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Introduction: Transcranial direct current stimulation (tDCS) administers low-
intensity direct current electrical stimulation to brain regions via electrodes 
arranged on the surface of the scalp. The core promise of tDCS is its ability to 
modulate brain activity and affect performance on diverse cognitive functions 
(affording causal inferences regarding regional brain activity and behavior), 
but the optimal methodological parameters for maximizing behavioral effects 
remain to be elucidated. Here we sought to examine the effects of 10 stimulation 
and experimental design factors across a series of five cognitive domains: 
motor performance, visual search, working memory, vigilance, and response 
inhibition. The objective was to identify a set of optimal parameter settings that 
consistently and reliably maximized the behavioral effects of tDCS within each 
cognitive domain.

Methods: We surveyed tDCS effects on these various cognitive functions in 
healthy young adults, ultimately resulting in 721 effects across 106 published 
reports. Hierarchical Bayesian meta-regression models were fit to characterize 
how (and to what extent) these design parameters differentially predict the 
likelihood of positive/negative behavioral outcomes.

Results: Consistent with many previous meta-analyses of tDCS effects, extensive 
variability was observed across tasks and measured outcomes. Consequently, 
most design parameters did not confer consistent advantages or disadvantages 
to behavioral effects—a domain-general model suggested an advantage to 
using within-subjects designs (versus between-subjects) and the tendency 
for cathodal stimulation (relative to anodal stimulation) to produce reduced 
behavioral effects, but these associations were scarcely-evident in domain-
specific models.

Discussion: These findings highlight the urgent need for tDCS studies to more 
systematically probe the effects of these parameters on behavior to fulfill the 
promise of identifying causal links between brain function and cognition.
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1 Introduction

Non-invasive brain stimulation (NIBS) involves the introduction 
of exogenous energy (including magnetic, electrical, or ultrasonic) to 
cortical and subcortical brain regions to modify neuronal activity and 
draw causal links between regional brain function, cognition, 
emotion, and behavior (Dayan et al., 2013; Bestmann et al., 2015; 
Polania et al., 2018). Transcranial direct current stimulation (tDCS) is 
one of the most popular and widely-used NIBS methods, offering the 
ability to induce transient and subthreshold modulation of neuronal 
membrane potentials, with downstream consequences for the activity 
of neuronal populations and neural networks, neuroplasticity, and/or 
behavior (de Berker et al., 2013; Bestmann et al., 2015). While tDCS 
is a promising neuromodulatory tool, the precise mechanisms by 
which it exerts effects on physiology and behavior are still being 
discovered (Bikson et al., 2013; Dayan et al., 2013; Bestmann et al., 
2015; Bikson et al., 2019). Emerging mechanistic models suggest that 
tDCS induces shifts of neuronal membrane potentials; that the nature 
of this shift (i.e., hyperpolarizing, depolarizing) is related to the 
orientation of neurons relative to the induced electrical field; that 
tDCS can induce large-scale oscillatory changes of brain activity; and 
that lasting after-effects of tDCS are related to changes in synaptic 
plasticity (Lafon et al., 2017; Bikson et al., 2019; Nitsche et al., 2019). 
However, much uncertainty still exists about how electrical current 
propagates through human tissue, which structures are effectively 
modulated by various electrode montages, how to effectively 
individualize stimulation protocols, and how various study design 
features might influence tDCS effects on observed outcomes (Datta 
et al., 2012; de Berker et al., 2013; Bestmann et al., 2015).

Ambiguity regarding tDCS mechanisms of action can make it 
difficult for researchers to select from myriad methodological 
parameters when designing experiments. An a priori review of related 
literature can complicate the issue due to heterogeneity of stimulation 
procedures and observed outcomes across studies, laboratories, and 
cognitive domains (Datta et al., 2012; Horvath et al., 2014; Bestmann 
et  al., 2015). Indeed, published tDCS research varies widely in 
stimulation methods, study designs, and statistical methods employed; 
variation along each of these dimensions is likely to shape the effects 
of tDCS on brain physiology and behavior, and they likely interact in 
yet unknown ways. Herein we  describe a meta-analytic, meta-
regression modeling approach intended to provide an initial breadth-
first understanding of relationships between methodological 
parameters employed in tDCS studies and behavioral outcomes across 
five cognitive domains, focusing only on studies examining healthy, 
neurotypical participants. We focused our analysis on 10 parameters 
of interest, including 7 stimulation-specific parameters and 3 
experimental parameters (detailed in Table 1). These parameters were 
selected because they were relatively well represented in the literature 
across our outcome domains.

