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Introduction: Objectively predicting speech intelligibility is important in both

telecommunication and human-machine interaction systems. The classic

method relies on signal-to-noise ratios (SNR) to successfully predict speech

intelligibility. One exception is clear speech, in which a talker intentionally

articulates as if speaking to someone who has hearing loss or is from a

different language background. As a result, at the same SNR, clear speech

produces higher intelligibility than conversational speech. Despite numerous

efforts, no objective metric can successfully predict the clear speech benefit

at the sentence level.

Methods: We proposed a Syllable-Rate-Adjusted-Modulation (SRAM) index to

predict the intelligibility of clear and conversational speech. The SRAM used as

short as 1 s speech and estimated its modulation power above the syllable rate.

We compared SRAM with three reference metrics: envelope-regression-based

speech transmission index (ER-STI), hearing-aid speech perception index version

2 (HASPI-v2) and short-time objective intelligibility (STOI), and five automatic

speech recognition systems: Amazon Transcribe, Microsoft Azure Speech-To-

Text, Google Speech-To-Text, wav2vec2 and Whisper.

Results: SRAM outperformed the three reference metrics (ER-STI, HASPI-v2

and STOI) and the five automatic speech recognition systems. Additionally,

we demonstrated the important role of syllable rate in predicting speech

intelligibility by comparing SRAM with the total modulation power (TMP) that

was not adjusted by the syllable rate.

Discussion: SRAM can potentially help understand the characteristics of

clear speech, screen speech materials with high intelligibility, and convert

conversational speech into clear speech.

KEYWORDS

objective metric, speech intelligibility, clear speech, temporal modulation, automatic
speech recognition
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1 Introduction

Automatic speech recognition and synthesis are important
parts of a socially intelligent human-machine interaction system.
To design a well-behaved and well-performed system, one needs
to predict speech intelligibility not only in quiet but also in noise
and other challenging situations including different talkers and
different speech styles. Indeed, speech intelligibility prediction has
been a cornerstone in telecommunication. One hundred years ago,
engineers were able to predict speech intelligibility based on signal-
to-noise ratios (SNR) from several frequency bands (French and
Steinberg, 1947; Kryter, 1962). This SNR-based prediction not only
established the foundation for telephony but was also applied to
a wide range of hearing and speech issues, including prediction
of hearing aid and cochlear implant performance (Amlani et al.,
2002).

Interestingly, the SNR-based prediction has failed for a
particular style called clear speech, which produced higher
intelligibility than conversational speech at the same SNR. Clear
speech was first systematically studied by Picheny et al. (1985,
1986, 1989) at MIT. The clear speech benefit has been attributed
to both global and phoneme-level acoustic characteristics in the
clear speech, including slower speech rates (Picheny et al., 1989;
Uchanski et al., 1996; Krause and Braida, 2002), greater power
at high frequencies (Krause and Braida, 2004), deeper temporal
modulation at low modulation frequencies (Krause and Braida,
2004; Liu et al., 2004), and more vowel-consonant contrasts
(Picheny et al., 1986; Krause and Braida, 2004; Ferguson and
Kewley-Port, 2007). Clear speech improves speech perception not
only in noisy environments for listeners with normal hearing
(Payton et al., 1994; Liu et al., 2004), but more importantly for
listeners with hearing loss (Picheny et al., 1985; Ferguson and
Kewley-Port, 2002; Krause and Braida, 2002; Liu et al., 2004;
Smiljanić and Bradlow, 2005; Zeng and Liu, 2006).

At present, there still lacks an objective metric to characterize
clear speech and predict its speech intelligibility benefit over
conversational speech. Previous studies used the traditional
SNR-based method or articulation index (Kryter, 1962), speech
intelligibility index (ANSI-S3.5, 1997), traditional and speech-
based speech transmission index (STI) (Payton and Braida, 1999).
Particularly, the speech-based STI obtained good results, but it
was based on modulation power spectrum estimation with a 16 s
time window. The long-duration window requirement has limited
its utility in predicting sentence-level intelligibility. To overcome
this limitation, an envelope-regression-based STI procedure (ER-
STI) was developed to predict the intelligibility of short-duration
clear speech (Payton and Shrestha, 2013). However, the ER-STI
not only was tested with one noise condition at −1.8 dB SNR
but also predicted a clear speech benefit that was less than the
human performance.

