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Brain-computer interfaces (BCIs) have a potential to revolutionize human-

computer interaction by enabling direct links between the brain and computer

systems. Recent studies are increasingly focusing on practical applications of

BCIs—e.g., home appliance control just by thoughts. One of the non-invasive

BCIs using electroencephalography (EEG) capitalizes on event-related potentials

(ERPs) in response to target stimuli and have shown promise in controlling

home appliance. In this paper, we present a comprehensive dataset of online

ERP-based BCIs for controlling various home appliances in diverse stimulus

presentation environments. We collected online BCI data from a total of 84

subjects among whom 60 subjects controlled three types of appliances (TV: 30,

door lock: 15, and electric light: 15) with 4 functions per appliance, 14 subjects

controlled a Bluetooth speaker with 6 functions via an LCD monitor, and 10

subjects controlled air conditioner with 4 functions via augmented reality (AR).

Using the dataset, we aimed to address the issue of inter-subject variability in

ERPs by employing the transfer learning in two different approaches. The first

approach, “within-paradigm transfer learning,” aimed to generalize the model

within the same paradigm of stimulus presentation. The second approach,

“cross-paradigm transfer learning,” involved extending the model from a 4-class

LCD environment to different paradigms. The results demonstrated that transfer

learning can effectively enhance the generalizability of BCIs based on ERP across

different subjects and environments.
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1 Introduction

Brain-Computer Interfaces (BCIs) have become a promising
technology that establishes a direct communication channel
between the human brain and external computational devices
(Gao et al., 2021). BCIs have gained attention for their diverse
applications across multiple disciplines. Initially developed for
medical and rehabilitative purposes, BCIs have expanded to
practical areas such as virtual reality, gaming, and robotics (Ahn
et al., 2014). One of the primary neural signals used for BCIs is
electroencephalography (EEG). BCIs using EEG can be divided
into active, reactive and passive BCIs according to the paradigm
to generate desired EEG patterns (Amiri et al., 2013). Among
them, most reactive BCIs have relied on two major EEG features,
event-related potentials (ERPs) and steady-state visually evoked
potentials (SSVEPs) (Fazel-Rezai et al., 2012). Specifically, ERP-
based BCIs transcend sensory modalities and require less training
for the user compared to other methods, making them suitable for
real-time interaction with various computer systems (Krol et al.,
2018).

The speller is one of the most representative examples of
ERP-based BCIs. Over the past 20 years, the BCI speller has
served as a communication tool for individuals afflicted with
a range of neuromuscular disorders, including ALS, brainstem
stroke, brain or spinal cord injury, cerebral palsy, muscular
dystrophies, multiple sclerosis, and other patients (Sosa et al., 2011).
Moreover, ERP-based BCIs have demonstrated their utility in
various domains beyond medical and rehabilitative applications—
e.g., game control and lie detection (Marshall et al., 2013;
Anwar et al., 2019; Mane et al., 2020). Additionally, they
are increasingly being integrated into everyday technologies,
providing a hands-free and intuitive means of interacting with
computer systems. One emerging area of interest is home
automation, where ERP-based BCIs can be employed to control
a wide range of household appliances (Bentabet and Berrached,
2016). In addition to the commonly explored applications
such as televisions, lighting systems, there exists potential
for regulating thermostats, window blinds, and even robotic
vacuum cleaners (Kim et al., 2019). For example, a user could
effortlessly adjust the room temperature or open the window by
simply focusing on specific visual cues presented on a screen.
This application not only enhances user convenience but also
holds promise for individuals with limited mobility, granting
them increased independence in interacting with their home
environment.