The scope of our approach builds upon prior reviews and meta-
analyses that are often focused on specific cognitive domains and 
behavioral outcomes, or alternatively, on specific neural/physiological 
responses to stimulation. Mixed or otherwise inconclusive patterns of 
results have been well-characterized across many disparate areas of 
neurostimulation research (Koenigs et  al., 2009; Loo et  al., 2010; 
Jacobson et al., 2012; Loo et al., 2012; Brunoni and Vanderhasselt, 
2014; Lopez-Alonso et al., 2014; Wiethoff et al., 2014; Chew et al., 
2015; Horvath et al., 2015a,b; Lopez-Alonso et al., 2015; Dedoncker 

et al., 2016; Hill et al., 2016; Horvath et al., 2016a,b; Mancuso et al., 
2016; Vannorsdall et al., 2016; Heroux et al., 2017; Imburgio and Orr, 
2018; Loo et al., 2018; Oldrati and Schutter, 2018; Rassovsky et al., 
2018; Falcone et al., 2019; Schroeder et al., 2020; Wischnewski et al., 
2021). However, the most popular approach to quantifying and 
describing heterogeneity is—understandably—rather piecemeal. Past 
studies addressing potential moderating factors (e.g., the polarity of 
stimulation, or the laterality of a target region) typically either parse 
out effects for separate analyses (e.g., looking at trends for left vs. right 
hemisphere stimulation independently, rather than modeling the 
contrast) or perform meta-regression based on small subsets of 
features (Jacobson et  al., 2012; Brunoni and Vanderhasselt, 2014; 
Dedoncker et al., 2016; Hill et al., 2016; Mancuso et al., 2016; Imburgio 
and Orr, 2018; Oldrati and Schutter, 2018; Schroeder et al., 2020). Our 
goal, in contrast, is to consider a wider breadth of tasks, experiment 
parameters, and domains to explicitly quantify systematic differences 
in behavioral outcomes associated with these design factors.

1.1 Stimulation parameters

One critical consideration for experimenters is determining the 
arrangement of electrodes on the scalp to effectively target a brain 
region of interest. When doing so, experiments tend to rely upon 

TABLE 1 The 10 independent variables considered under our meta-
regression models, including the category, name, and a brief description 
of each.

Parameter 
category

Parameter 
name

Description

Stimulation Target
The intended brain target of the 

stimulation electrode montage.

Stimulation Laterality

The laterality of the brain target (i.e., left or 

right hemisphere, or bilateral stimulation 

of homotopic regions).

Stimulation Electrode count
The number of stimulation electrodes used 

in the experiment, ranging from 2 to 10.

Stimulation Individualization

Whether the experiment used a 

standardized or participant-specific 

electrode montage (i.e., MRI-guided 

targeting).

Stimulation Intensity
The raw intensity of stimulation applied, 

ranging from 0.25 to 5 mA.

Stimulation Polarity
Whether anodal or cathodal stimulation 

was applied.

Stimulation Duration
The duration of stimulation applied, 

ranging from 5 to 30 min.

Experimental Timing

Whether stimulation was administered 

prior to or during task execution (or some 

combination thereof).

Experimental Session count

The number of stimulation sessions 

completed by participants, ranging from 1 

to 20.

Experimental Design
Whether the experiment used a within-

subjects or between-subjects design.
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methods demonstrated as effective in extant research, and/or on 
results derived from models of predicted current flow (Datta et al., 
2009; Bikson et al., 2012, 2013; Ramaraju et al., 2018; Rich and Gillick, 
2019). Researchers typically arrange electrodes on the scalp in 
reference to an anatomical coordinate system, such as the International 
10–20 System (DaSilva et al., 2011), and/or based on outcomes from 
neuronavigation or peak activations identified in functional tests (e.g., 
motor-evoked potentials). In all cases, the intent is to maximize 
current density at a brain target believed to be functionally-relevant 
for a cognitive process or behavioral outcome of interest (Miranda 
et al., 2009; Sadleir et al., 2012; Rich et al., 2017). The target brain 
regions identified in our review included the dorsolateral prefrontal 
cortex (DLPFC), posterior parietal cortex (PPC), and primary motor 
cortex (M1), as well as a number of other diverse stimulation targets 
spanning nearly the whole brain.