Here we proposed a novel short-time objective intelligibility
metric that used speech rate adjusted modulation (SRAM) power
to predict the speech intelligibility under multiple SNR levels. It can
correctly predict the intelligibility of both clear and conversational
speech as well as the clear speech benefit. Similar to the speech-
based STI, the SRAM first estimates the modulation power
spectrum of the speech envelope, but it uses time window of 1
s instead of 16 s. The most important difference between the

two metrics was that the SRAM removed spectrum components
below the syllable rate for intelligibility prediction, whereas the
speech-based STI included all components from 0.25 to 25 Hz.

We also tested the utility of SRAM in predicting the clear speech
advantage against three objective metrics: ER-STI, the hearing-aid
speech perception index version 2 (HASPI-v2) (Kates and Arehart,
2021), and the short-time objective intelligibility (STOI) (Taal et al.,
2011). In addition to ER-STI, we chose HASPI-v2 and STOI because
of their general success in predicting speech intelligibility (Van
Kuyk et al., 2018). To our knowledge, neither HASPI-v2 nor STOI
has been applied to predicting the clear speech benefit.

Recent advances in automatic speech recognition (ASR) have
made it a viable alternative for predicting speech intelligibility
(Feng and Chen, 2022; Karbasi and Kolossa, 2022). We are not
aware of the application of ASR to predict clear speech benefit. Here
we also tested the speech intelligibility prediction performance of
five modern ASR systems and compared them with SRAM.

2 Materials and methods

2.1 Human performance and model
evaluation

2.1.1 Speech material and subjective data
The speech material used for evaluation consisted of 144

sentences recorded from two talkers (one female, one male) in
both clear and conversational styles (72 sentences in each style).
These sentences were selected from Bamford-Kowal-Bench (BKB)
sentences (Bench et al., 1979). The sample rate was 16,000 Hz. The
silence periods before and after the speech were removed. In noise
conditions, the sentences were mixed with a long-term speech-
spectrum-shaped noise to produce six SNRs: −15, −10, −8, −5,
0, 5 dB. A total of 28 conditions were generated, including (6 noise
levels + 1 quiet) ∗ 2 speakers ∗ 2 styles.

The subjective speech intelligibility data were collected using
these 144 sentences from 11 subjects (see Experiment I in Liu
et al., 2004). The average percentage of correctly recognized
keywords was recorded as the subjective speech intelligibility. A
two-parameter logistic function (Eq. 1) was used to relate the
intelligibility data to SNRs and estimate the speech reception
threshold (SRT):

f (SNR) =
1

1+ e−k(SNR−SRT)
(1)

where SRT is the SNR that produced a 50%-speech intelligibility
score. The clear speech benefit (Eq. 2) is defined as the difference
between the speech reception threshold of clear speech (SRTclear)
and conversational speech (SRTconv):

δSRT = SRTclear − SRTconv (2)

2.1.2 Transformation model and fitness
All objective metrics and ASR systems were evaluated using

all sentences under all conditions. To compare the results between
different methods, a nonlinear transformation is commonly used
to convert an objective metric into a subjective speech intelligibility
score (Taal et al., 2011). A four-parameter logistic model was used
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to transform a value (x) from objective metrics or ASR systems into
a speech intelligibility score, f(x):

f (x) = d −
d − a

1+ (x/c)b
(3)

where a and d are the minimum and maximum values, b is a
parameter related to the slope of the curve, and c is the halfway
point on the curve between a and d.

The transformation model (Eq. 3) was evaluated by the
normalized root-mean-square error (NRMSE) or σ (Eq. 4) between
the transformed objective metric values and speech intelligibility
score:

σ =

√
1
S
∑S

i = 1 (si − f (xi))2

smax − smin
(4)

where S was the total number of conditions, si was the averaged
human intelligibility score under condition i, xi was the averaged
objective metric value across 72 sentences under the same condition
i, smax and smin were the maximum and minimum value of the
human speech intelligibility, respectively. Table 1 lists the fitted
parameters for all objective metrics and ASR systems.

2.2 Syllable-rate-adjusted-modulation

Figure 1A illustrates the algorithms for calculating total
modulation power (TMP) and SRAM. The front-end processing is
the same. First, the speech was filtered into seven bands, using six
sixth-order octave-wide Butterworth filters with center frequencies
from 125 Hz to 4 kHz, and additionally a sixth-order Butterworth
6-kHz high-pass filter. For each band, the intensity envelope ei(n)
(Eq. 5) was extracted from the filtered signal si(n) using Hilbert
transform H:

ei(n) =
√
si(n)2

+H{si(n)}2 (5)

where n = 1, 2, · · · ,N, with N being the total length of the
speech envelope.