Despite advancements, ERP-based BCIs face challenges that
hinder their widespread adoption and reliability. One of the most
pressing issues is inter-subject variability, which refers to variations
in ERP responses across different individuals (Pérez-Velasco et al.,
2022). Inter-subject variability can be attributed to factors such as
age, cognitive abilities, emotional states, and the quality of EEG
equipment used (Li et al., 2020). Additionally, ERP responses are
sensitive to internal and external conditions, such as the user’s
level of focus or environmental noise. Inter-subject variability
affects the generalizability and practical utility of ERP-based BCIs,
often leading to reduced performance when a BCI model built
on pre-existing data is applied to a new user. The complexity
of these factors necessitates research into methodologies that can

account for inter-subject variability (Maswanganyi et al., 2022).
While some progress has been made, such as the development
of new signal processing techniques to alleviate inter-subject
variability, further development is required (Dolzhikova et al.,
2022).

Several studies have attempted to address inter-subject
variability in ERP-based BCIs. To address inter-subject variability,
the predominant approach is transfer learning, which encompasses
a spectrum of methodologies. Among these, Riemannian geometry
stands out as a promising mathematical framework for enhancing
BCI performance across subjects. It has been utilized for BCI
decoding, feature representation, classifier design, calibration
time reduction, and specifically, transfer learning, demonstrating
its versatility (Congedo et al., 2017). Additional methods
include the use of domain adaptation techniques that adjust
classifiers to handle new subject data (Jayaram et al., 2016),
and the application of deep learning models that can learn
representations transferable across subjects (Kindermans et al.,
2014). Moreover, few-shot learning has been applied to facilitate
the BCI systems’ adaptability with minimal subject-specific
data (An et al., 2023). Combining these transfer learning
strategies with Riemannian approaches can potentially overcome
the generalizability issues posed by inter-subject variability.
Nonetheless, for these methods to be truly effective, a larger and
more diverse dataset is essential. The current limitations posed
by small sample sizes and the heterogeneity of stimuli across
experiments necessitate the creation of comprehensive datasets,
which employ uniform stimuli to ensure consistency and facilitate
more generalized outcomes (Barachant et al., 2013; Rodrigues et al.,
2019).

In this study, we develop a comprehensive dataset that can
address the challenges associated with inter-subject variability in
ERP-based BCIs. The dataset is collected from a large number
of subjects under diverse stimulus presentation environments,
ranging from liquid crystal display (LCD) displays to AR.
Based on this dataset, we introduce two transfer learning
approaches. The first approach, termed ’within-paradigm transfer
learning,’ focuses on generalizing the BCI model within the
same stimulus presentation paradigm. The second approach,
termed ’cross-paradigm transfer learning,’ seeks to adapt a
BCI model built from a specific paradigm to the data in
other distinct paradigms. These approaches aim to enhance
the adaptability and efficiency of BCIs across varied subjects
and environments.

The dataset introduced by this study provides a rich resource
for exploring novel transfer learning methods and investigating
the nuances of ERP responses across different conditions. By
making this dataset publicly available, we aim to stimulate further
research of ERP-based BCIs and enable the development of more
effective and generalizable BCI systems. This initiative aligns with
the emphasis on open science and data sharing, which is crucial
for accelerating advancements in multidisciplinary fields such BCI
research. In summary, this study aims to contribute significantly
to the field of BCI by providing an open dataset that can facilitate
the development of algorithms and methodologies for effectively
addressing the challenges of inter-subject variability.
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2 Materials and methods

2.1 Subjects

In this study, a total of 84 healthy volunteers participated, each
involved in only one experiment, ensuring no overlap of subjects
between experiments. The demographic information of subjects
is listed in Supplementary Table 1. The distribution of subjects
across five different online BCI experiments was as follows: 30
subjects were recruited for the TV control experiment, 15 in the
door lock (DL) control, and another 15 in the electric light (EL)
control. Additionally, 14 subjects participated in the bluetooth
speaker (BS) control experiment, while 10 were involved in the air
conditioner (AC) control experiment. This distribution confirms
that transfer learning applied within or between paradigms did
involve transfer between subjects, given the distinct participant
groups for each experiment. Compared to prior research where
the subject pool ranged from 5 to 18 individuals, our study
maintained a similar scale in terms of the number of subjects for
each experiment (Serby et al., 2005; Townsend et al., 2010). Ethical
approval for this study was granted by the Institutional Review
Board at the Ulsan National Institutes of Science and Technology
(IRB: UNISTIRB-18-08-A), and all subjects provided informed
consent before participating.