The targeted brain regions were variably lateralized, with most 
reported effects (418 out of 721 total) localized to the left hemisphere 
and a minority of effects derived through bilateral stimulation of 
homotopic regions (59 total). When referring to laterality of 
stimulation, it is typically the case that the anodal electrode is placed 
over the targeted region (e.g., left DLPFC), and a reference cathodal 
electrode is placed over the contralateral hemisphere (e.g., right 
supraorbital area) or on an ipsilateral or contralateral extracephalic 
area (e.g., shoulder, bicep). While often treated as a relatively trivial 
decision in practice, it is important to realize that the placement of the 
cathode likely carries important implications for physiological and 
behavioral influences of tDCS (Bikson et al., 2010).

Most studies we identified used two saline-soaked sponges, one 
anode and one cathode, to administer tDCS; other studies used multi-
electrode montages that are assumed to provide higher focality and 
maximize current density at both superficial and relatively medial 
targets (Datta et al., 2009). We also found that most studies tended to 
use a consistent electrode positioning across individuals, whereas a 
minority used individualized montages based on structural and/or 
functional magnetic resonance imaging (MRI) scans. Individualized 
montages are becoming more commonplace and are thought to 
compensate for varied brain morphology, functional neuroanatomy, 
and head sizes and shapes (Datta et al., 2012; Kim et al., 2014; Woods 
et al., 2016).

Stimulation procedures often involve a slow ramp-up (e.g., over a 
30 s window) to a target intensity, maintaining that peak intensity level 
for a specific duration (e.g., 20 min), and then a slow ramp-down to 
terminate stimulation (Nitsche and Paulus, 2000; Gandiga et al., 2006). 
Peak stimulation intensity is typically between 0.5–2.0 milliamperes 
(mA; with the conventional limit being 2 mA) (Nitsche and Bikson, 
2017), with one meta-analysis demonstrating a mean tDCS 
stimulation intensity of 1.5 mA when considering studies done in the 
cognitive domain (Jacobson et al., 2012). Modeling and experimental 
work suggests that stimulation intensity can have paradoxical, 
nonlinear effects on neuronal activity and behavioral effects of tDCS 
(Batsikadze et al., 2013; Bonaiuto and Bestmann, 2015; Esmaeilpour 
et al., 2018). For example, 1 mA stimulation intensity can produce 
hyperpolarization whereas 2 mA can produce depolarization of motor 
neurons (Batsikadze et al., 2013). One meta-analysis suggests that on 
the aggregate, higher intensity stimulation (operationalized as current 
density under the anode) is more likely to benefit task accuracy during 
DLPFC stimulation (Dedoncker et al., 2016). In our review, however, 
we  focused primarily on raw stimulation intensity (as opposed to 

current density) and found studies administering stimulation as low 
as 0.25 mA intensity and as high as 5 mA.

The duration of peak stimulation intensity is typically between 5 
and 30 min (as seen in our review), with one meta-analysis 
demonstrating an average tDCS stimulation duration of 15.2 min 
when considering studies performed in cognitive domains (Jacobson 
et al., 2012). Some of the nonlinear responses found with stimulation 
intensity can interact in unexpected ways with stimulation duration. 
For example, 1 mA of tDCS can induce depolarization during the first 
13 min of stimulation, but hyperpolarization during a latter 13 min of 
stimulation (Monte-Silva et al., 2013).

A further critical decision point in designing a tDCS study is 
whether to deliver anodal or cathodal stimulation to the target site. 
Some mechanistic models of tDCS, namely sliding scale models, 
suggest that stimulation polarity influences whether tDCS can 
increase or decrease neural activity (Bikson et al., 2013; Bestmann 
et  al., 2015). Specifically, neuronal populations residing in brain 
regions underlying the anode will experience depolarization, and 
populations under the cathode will experience hyperpolarization. This 
simplistic model has been repeatedly challenged (de Berker et al., 
2013; Bestmann et al., 2015; Jackson et al., 2016; Bestmann and Walsh, 
2017), but remains as a strong motivator for scientists who compare 
(experimentally and statistically) anodal versus cathodal stimulation 
over a target brain region, typically in reference to a sham condition.