The modulation power spectrum in each band Pi(f ) was
estimated from the intensity envelope using Bartlett’s method
(Bartlett, 1948) with a 1 s window, which yielded a 1 Hz frequency
resolution. The resulting modulation power spectrum Pi(f ) was
normalized by the average power of the envelope and the window
duration D:

mi(f ) =
Pi(f )

D
N
∑N

n = 1 ei(n)
2 (6)

TABLE 1 Fitted nonlinear transformation parameters relating subjective
speech intelligibility to objective metrics.

Metric a b c d ASR a b c d

TMP −0.19 1.89 0.11 0.99 Amazon 0.02 0.57 0.57 1.67

SRAM −0.21 2.22 0.08 0.99 Microsoft 0.01 1.03 1.05 2.00

SRAMest −0.20 2.21 0.08 0.99 Google 0.07 0.50 1.16 2.00

STOI −0.09 8.01 0.62 1.01 wav2vec2 0.10 0.41 1.37 2.00

ER-STI 0.01 4.49 0.34 0.99 Whisper 0.06 2.11 1.06 2.00

HASPI-v2 0.08 4.76 1.06 2.00

The The four-parameter logistic model (Eq. 3) is used: f (x) = d − d−a
1+(x/c)b

.

Total modulation power (TMP) and SRAM differed in the final
stage. The TMP was the result of summing up band-averaged mi(f )
(Eq. 6) from 1 Hz to 25 Hz:

TMP =
25∑

k = 1

1
7

7∑
i = 1

mi(k) (7)

Syllable-rate-adjusted-modulation (SRAM), in contrast, was the
result of summing up band-averaged mi(f ) (Eq. 6) from integral
part of the syllable rate (SR) to 25 Hz:

SRAM =
25∑

k = bSRc

1
7

7∑
i = 1

mi(k) (8)

Figure 1B gives an example of the TMP calculation for the female
speaker (left panel) and the male speaker (right panel) in either the
clear (red) or conversational (blue) style at−8 dB SNR. As indicated
by the shaded area, the TMP was relatively similar between clear
and conversational speech, making it difficult to predict the clear
speech benefit. This difficulty was also seen for the TMP averaged
over all sentences, as shown in Figure 1C (left panel, female):
the objective metrics were close to 0.1 on the x-axis for both
the clear and conversational speech at −8 dB SNR, but their
corresponding subjective speech intelligibility scores were vastly
different at 0.7 and 0.2, respectively. As a result, the transformation
model (black dashed line in Figure 1C) underpredicted the clear
speech intelligibility while overpredicted the conversational speech
intelligibility, giving rise to a relatively large error for the female
speaker (σFemale = 9.6%).

Figure 1D shows the effect of syllable rate on SRAM. It removed
the power for modulation frequencies below the syllable rate, which
decreased the modulation power more for conversational speech
than clear speech. In particular, the SRAM and TMP were the same
for female clear speech, because it had a syllable rate close to 1 Hz.
The net effect was that the SRAM (Figure 1E) produced much
smaller errors than the TMP.

2.3 Syllable rate

The calculation of SRAM requires prior knowledge of the
speech syllable rate. We used two methods (detailed in sections
“2.3.1 Syllable rate reference” and “2.3.2 Syllable rate estimation”)
to determine the syllable rate, depending on the availability of
the speech script.

2.3.1 Syllable rate reference
If the speech script is available, the gold standard for syllable

rate calculation is simply taking the ratio of the syllable count of
the script over the total speech duration in seconds (upper path
in Figure 2A). Here the syllable count was obtained from the
speech script using the Carnegie Mellon University Pronouncing
Dictionary (CMUdict).1 We first translated each word in the
sentence into ARPAbet notations, then counted each vowel
notation as one syllable.

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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FIGURE 1

(A) The diagram for the total modulation power (TMP) and syllable-rate-adjusted-modulation (SRAM). The processing is the same between TMP and
SRAM, except for the last stage in which the modulation power is removed below the syllable rate for SRAM (Eqs 7, 8). (B) The averaged modulation
power spectrum for the sentence “The orange was very sweet” at –8 dB SNR, produced in either clear (red line) or conversational (blue line) speech
style by a female (left panel) and male (right panel) speaker. The shaded area under each line equals the TMP in its corresponding condition.
(C) Speech intelligibility as a function of TMP. The speech intelligibility data are represented as red circles for clear speech and blue triangles for
conversational speech. The black line represents the best fitted nonlinear transformation (Eq. 3), with the overall error (σ) being displayed on the top
of the panel, and the clear and conversational speech errors inside the panel. (D) Same as (B) for SRAM, except that the modulation power is
removed below the syllable rate (vertical dashed lines: red = clear speech and blue = conversational speech). (E) Same as (C) for SRAM, except for
the solid symbols.