2.2 EEG data acquisition

Scalp EEG data were collected using a commercially available
EEG acquisition system (actiCHamp, Brain Products GmbH,
Germany) following the electrode placement guidelines of the
American Clinical Neurophysiology Society’s 10–20 system. In the
LCD experimental environment, data were acquired from 31 active
wet electrodes positioned (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FT9,
FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, CP5, CP1, CP2,
CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2) at specific locations on the
scalp (Figure 1A). For the augmented reality (AR) environment,
facilitated by Microsoft’s HoloLens 1, six channels were omitted,
resulting in 25 active electrodes at different scalp locations (FP1,
FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5,
CP1, CP2, CP6, P3, Pz, P4, O1, Oz, and O2) (Figure 1B). In both
settings, reference and ground electrodes were placed on the linked
mastoids of the left and right ears, respectively. The impedance
of the electrodes was maintained below 5 k�. The EEG signals
were digitized at a sampling rate of 500 Hz and band-pass filtered
between 0.01 and 50 Hz.

2.3 Experimental design

All the BCI experiments for home appliance control shared
an identical experimental procedure. The experiments consisted
of a series of blocks of the oddball task (Figure 2A). A single
block began with 0.5-s fixation where a white cross appeared at
the center of the screen. The preview of stimuli followed for 1 s
which allowed subjects to perceive all the stimuli. Then, a target
stimulus was instructed by changing the color of the border of
the target stimulus to red for 1 s. Each stimulus flickered in a

random order, which took 5 s total. Afterward, the feedback of BCI
control was shown for 1 s, and subjects rested for 2 s until the next
block. During the training phase, 50 blocks were repeated, while
in the testing phase, 30 blocks were repeated. Specific paradigms
for each home appliance are described below (see also Figures 2B–
F).

To develop a BCI for controlling TV channels, an emulated
Multiview TV platform was created. This platform displayed four
preview channels simultaneously at four quadrants from the center
of the screen (Figure 2B). The video clips in each channel served
as both channel previews and visual distractors. The video clips
were presented on a 50-inch Ultra High Definition (UHD) TV
with a resolution of 1,920 × 1,080 and a refresh rate of 60 Hz.
Additional red stimuli flickering at a frequency of 8 Hz surrounded
the corners of the video clip windows. Each block began with the
subject fixating their gaze at the center of the screen, followed by an
instruction indicating the target channel by turning its boundary
red. Subsequently, the four video clips and their surrounding
stimuli were displayed, each flickering ten times in a random order.
Subjects were instructed to gaze at the stimulus surrounding the
target channel while seated comfortably 2.5 meters away from the
TV screen. The video clip of the selected channel was then displayed
for 1 s as feedback.

The BCI experiments for controlling door locks (DL) and
electric lights (EL) presented the stimuli on a tablet PC screen
(Figures 2C, D). Subjects were instructed to select one of the
two control icons for door lock control (lock/unlock) or one of
three icons for electric light control (on/off/dim). To maintain
a target-to-non-target stimulus ratio of 1:3 (4 classes), dummy
stimuli were added to the task. Although the number of commands
for TV, EL, and DL varied, dummy stimuli were added to
ensure that the classifier could differentiate among four targets
(target-to-non-target stimulus ratio of 1:3). Additionally, a shared
characteristic among all three experiments was the utilization of
an LCD environment for stimulus presentation. Consequently,
these experiments were categorized under a unified paradigm
referred to as the 4-class LCD paradigm. The BCI experiment
to control Bluetooth speakers (BS) was conducted in which
subjects selected one of the six functions (on/off/play/pause/next
track/previous track). In this experiment, the target-to-non-
target stimulus ratio was maintained at 1:5 (Figure 2E). A BCI
experiment was conducted to control air conditioners (AC)
through an AR environment. The AR stimuli were displayed
on Microsoft’s HoloLens 1, which had a resolution 2 HD 16:9
light engines–2.3 million light points. The BCI for AC control
consisted of four functions (on/off/ + temperature/- temperature).
The target-to-non-target stimulus ratio was maintained at 1:3
(Figure 2F).