Thus, stimulation parameters are variably selected and applied 
across studies. It is known that variation of certain parameters can 
elicit unexpected and nonlinear effects on brain physiology and 
behavior, and it is likely that many of these parameters interact in ways 
that have yet to be discovered. Here we focus primarily on additive, 
main effects due to the combinatorial explosion in model parameter 
space when exploring interactions between our 10 predictors of 
interest. However, it is still of central interest to uncover how these 
various factors might jointly-modulate one another in any given 
neurostimulation experiment.

1.2 Experimental and statistical parameters

In addition to stimulation parameters, our model also considered 
the influence of 3 experimental design parameters. Across studies, 
tDCS is variably administered either before task performance (offline), 
during task performance (online), or a mixture of both (offline-
online) (Woods et  al., 2016; Imburgio and Orr, 2018). Original 
research and meta-analyses suggest that offline stimulation is more 
likely than online stimulation to enhance performance on working 
memory tasks (Hill et al., 2016; Friehs and Frings, 2019; Zivanovic 
et al., 2021), but that the opposite might be true for skill acquisition 
(Martin et al., 2014) and visuospatial tasks (Oldrati et al., 2018). In our 
review, we indeed found that offline stimulation was employed more 
frequently than online stimulation (347 vs. 276 effects, respectively), 
with comparatively fewer studies using a mixed-timing design. 
Furthermore, while many studies use a single-session design involving 
only one (e.g., 20 min) administration of tDCS during a single visit to 
the laboratory, some studies involve the repeated administration of 
tDCS over the course of successive visits. While repeated sessions of 
tDCS are a common design feature in clinical research and are 
associated with higher treatment efficacy relative to single-session 
studies (Fregni et al., 2006; Boggio et al., 2007; Loo et al., 2010, 2012), 
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they are used less frequently in studies with healthy neurotypical 
adults. When such a design is used, it is typically in the context of 
studies examining the effects of tDCS on cognitive training or skill 
acquisition paradigms. In general, it is thought that repeated tDCS can 
facilitate memory consolidation (Reis et  al., 2009; Marshall et  al., 
2011), and meta-analyses suggest there may be insufficient evidence 
to evaluate any potential advantage of repeated- versus single-session 
tDCS on cognitive function (Horvath et al., 2015a).

In tDCS studies, within-participants designs are generally 
preferred to between-participants design given the inherent challenges 
associated with inter-participant variation in tDCS experiments, 
including factors such as the brain’s morphology and function, genetic 
attributes, consumption patterns (e.g., caffeine), menstrual cycle, 
aptitudes, and other trait-based variables (Lopez-Alonso et al., 2015; 
Vergallito et al., 2022). They are also considered the more powerful 
design for detecting differences among conditions because analyses 
partition out between-participants variance and reduce error (Kirk, 
2013). That said, many studies use between-participants designs, 
typically for scheduling efficiency (tDCS sessions are typically 
separated by at least 24 h), to avoid carryover effects, or because the 
associated large sample size helps afford analyses of individual 
differences. Some studies balance power, efficiency, and scale by using 
mixed designs, which include one or more within- and between-
participants factors. However, estimation of mixed effects, particularly 
in the context of the models described here (which generally focus on 
binary comparisons between conditions rather than factorial 
comparisons), is less straightforward. We therefore focus on studies 
using either a between-subjects or within-subjects design, which were 
represented fairly equivalently across the domains considered in 
our review.

1.3 Performance domains

The meta-analytic model was designed to understand how the 10 
stimulation and experimental parameters are associated with 
performance outcomes across 5 cognitive domains, including 
vigilance, working memory, visual search, response inhibition, and 
motor performance. We chose these five domains because they have 
all received considerable attention in the scientific literature and 
exhibit variability in the brain regions targeted, the stimulation 
methods, and/or the experimental and statistical methods employed. 
Moreover, and perhaps most importantly, these 5 domains tend to 
underlie performance in many applied settings of interest including 
driving, aviation, and military.