2.3.2 Syllable rate estimation
If the speech script is not available, the syllable rate can

be estimated from the clean speech sound (lower path in
Figure 2A). The overall estimation method was similar to Wang
and Narayanan (2007). First, the speech was filtered by the same
seven filters as described in section “2.2 Syllable-rate-adjusted-
modulation.” Band-specific envelopes were extracted using Hilbert
transformation (Eq. 5), then down-sampled to 100 Hz and low-
passed by a second-order Butterworth filter with a 25 Hz cutoff

FIGURE 2

Syllable rate (SR) calculation and evaluation. (A) Calculating SRref

from the speech script and estimating SRest from the speech sound.
(B) The reference syllable rates vs. the estimated values for the
female (left panel) and the male (right panel) speaker. The clear
speech data are represented by red circles, while the conversational
speech by blue triangles. The center of thick circles represents the
averaged syllable rates, and the radius represents one standard
deviation. The error (σSR) is displayed on the top of each panel.

frequency. Second, temporal (Eq. 9) and sub-band (Eq. 10)
correlations were calculated from M out of seven filtered envelopes
with the highest energy (e

′

j(n), j = 1, 2, · · · ,M). In this study,
M was set to 4. Different from Wang and Narayanan (2007), the
temporal correlation was calculated as below:

yj(n) =

√√√√ 1
K

∣∣∣∣∣
K∑

k = 1

wke
′

j(n)e
′

j(n+ l)

∣∣∣∣∣, l = k−
⌊
K
2

⌋
− 1 (9)

where wk, k = 1, 2, · · · , K, was the Hann window with length
K = 11 and e

′

j(n+ l) = 0 if n+ l = 0 or n+ l = N. This
temporal correlation favored vowels over consonants.

Third, the sub-band correlation of the resulting temporal
correlation was calculated the same as Wang and Narayanan
(2007):

z(n) =

√√√√√ 2
M(M − 1)

M−1∑
j = 1

M∑
l = j+1

yj(n)yl(n) (10)

z(n) was then subject to min-max normalization. Peaks in the
normalized correlation with predominance (p) greater than 0.07
were counted as syllables. The syllable rate was estimated as the
number of peaks divided by the speech duration.

The SRAM implementation including the syllable rate
estimation algorithm is available at https://github.com/
yangye1098/SRAM.git.

2.3.3 Syllable rate evaluation
The performance of the syllable rate estimation was also

measured by the NRMSE or σSR (Eq. 11) between the reference
syllable rate and the estimated syllable rate:

σSR =

√
1
S
∑S

i = 1 (SRref ,i − SRest,i)2

SRref ,max − SRref ,min
(11)
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FIGURE 3

Speech intelligibility prediction using TMP (A), SRAM (B) and
SRAMest (C). Left panels show results for the female speaker and
right panels for the male speaker. In each panel, the same subjective
intelligibility data are represented by red circles for the clear speech
and blue triangles for the conversational speech. The red solid line
represents predictions for clear speech and the blue solid line for
conversational speech. The prediction error (σ) is displayed on the
top of each panel. Speech reception threshold or SRT is the SNR in
dB, at which 0.5 speech intelligibility is achieved (the horizontal
dotted line in each panel). The predicted SRT is represented as the
vertical dotted red line for clear speech and the vertical dotted blue
line for conversational speech. The actual vs. predicted SRT values
are displayed as the red text for clear speech and the blue text for
conversational speech. The clear speech benefit is the SRT
difference between clear and conversational speech, with its actual
vs. predicted values being displayed as the black text.

where S was the total number of sentences, SRref ,i and SRest,i were
the reference syllable rate and the estimated syllable rate for the ith

sentence, respectively, SRref ,max and SRref ,min were the maximum
and minimum value of the reference syllable rate, respectively.

Figure 2B shows the performance of the syllable rate estimation
algorithm. The overall error was ∼10% for female and male
speakers. Of the total 288 sentences, 163 sentences (57%) were
estimated to have the same syllable rate as that from the speech
script. If integer precision was used due to the frequency resolution,
215 sentences (75%) produced the correct syllable rate.