The stimuli were presented in the form of icons representing
control functions in the four experiments (DL, EL, BS, and AC).
All the stimuli were displayed in blue. Then, during the stimulus
flickering period, each stimulus flickered in a random order by
briefly changing its color to light green for 0.625 s. The inter-
stimulus interval was 0.125 s. Each stimulus flickered 10 times in
the stimulus flickering period (McFarland et al., 2011). The home
appliances to be controlled were displayed in the background of the
screen in the DL, El, and AC experiments, while no display of the
device was provided in the BS experiment (Figure 2).
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FIGURE 1

The placement of electrodes and the experimental settings for two different environments. (A) Electrode configuration for the LCD environment
using 31 electrodes based on the 10–20 system. (B) Electrode configuration for the AR environment using 25 active electrodes. The omitted 6
channels (FT9, FT10, T7, T8, P7, P8) are represented by red dots.

2.4 Dataset structure

The data acquired from the experiments had a hierarchical
structure, comprising three levels. A summary of the dataset
information is provided in Table 1. First Level: Home Appliance
Type. The first level categorized the data based on the type of home
appliance being controlled through the BCI. Second Level: Subject.
Within each home appliance category, the data was further divided
based on the subject. Each subject was anonymized and identified
only by a unique ID. Third Level: Block-Specific Data. The third
level contained the granular, block-based data for each subject.
The data files were named following a specific convention for easy
identification: SubX_training refers to the training data for subject
X, and SubX_test_tr_Y refers to the test data for the Y-th block of
subject X. Each data file at the third level was composed of two main
components:

• Data.signal: it contains EEG signals in a matrix format, with
dimensions;
[channel x time (points)].

• Data.trigger: it contains the event trigger data in a row vector
format, with dimensions;
[1 x time (points)].

The trigger types are coded as follows:

• 11: Block start
• 12: Stimulation start
• 13: Block end
• 1 to 6: Types of stimuli
• Between 11 and 12: Indicates the target stimulus.

2.5 EEG preprocessing

In our analysis, the preprocessing of EEG signals involved
several steps. Initially, the EEG signals were subjected to high-
pass filtering at 0.5 Hz using a Infinite Impulse Response (IIR)
filter to eliminate slow drifts (4th-order Butterworth filter).
Subsequently, each channels was evaluated for signal quality; the
channels containing EEG signals that had the Pearson correlation
coefficient lower than 0.4 after a 2-Hz low-pass filtering (2nd-order
Butterworth filter) with more than 30% of all other channels were
considered ‘bad’ and subsequently removed (Bigdely-Shamlo et al.,
2015). The EEG signals in the remaining channels were then re-
referenced using the Common Average Reference (CAR) method
(Mullen et al., 2013). Following this, a 50-Hz low-pass IIR filter
was employed to reduce line noise (4th-order Butterworth filter).
Lastly, Artifact Subspace Reconstruction (ASR) was employed with
a cutoff value of 10 for artifact removal (Mullen et al., 2013;
Figure 3).

Event-related potentials were extracted by segmenting and
averaging EEG signals in epochs time-locked to the stimuli.
Specifically, an epoch was defined as 0.2 s before and 0.6 s after the
onset of each stimulus.

2.6 Online BCI

The online BCI system was trained and tested over separate
blocks. The training phase consisted of 50 blocks, during which
subjects were instructed to gaze at a randomly displayed target.
Feedback was provided based on the desired target stimulus, not
the decoded one. From the training data, ERP amplitude features
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FIGURE 2

Various BCI paradigms used for controlling different home appliances: (A) Temporal sequence of the experiment paradigm, (B) TV, (C) Door Locks
(DL), (D) Electric Lights (EL), (E) Bluetooth Speakers (BS), and (F) Air Conditioners (AC).