Vigilance refers to a sustained focus of attention on stimulus 
detection tasks over lengthy periods of time (Parasuraman, 1976; 
Warm et  al., 2008; Hancock, 2017), such as when continuously 
monitoring a radar screen. Maintaining vigilance is stressful and 
places high demands on attentional resources, resulting in vigilance 
decrements (i.e., reduced detection of critical stimuli) over time (Grier 
et al., 2003; Warm et al., 2008). Given its reliance on arousal and 
alertness, sustained attention, and information processing, many brain 
systems have been implicated in vigilance performance. These include 
the prefrontal cortex, reticular formation, thalamus, and basal 
forebrain cholinergic system (Parasuraman et al., 1998). In general, 
anodal tDCS targeting the DLPFC appears to reduce vigilance 
decrements (McIntire et al., 2014; Nelson et al., 2014), though one 

study showed that the same tDCS increased the rate of mind 
wandering during a vigilance task (Axelrod et al., 2015). From our 
review of the literature, we included 93 effects derived from tDCS 
experiments on vigilance, primarily involving DLPFC stimulation.

Working memory refers to mechanisms responsible for 
temporarily storing, processing, and manipulating task-relevant 
information in memory (Baddeley, 1992; Miyake and Shah, 1999). 
Working memory plays a pervasive role in daily life and is a critical 
process underlying performance on planning, reasoning and problem 
solving, and decision-making tasks (Kyllonen and Christal, 1990; 
Davidson and Sternberg, 2003; Hinson et al., 2003; Gilhooly, 2004). It 
has also been a topic of interest among cognitive neuroscientists 
interested in mapping working memory processes to brain regions 
and networks, which has found strong evidence that the lateral 
prefrontal cortex is involved in the temporary maintenance of task-
relevant information, and that the distribution of brain activity across 
widespread networks is dependent on many task-related parameters 
such as the sensory modality being used (e.g., visual, auditory), the 
nature of stimuli (e.g., verbal, spatial, motor, faces) being maintained 
or manipulated, and whether the information is retrospective or 
prospective (D'Esposito, 2007). In general, the prefrontal cortex 
appears to be a critical node in a distributed working memory network 
that coordinates the involvement of other brain regions more 
specialized in specific functions (e.g., sensory, representational, and 
action-related) (Postle, 2006). The effects of tDCS on working memory 
performance have engendered some debate in the scientific literature, 
with some meta-analyses suggesting improvement of working 
memory (in accuracy or response times) with anodal tDCS targeting 
the left or right DLPFC (Brunoni and Vanderhasselt, 2014; Dedoncker 
et al., 2016; Hill et al., 2016; Mancuso et al., 2016), and another meta-
analysis suggesting no evidence for improvement (Horvath et  al., 
2015a). From our review of the literature, we included 115 effects of 
tDCS on working memory, also primarily involving PFC stimulation.

Visual search refers to the process of finding a visual target 
among distractors, and is typically assumed to involve interactions 
between preattentive processing and focal attention (Wolfe, 2010; 
Eckstein, 2011; Chan and Hayward, 2013). Visual search is 
extremely common in applied and daily tasks, such as searching for 
a weapon in luggage, finding lung nodules on a radiograph, 
identifying suspects in a crowd, or simply finding a matching pair 
of socks (Eckstein, 2011). It also recruits a wide range of brain 
regions including ventral and dorsal regions of the prefrontal 
cortex (and frontal eye fields; FEF) (Anderson et al., 2007), multiple 
areas of the parietal cortex (Donner et al., 2000), and the occipital 
cortex (Nobre et  al., 2003). Studies suggest that anodal and 
cathodal tDCS over the left FEF can improve target detection 
during a visual search task (Nelson et  al., 2015), that cathodal 
stimulation of the right posterior parietal cortex (but not FEF) can 
reduce the benefits of practice in a visual search task (Ball et al., 
2013), and that anodal stimulation of the right inferior frontal or 
posterior parietal cortex can enhance performance on a task 
involving searching for threats in complex scenes (Falcone et al., 
2012; Callan et  al., 2016). From our review of the literature, 
we included 176 tDCS effects on visual search, primarily involving 
PFC and parietal stimulation.