2.4 Reference metrics

We compared SRAM with three established objective
intelligibility metrics: ER-STI, HASPI-v2 and STOI. ER-STI
determined the linear regression coefficients between the

FIGURE 4

Speech intelligibility prediction using three objective reference
metrics: ER-STI (A), HASPI-v2 (B) and STOI (C). All representations
are the same as Figure 3.

normalized intensity envelopes of the degraded and reference
speech in seven frequency bands. These regression coefficients
were then translated to an STI index. The ER-STI values were
calculated using the original method to evaluate intelligibility of
clear and conversational speech with the window length being the
sentence duration (Payton and Shrestha, 2013).

Hearing-aid speech perception index version 2 (HASPI-v2) was
based on a peripheral auditory processing model and envelope
modulation analysis. HASPI-v2 extracted the speech envelope in
32 auditory frequency bands. The envelope was then filtered into
the 10 modulation frequency bands, within which cross-correlation
was obtained between cepstral coefficients of the degraded and
reference speech. The cross-correlation values were mapped to
speech intelligibility using a trained neural network (Kates and
Arehart, 2021). The HASPI-v2 values were calculated using a
python implementation with a 5-dB HL hearing threshold across
all frequencies.2

Short-time objective intelligibility (STOI) calculated
correlation coefficients between time-frequency representations of
the degraded and reference speech (Taal et al., 2011). The STOI
values were calculated using a python implementation with all
default settings.3

2 https://github.com/claritychallenge/clarity

3 https://github.com/mpariente/pystoi
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FIGURE 5

Speech intelligibility prediction using five ASR systems, Google (A),
Whisper (B), Microsoft Azure (C), wav2vec2 (D) and Amazon
Transcribe (E). All representations are the same as Figure 3.

2.5 Automatic speech recognition

We evaluated performance of five ASR systems, including three
commercial cloud-based services (Amazon Transcribe, Microsoft
Azure Speech-To-Text, and Google Speech-To-Text) and two
recent open-source models (wav2vec2; see Baevski et al., 2020 and
Whisper see Radford et al., 2022). The default settings were used
for the three commercial systems. The official implementations

of wav2vec2 and Whisper provided in Hugging Face were used.
The pretrained model tested was “large-960h” for wav2vec2 and
“large-v2” for Whisper.

3 Results

3.1 Syllable-rate-adjusted-modulation

First, all panels in Figure 3 display the same human
speech recognition data (red circles = clear speech; blue
triangles = conversational speech). For both female (left panels) and
male (right) speakers, speech intelligibility increased as a function
of SNR, but the intelligibility was consistently higher for the clear
speech than the conversational speech at the same low SNRs from
−15 to 0 dB. This “clear speech benefit” (Eq. 2) is quantified by
the difference in speech reception threshold (SRT), or the SNR at
which 50% speech intelligibility is achieved (the horizontal dashed
line). For the female speech, SRTclear was−9.1 dB and SRTconv was
−5.2 dB, resulting in a clear speech benefit δSRT of−3.9 dB (=−9.1
to−5.2 dB, left black text). For the male speech, the corresponding
values were−8.5,−6.3, and−2.2 dB, respectively.

Figure 3A shows TMP predictions (solid lines and right text
in each panel, with red corresponding to clear speech and blue to
conversational speech). The TMP under-predicted the clear speech
benefit by 2.8 dB (= −1.1 to −3.9 dB) for the female speaker (left
panel) and 1.0 dB (= −1.2 to −2.2 dB) for the male speaker (right
panel). The overall prediction error (σ) was 8.1%. Figure 3B shows
the SRAM prediction, which followed more closely to the human
data than the TMP prediction, with a clear speech benefit difference
of 0.3 dB for the female speaker and −0.1 dB for the male, and an
overall σ of 4.4%. Figure 3C shows the SRAM prediction using the
estimated syllable rates (SRAMest), which produced slightly worse
prediction than the SRAM but still better than the TMP, with a clear
speech benefit difference of 0.8 dB for the female speaker, 0.3 dB for
the male and an overall σ of 4.8%.

3.2 Reference metrics

Figure 4 shows the same human recognition data along with
predictions from three reference objective metrics. Figure 4A
shows that ER-STI produced an overall σ of 7.2%, which was similar
to the TMP error but worse than both SRAM errors (Figure 3).
On the other hand, HASPI-v2 (Figure 4B) and STOI (Figure 4C)
had much higher prediction errors of 12.1 and 12.4%, respectively.
Worse yet, HASPI-v2 and STOI predicted higher intelligibility for
the conversational speech than the clear speech in three of the four
conditions (Figure 4B male, Figure 4C both female and male), as
indicated by the positive δSRT values in clear speech benefit.