TABLE 1 Summary of dataset information.

Home
appliance

Number of
subjects

Sex (male/
female)

Age (mean
± std)

Paradigm Number of
functions

Number of
Train Blocks

Number of
Test Blocks

TV 30 23/7 21.63 ± 2.31 4-class LCD 4 50 30

Door Lock 15 12/3 22.87 ± 2.07 4-class LCD 2 50 30

Electric Light 15 10/5 22.13 ± 2.20 4-class LCD 3 50 30

Bluetooth Speaker 14 9/5 22.64 ± 3.08 6-class LCD 6 50 30

Air Conditioner 10 6/4 22.40 ± 2.59 4-class AR 4 50 30

distinguishing target from non-target ERPs were selected using
a two-sample t-test (p < 0.01). Dimensionality reduction was
performed using Principal Component Analysis (PCA), retaining
components that explained more than 90% of the feature variance.
A Support Vector Machine (SVM) classifier with a linear kernel was
then constructed to identify the target based on ERP features (Kim
et al., 2019).

During the testing phase, which consisted of 30 blocks,
subjects controlled a specified home appliance according to the
target instruction using the BCI system. The classifier, trained
from training phase (50 blocks), used the ERP features to

predict the target command, with the prediction outcome then
provided as feedback.

2.7 Transfer learning

Transfer learning was employed in this study to investigate
its feasibility and effectiveness within and across different BCI
paradigms (Wang et al., 2015). Among various types of transfer
learning, this study focused on transductive transfer learning,
in which the target task (classification) is identical between the
domains but the training and testing domains differ (Pan and Yang,
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FIGURE 3

Overall process of transfer learnings. (A) Process of within-paradigm transfer learning. (B) Process of cross-paradigm transfer learning.

2010). When applying transfer learning, we used only testing data
that consisted of 30 blocks from all subjects, excluding the training
data of 50 blocks from the analysis. The dataset was divided into
three distinct subsets based on the experimental paradigms: (1) 4-
class LCD (TV, DL, EL), (2) 6-class LCD (BS), and (3) 4-class AR
(AC).

Initially, transfer learning was performed within each
paradigm. The Riemannian geometry approach was used for
feature extraction. We utilized the Riemannian geometry approach
for feature extraction, applying the PyRiemann library (Barachant
et al., 2023). ERP signals were spatially filtered using xDAWN,
configured to use five components (n_components = 5) and
an Orthogonal Approximation Subspace (OAS) estimator for
covariance estimation (estimator = ‘oas’). Following xDAWN
filtering, the signals were projected onto the Riemannian manifold
with Tangent Space mapping [TangentSpace(metric = ‘riemann’)],
preserving the manifold’s intrinsic structure (Barachant et al., 2013;
Figure 3). The projected signals in the Riemannian manifold were
used as features for classification. This projection was executed
through tangent space mapping, a technique that linearizes the
manifold at a given point, transforming the covariance matrices
into tangent vectors in a Euclidean space. This projection is not
just a transformation; it preserves the intrinsic structure of the
manifold in the new Euclidean vector space. A Support Vector
Machine (SVM) classifier with a linear kernel was constructed to
identify the target based on the extracted features.

The accuracy of the within-paradigm transfer learning
classification was evaluated using a ‘Leave-One-Subject-Out’ cross-
validation approach for each subject within every dataset. This
means that for each cross-validation fold, 30 blocks from all subjects
except one were used for training, and the 30 blocks from the
excluded subject were used for testing (for instance, in a 4-class
LCD subset, training data consisted of 30 × 59 = 1,770 blocks,
while test data consisted of 30 blocks from the excluded subject)
(Figure 3A).