Inhibitory control refers to the ability to suppress thoughts or 
behaviors that are not relevant or conducive to task performance, and 
is considered a critical executive function that enables adaptive behavior 
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(Chambers et al., 2009; Congdon et al., 2012). Response inhibition 
enables the adaptive control of cognitive processes and motor behavior, 
and failure of response inhibition is through to underlie both clinical 
and subclinical impulsivity (Horn et al., 2003). In applied and daily 
tasks, response inhibition enables people to inhibit prepotent behavioral 
responses across a range of settings—such as firing or not firing a 
weapon (Biggs et al., 2015), swinging or not swinging a baseball bat 
(Nakamoto and Mori, 2012), or not eating a second piece of cake 
(Appelhans, 2009). Dominant theories of inhibitory control emphasize 
the role of several regions of the prefrontal cortex, including the 
dorsolateral, inferior, and orbital frontal cortex (Duncan and Owen, 
2000; Aron et  al., 2004). While some debate exists regarding the 
modular versus distributed roles of prefrontal brain regions in inhibitory 
processes (Hampshire and Sharp, 2015), particular emphasis has been 
given to the right inferior frontal gyrus given results of functional 
neuroimaging, lesion, and transcranial magnetic stimulation (TMS) 
studies (Aron et al., 2004, 2014). With tDCS, a recent meta-analysis 
demonstrated generally small but significant effect of tDCS on 
inhibitory control outcomes (including go−/no-go task and stop-signal 
task), especially with right inferior frontal gyrus stimulation (Schroeder 
et al., 2020). From our review of the literature, we included 84 effects on 
inhibitory control, primarily involving PFC stimulation.

Finally, motor performance here refers to the process of acquiring 
new abilities to perform novel sequences of skilled behaviors to 
accomplish a goal, from typing on a keyboard to riding a bike. Acquiring 
a new skill relies upon experience-dependent neuroplasticity in the 
brain, often tied to practice and consolidation (Karni et  al., 1998; 
Robertson et al., 2004), which can occur over the course of hours, days, 
or weeks (Korman et al., 2003). Neuroplastic changes associated with 
motor skill acquisition are often considered the locus of the primary 
motor cortex (Karni et al., 1995, 1998; Sanes and Donoghue, 2000). In 
addition to the motor cortex, the cerebellum has received attention due 
to its potential involvement in the initiation of limb movements and the 
improvement of motor skills (Gilbert and Thach, 1977; Houk et al., 
1996; Thach, 1996; Kitazawa et  al., 1998). Studies using tDCS to 
influence motor skill acquisition variably target the primary motor 
cortex and cerebellum. Reviews and meta-analyses suggest that anodal 
tDCS targeting the primary motor cortex can improve motor learning 
and motor function (Reis and Fritsch, 2011), and both anodal and 
cathodal tDCS targeting the cerebellum can accelerate motor learning, 
motor adaptation, and procedural learning (Oldrati and Schutter, 2018). 
This domain represented the largest in our survey of the literature, 
spanning 253 effects related to motor and procedural skill acquisition.

2 Methods

2.1 Study search and selection

A literature search was performed by authors S.L. and P.S. using 
PsycINFO, PubMed, Google Scholar, and the tDCS Database.1 The key 
search terms were [tDCS] or [HD-tDCS] in combination with any of 
the following domain-specific terms: [motor skill], [motor learning], 
[procedural learning], [implicit learning], [skill learning], [working 

1 http://tdcsdatabase.com/

memory], [vigilance], [endurance], [visual search], and [inhibition]. 
Unions of key terms (using the AND function) were queried using the 
options for All Fields or Any Field for three of the selected databases 
(PubMed, PsycINFO, and the tDCS Database); when searching 
Google Scholar, key search terms were queried in the full text, and due 
to the high search yield only the first 300 results were included for 
screening. Searches were not restricted by publication date.

