal” ground truth data. To 
mitigate this risk, we deliberately chose a high-quality dataset for our 
ground truth, ensuring minimal residual artifacts. Furthermore, closer 
inspection of individual simulation runs revealed that variations in 
cleaning performance were in most cases attributable to the limitations 
of SSP–SIR or ICA in effectively suppressing simulated artifacts in 
suboptimal conditions, rather than to the excessive suppression of the 
ground truth data.

To answer which method is optimal for muscle-artifact 
suppression requires a thorough understanding of the properties 
of such artifacts. The real-world artifactual datasets analyzed here 
suggested that muscle artifacts have both high inter-trial 
consistency (low inter-trial variability) and low topographical 
similarity with the neuronal signals, promoting the use of SSP–SIR 
over ICA. Although the results here strongly support the use of 
SSP–SIR for rejecting TMS-evoked muscle artifacts, it is important 
to note that reliable utilization of SSP–SIR always requires that the 
time-locked neuronal activity of interest is absent in the high-pass 
filtered data that is used to estimate the time-locked artifact 
topographies. Here, we assumed that no significant brain activity 
exists above 100 Hz.

ICA exhibited diminished efficacy in rejecting artifacts with low 
inter-trial variability. This finding is in line with the results of the work 
by Atti et al. (2023), which elaborates further the optimal temporal 
conditions for applying ICA in artifact removal and theory behind 
ICA. However, for instance, ocular artifacts are characterized by their 
sporadic occurrence and often lack time-locking to the TMS pulse, 
which makes them particularly susceptible to ICA cleaning. On the 

other hand, their widespread frontal topographies and dominance in 
temporal frequencies below 10 Hz mean that the SSP–SIR approach, 
as outlined in Mutanen et al. (2016), is ill-suited for handling these 
types of artifacts. Thus, despite its limitations in cleaning time-locked 
artifact signals, the obtained results do not question the general 
usefulness of ICA for rejecting various artifact and noise signals from 
TMS–EEG datasets.

Figure 5 shows a counterintuitive peculiarity in the results: when 
the inter-trial variability was low, RE of ICA increased with greater 
dissimilarity between artifact and brain topographies. In this special 
case, a more detailed examination of individual simulation runs 
revealed that when the artifact topography closely resembled the early 
neuronal topographies, ICA tended to mistakenly blend a portion of 
the ground truth data with the artifact signal, leading to 
overcorrection. Conversely, when the artifact topography was more 
distinct from the underlying ground truth data, it was more common 
for some residual artifact to persist. Neither outcome is desirable; 
however, we  found that overcorrection typically resulted in lower 
RE values.

To maintain analytical simplicity, we  utilized the a priori 
knowledge from our simulations that the modeled artifact consisted 
of a single component. This led us to adopt a similar approach as in 
Atti et al. (2023) where the independent component most closely 
resembling the simulated artifact was discarded. It is plausible that 
ICA segmented the artifact into multiple components, potentially 
enhancing performance had these components been manually 
identified. However, this approach would have been impractical due 
to the sheer volume of simulation runs involved. While semi-
automated ICA techniques are available today (Rogasch et al., 2017; 
Pion-Tonachini et  al., 2019), they necessitate the adjustment of 
numerous hyperparameters, which adds complexity to result 
interpretation. Consequently, we opted against using automated ICA, 
aiming to maintain simplicity in our analysis.

If a TMS–EEG dataset consists of both blink and early time-
locked muscle artifacts, ICA can be used as a separate step, prior 
to SSP–SIR, to cancel ocular artifacts. Based on these results, 
we recommend SSP–SIR over ICA for suppressing time-locked 
artifacts, for instance when early TMS-evoked responses are of 
particular interest. However, it is important to remember that 
even SSP–SIR correction is always a compromise, and the 
underlying brain responses can be  attenuated in the process. 
Mutanen et  al. (2022)  recommended analyses to quantify the 
degree of undesired attenuation in the neuronal signals of interest. 
SSP–SIR is often used in combination with the SOUND algorithm, 
which is known to also attenuate muscle artifacts. Thus, SOUND 
may interact with the performance of SSP–SIR in practical 
preprocessing pipelines. However, comparing the combination of 
SOUND and SSP–SIR to using SSP–SIR or ICA alone falls outside 
the scope of this study.

In these simulations, we  exclusively varied the inter-trial 
variability of the phase of the artifact. However, it is conceivable that 
also the topography of certain artifacts might also fluctuate from trial 
to trial. Nevertheless, based on our heuristic experience, the 
topographies of both TMS-evoked muscle artifacts and ocular artifacts 
tend to be highly replicable across epochs.

To summarize, the choice between ICA and SSP–SIR depends on 
the specific nature and properties of the artifacts of interest. As 
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researchers continue to utilize advanced signal-processing tools, 
profound understanding of the strengths and limitations of different 
methods, as well as the characteristics of different artifact signals, will 
be crucial in optimizing EEG data cleaning.
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