Next, transfer learning was applied across different paradigms.
The feature extraction and classification methods remained
consistent with the within-paradigm transfer learning. The larger
training data size offered the opportunity to build a more robust
model capable of generalizing well to other tasks. Therefore, the
largest dataset, which consisted of 60 subjects in the 4-class LCD
(TV, DL, EL), served as the training data for cross-paradigm

transfer learning. Cross-paradigm transfer learning was then
applied to the remaining datasets: 6-class LCD involving 14 subjects
(BS) and 4-class AR involving 10 subjects (AC). The accuracy of the
classification was evaluated for each subjects (Figure 3B).

3 Results

3.1 BCI performance

The performance of the BCI system was evaluated over three
different paradigms, including a 4-class LCD environment (TV,
DL, EL), a 6-class LCD environment (BS), and a 4-class AR
environment (AC). The primary metric used to assess performance
was classification accuracy, which measured the ratio of correctly
classified commands to the total number of commands. Figure 4A
shows the accuracy of the online control of each appliance. In the
4-class LCD paradigm, the system was used to control three home
appliances: TV, DL, and EL. The average classification accuracy
for TV control (N = 30) was 83.62 ± 16.38% (MEAN ± STD).
The accuracy ranged from a minimum of 53% to a maximum
of 100%. For DL control (N = 15), the average accuracy was
77.78 ± 15.3% (range: 50–96.6%). For EL control (N = 15), the
average accuracy was 83.35 ± 11.56% (range: 60–100%). Note
that the chance level was 25%. In the 6-class LCD paradigm,
which focused on controlling a Bluetooth Speaker (BS), the average
classification accuracy (N = 14) was 74.67 ± 19.2% (range: 33.33–
93.33%). In the 4-class AR paradigm, which involved controlling an
Air Conditioner (AC), the average classification accuracy (N = 10)
was 86.3 ± 13.28% (range: 53.3–100%).

There was no significant difference in accuracy among home
appliances within the 4-class LCD paradigm (Kruskal–Wallis test,
p > 0.05). When comparing accuracy between the different
paradigms, the 6-class LCD paradigm (BS) and 4-class AR
paradigm (AC) showed no significant difference (Kruskal–Wallis
test, p > 0.05).

3.2 Within-paradigm transfer learning

We investigated transfer learning within the same paradigm,
as described in the Methods section. Figure 4B shows results of
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FIGURE 4

Accuracy across different paradigms and transfer learnings. (A) Online classification accuracy for controlling various home appliances in 4-class and
6-class LCD and 4-class AR environments. (B) Classification accuracy when applying within-paradigm transfer learning across different appliances.
(C) Classification accuracy when implementing cross-paradigm transfer learning between 4-class LCD and 6-class LCD, and 4-class AR
environments.

each appliance accuracy when applying within-paradigm transfer
learning. In the 4-class LCD environment, the average classification
accuracy was 71.17 ± 19.26% (range: 33.33–100%). In the
6-class LCD environment, the average classification accuracy
was 89.76 ± 13.87% (range: 56.67–100%). Lastly, in the 4-
class AR environment, the average classification accuracy was
74.00 ± 13.59% (range: 60–96.67%). There was no significant
difference in accuracy with and without transfer learning in the
4-class AR environment and the 4-class AR environment (Paired
t-test, p > 0.05). But there was a significant increase in accuracy
with transfer learning for the 6-class LCD environment (Paired
t-test, p < 0.05). It indicated that we could successfully apply the
BCI system built from others’ data to a new user without calibrating
the system for the new user.