Because we sought to model specific effects of experimental design 
parameters on behavioral performance outcomes, we  applied strict 
inclusion criteria to narrow down relevant studies. Beyond the basic 
requirement of publication in a peer-reviewed scientific journal, these 
included: (1) no studies focused exclusively on minors, older adults, or 
individuals with neuropsychiatric conditions (we extracted only effects 
related to healthy younger adults in studies based on these comparisons); 
(2) application of tDCS and not tACS/tRNS (although again, in cases 
where these were compared, we extracted only tDCS-related effects); (3) 
ability to extract simple within-subject or between-subject effects; (4) 
binary comparisons between either anodal or cathodal stimulation vs. 
sham stimulation (i.e., no anodal vs. cathodal comparisons, or 
comparisons between active stimulation conditions across different 
intensities); (5) stimulation targeted over a specific brain region (e.g., 
focused on DLPFC alone rather than a ‘network-like’ approach to 
neuromodulation, exciting both frontal and parietal areas); (6) reporting 
of behavioral outcomes (i.e., we  did not include effects on fMRI or 
EEG-derived brain activity); and (7) sufficiently clear reporting of all 
stimulation parameters/procedures. This yielded 42 studies in the motor 
domain (253 total effects) (Antal et al., 2004; Boggio et al., 2006; Vines 
et al., 2008; Tecchio et al., 2010; Leite et al., 2011; Ferrucci et al., 2013; 
Saucedo Marquez et al., 2013; Vollmann et al., 2013; Furuya et al., 2014; 
Prichard et  al., 2014; Zimerman et  al., 2014; Cantarero et  al., 2015; 
Minarik et al., 2015; von Rein et al., 2015; Ambrus et al., 2016; Doppelmayr 
et al., 2016; Ehsani et al., 2016; Naros et al., 2016; Fan et al., 2017; Filmer 
et al., 2017a; Focke et al., 2017; Fujiyama et al., 2017; Hashemirad et al., 
2017; Pixa et al., 2017; Rumpf et al., 2017; Samaei et al., 2017; Apsvalka 
et al., 2018; Dumel et al., 2018a,b; Ballard et al., 2019; Fehring et al., 2019; 
Jin et  al., 2019; Shilo and Lavidor, 2019; Spampinato et  al., 2019; 
Talimkhani et al., 2019; Pollok et al., 2020; Rocha et al., 2020; Ballard et al., 
2021; Nguemeni et al., 2021; Parma et al., 2021; Sevilla-Sanchez et al., 
2021; Toth et al., 2021), 18 visual search studies (176 effects) (Bolognini 
et al., 2010; Clark et al., 2012; Coffman et al., 2012; Ball et al., 2013; Ellison 
et  al., 2014; Cosman et  al., 2015; Nelson et  al., 2015; Reinhart and 
Woodman, 2015; Callan et al., 2016; Ellison et al., 2017; Filmer et al., 
2017a,b; Falcone et al., 2018; Lanina et al., 2018; Nydam et al., 2018; Sung 
and Gordon, 2018; Grasso et al., 2020; Wagner et al., 2020), 16 working 
memory studies (115 effects) (Boehringer et al., 2013; Zwissler et al., 2014; 
Nikolin et al., 2015; Au et al., 2016; Chrysikou et al., 2017; Naka et al., 
2018; Abellaneda-Perez et al., 2019; Ankri et al., 2020; Baumert et al., 
2020; Hussey et al., 2020; Murphy et al., 2020; Assecondi et al., 2021; 
Karthikeyan et al., 2021; Pupikova et al., 2021; Zivanovic et al., 2021; 
Caulfield et al., 2022), 15 vigilance studies (93 effects) (Plewnia et al., 2013; 
Manuel et al., 2014; McIntire et al., 2014; Nikolin et al., 2015; Hanken 
et al., 2016; Ironside et al., 2016; McIntire et al., 2017; Borragan et al., 2018; 
Brunnauer et al., 2018; Jacoby and Lavidor, 2018; Naka et al., 2018; Filmer 
et al., 2019; Coulborn et al., 2020; Luna et al., 2020; van Schouwenburg 
et al., 2021), and 15 inhibition studies (84 effects) (Hammer et al., 2011; 
Gladwin et al., 2012; Plewnia et al., 2013; Oldrati et al., 2016; Gomez-
Ariza et al., 2017; Friedrich and Beste, 2018; Angius et al., 2019; Boudewyn 
et al., 2019; Denis et al., 2019; Dubreuil-Vall et al., 2019; Edgcumbe et al., 
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2019; Kuehne et  al., 2019; Baumert et  al., 2020; Hussey et  al., 2020; 
Thomas et al., 2020). A summary flowchart of search and screening 
procedures is shown in Figure 1; the studies included in each domain are 
listed for convenience in Supplementary Table S1. We note that this 
represents only a subset of all published studies under each domain (some 
of which employed multiple tasks capturing various cognitive constructs) 
and is not intended to be  exhaustive; however, we  suggest the total 
number of effects considered affords a reasonable estimation of how 
various stimulation and study design parameters might modulate behavior.