3.3 Automatic recognition systems

Figure 5 shows the same human data with predictions from
five ASR systems. Among them, Google (Figure 5A) and Whisper
(Figure 5B) produced an overall similar prediction error of 6.7 and
6.9%, respectively, which was better than three reference metrics
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and the TMP but worse than the two SRAM predictions. On
the other hand, the other three ASR systems produced a higher
prediction error around 10%, with half conditions predicting a
reversed trend in the clear speech benefit (Figure 5C female and
Figure 5E both female and male).

4 Discussion and conclusion

In this study, we presented SRAM, an objective speech
intelligibility metric based on modulation power above the syllable
rate (Figure 1). We also presented an automatic syllable rate
estimation algorithm in cases where speech script was not available
(Figure 2). The SRAM outperformed not only the modulation
power model without the syllable rate adjustment but also three
acoustic-based objective metrics and five ASR systems in terms
of predicting both the speech reception thresholds and the clear
speech benefits (Figures 3–5). Importantly, with a one-second
window, the SRAM can predict sentence-level intelligibility.

A major reason for the SRAM’s good performance is the
slower syllable rate for clear speech than conversational speech.
For example, the sentence “The orange was very sweet,” spoken
by the female speaker, had a rate of 1.9 syllables/sec in clear style
and 4.3 syllables/sec in conversational style; the same sentence,
spoken by the male speaker, had a rate of 3.6 and 5.0 syllables/sec
in clear and conversational style, respectively (Figure 1D, vertical
dashed lines). The slower rates contributed to greater SRAM
values for clear speech than conversational speech. There might
be additional modulation power differences between the clear and
conversational, because a talker could maintain a similar syllable
rate between the two styles (Krause and Braida, 2004). Future work
is needed to address this issue.

There is also evidence for humans not relying on the
information at the modulation frequencies below the syllable rate to
understand speech. For example, Drullman et al. (1994) found that
removing components with modulation frequencies lower than
4 Hz, the average syllable rate for conversational speech, does not
affect speech recognition. These below-syllable-rate components
carry prosodic information such as stress rather than speech
intelligibility (Goswami, 2019).

While the three reference objective metrics could predict
speech intelligibility in noise, their performance was worse than
SRAM in predicting the clear speech benefit. There are several
possible reasons for this discrepancy. First, all three metrics were
based on correlation between clean and noisy speech, which
theoretically included all modulation frequencies. The inclusion
of all modulation frequencies explains the similar performance
between TMP and the three metrics. Second, STOI used a
time-window of 384 ms to calculate the correlation, which
would ignore modulation frequencies below 2.6 Hz. Because the
female clear speech has a syllable rate of 1 Hz, STOI did not
capture the modulation power between 1 and 2.6 Hz in the
clear speech, resulting in predicting prediction a clear speech
disadvantage (Figure 4C left panel). Third, HASPI-v2 predicted
similar intelligibility between the clear and conversational speech
at all SNRs, suggesting that the peripheral auditory model in
HASPI-v2 likely extracts long-term spectral information, which was
identical regardless of the speech style.

When tested with our dataset of conversational and clear
speech, all five ASR systems performed relatively well in quiet, but
they behaved differently in noisy conditions. Google and Whisper
performed reasonably close to humans, while Microsoft Azure,
wav2vec2 and Amazon could not recognize the female clear speech
well. This suggests these three systems may fail to recognize speech
of certain style when deployed in noisy environment. Since ASR is
an important part of the human-machine interaction system, either
the design or training materials or both need to be refined to achieve
realistic performance under challenging situations.

One potential application of SRAM is evaluation of synthesized
voices. For a socially intelligent human-machine interaction such as
a voice assistant, it is crucial to select a clear voice that is intelligible
not only in quiet but also in background noise. Another application
is to use SRAM to pre-screen training materials that fine-tune a
speech synthesizer.

The present study demonstrated that a syllable-rate-adjusted-
modulation index or SRAM can predict sentence-level speech
intelligibility and the intelligibility benefit of clear speech over
conversational speech at the same signal-to-noise ratio. Moreover,
SRAM is better than existing objective metrics and current
automatic speech recognition systems. Future study is needed to
test the effect of SRAM on predicting speech of various styles
and explain why syllable rate plays such an important role in
speech intelligibility.
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