3.3 Cross-paradigm transfer learning

Furthermore, we explored the feasibility of cross-paradigm
transfer learning, while maintaining consistency in feature
extraction and classification methods used in within-paradigm
transfer learning. Figure 4C displays the outcomes of the accuracy
of each appliance when implementing cross-paradigm transfer
learning. When transferring from the 4-class LCD to the 6-
class LCD environment, the average classification accuracy was
66.67 ± 29.99% (range: 16.67–100%). Similarly, when transferring
from the 4-class LCD to the 4-class AR environment, the average
classification accuracy was 48.00 ± 21.27% (range: 20–93.33%).
A significant decrease in accuracy was observed in both cases
(Paired t-test, p < 0.01). Accuracy dropped by 8% from BCI without
transfer learning to that with transfer learning for the 6-class LCD
paradigm. Also, it dropped by 35% from BCI without transfer
learning to that with transfer learning for the 4-class AR paradigm.
The accuracy of individual subjects, as well as the mean accuracies
and standard deviations across all paradigms, can be found in
Supplementary Table 2. We observed increase in classification
accuracy when integrating the Riemannian geometric approach
with xDAWN for feature extraction compared to using xDAWN

alone. Statistically significant improvements were seen in three out
of five cases (Supplementary Table 3).

4 Discussion

One of the most pressing challenges in the field of BCIs
is the issue of inter-subject variability. Our study was explicitly
designed to address this problem by constructing a comprehensive
dataset that covers various stimulus presentation paradigms for
ERP-based BCIs. Our dataset included ERP-based BCI data of
84 subjects with the oddball task used for controlling real-
world home appliances online. The various stimulus presentation
paradigms would offer opportunities to explore similarities and
differences of ERP patterns as well as BCI operations induced by
different paradigms. The improved classification accuracy achieved
by within-transfer learning, particularly in the 6-class LCD (BS),
demonstrates a possibility to mitigate the inter-subject variability.
It suggests that BCIs can be generalized across different individuals
without a substantial loss in performance.

The idea of transfer learning has become a noteworthy
approach in the field of BCIs, especially for tackling the issue of
inter-subject variability. Our results by within-paradigm transfer
learning are promising with reasonable accuracies for different
paradigms. This indicates that once the BCI system is built in
one paradigm, the model might be applicable to others similar
paradigms with little or no additional training (Lee et al., 2020).
This could help reduce the time and resources needed for BCI
deployment, potentially making it easier to move from research labs
to practical use (Ko et al., 2021).

However, the challenge of inter-subject variability still remains
between different paradigms according to our results. We observed
that cross-paradigm transfer learning was not as successful as
within-paradigm transfer learning. Despite the fact that the oddball
task was consistent between the paradigms, it is intriguing to
observe decreases in the BCI performance when we applied the
BCI system built from LCD-based stimulus presentation to the data
with AR-based stimulus presentation, event with the same number
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of classes. In contrast, there was no change in the BCI performance
when we applied the BCI system built using the same AR-based
stimulus presentation paradigm. Future research is warranted to
identify potential factors that contribute to this variability induced
by differences in stimulus presentation environment, such as
attention, cognitive load and visual distraction (Souza and Naves,
2021; Gibson et al., 2022). Also, using more advanced machine
learning methods, which can handle the complex relationships in
the data (Alzahab et al., 2021; Zhang et al., 2021), may be useful to
improve cross-paradigm transfer learning.

5 Conclusion

We constructed a comprehensive dataset of ERP-based BCIs
with a relatively larger number of subjects (N = 84). The stimulus
paradigms used to elicit ERPs in the oddball task were diverse, with
varied number of stimuli (4 and 6) and display types (LCD monitor
and AR). The dataset included both the training and testing data to
build and assess BCIs. Especially, the testing data contained online
BCI control data. each associated with different home appliances.
We showcased the utility of the data by applying transfer learning
to mitigate inter-subject variability. The results showed that transfer
learning of BCIs was successful across subjects within the same
stimulus presentation paradigm but limited across the different
paradigms. It demonstrated the importance of understanding how
different visual stimulations affect ERPs even performing the
identical oddball task for the design of ERP-based BCIs. The
feasibility of transfer learning, verified in this study when the
paradigm of visual stimulus presentation is unchanged, may be
useful to reduce subject-dependent calibration for practical use of
ERP-based BCIs. We also believe that the dataset of ERP-based
BCIs presented in this study can offer opportunities to researchers
to develop and test new BCI algorithms to advance ERP-based BCIs
to be more accessible and user-friendly.
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