2.2 Data extraction, effect size estimation, 
and parameter coding

Whenever possible, we  extracted exact descriptive statistics 
(means and standard deviations, or standard errors) from the reported 
text. However, in many cases, this information was only presented 
graphically. We  therefore used the WebPlotDigitizer2 to convert 

2 https://automeris.io/WebPlotDigitizer/

graphical displays into numerical data. Effects were excluded here if 
error bars were visually indistinguishable and/or if their endpoints 
could not be reliably identified. For each study, we attempted to extract 
as much behaviorally-relevant information as possible, particularly 
when multiple effects were reported across different experiment 
blocks or outcome variables (e.g., accuracy and/or reaction time), 
allowing us to better capture variability in the effects of tDCS on 
performance—which may be  transient over the course of a task. 
Irrelevant, non-task-related measures were excluded (e.g., self-
reported side effects), as were ancillary task-related measures that did 
not inform the cognitive domains of interest (e.g., for inhibition, 
we excluded reaction times to ‘congruent’ trials in Stroop tasks).

Effect sizes and their standard errors were estimated using Hedges’ g. 
For between-subject designs where group means, standard deviations, 
and sample sizes are known, this is trivial; however, for within-subject 
designs, the standard deviation around the mean difference depends 
upon the correlation between repeated measures. No study in our 
survey of the literature provided this information. We ultimately chose 
to assume a moderate correlation (r = 0.50) for all within-subject 
effects (equivalently, taking an average of the variances)—a common 
practice in power analyses when the within-subject correlation is not 
known a priori. Furthermore, to enable more generalized assessments 

FIGURE 1

Summary flowchart of literature search and screening procedure.
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of behavioral outcomes regardless of the exact task paradigm or 
behavioral construct being measured, each effect size was assigned a 
positive or negative sign depending on whether the relevant 
comparison indicated an improvement or detriment to behavior, 
respectively. For example, faster reaction times during active 
stimulation vs. sham were assigned a positive sign, whereas higher 
error rates earned a negative sign. Thus, under the model, we could 
assess whether certain experiment design parameters conferred 
positive or negative effects on average for a given domain, irrespective 
of specific tasks or outcomes.

Each effect was coded alongside the 10 stimulation and 
experiment parameters summarized in Table 1. The stimulation target 
parameter was given as the intended brain region targeted by the 
electrode montage. In cases where some brain regions were poorly-
represented (i.e., were only targeted in one or two studies, or 
constituted an exceptionally small proportion of the total number of 
effects), we  attempted to collapse them into an ‘Other’ category 
grouped with other anatomically-proximal regions. Target laterality 
was coded as either Left, Right, or Bilateral (in the latter case, when 
stimulation was applied to homotopic regions in both the left and 
right hemisphere). We also recorded the number of electrodes used in 
the montage and whether the placement of electrodes was 
individualized (e.g., guided by an anatomical MRI for each subject; 
coded as a binary Yes or No). Individualized target montages were 
exceedingly rare, occurring primarily in the motor performance 
domain. Raw stimulation intensity was recorded in milliamperes and 
polarity coded as either Anodal or Cathodal (always in comparison to 
a sham stimulation condition). The duration of stimulation was given 
in minutes and coded as Online (applied during task performance), 
Offline (prior to task performance), or Mixed (for cases when online 
stimulation was applied for only a portion of task performance). The 
total number of stimulation sessions completed by participants was 
also given for each effect. Finally, we  recorded whether each 
comparison was made under a within-subjects or between-subjects 
framework. A summary of how these parameters were represented 
under each domain can be found in Supplementary Table S2.

As an additional supplementary analysis, we also attempted to extract 
or estimate current density over the target brain region (in mA / cm2). This 
was possible for all studies in included in the visual search and vigilance 
domains, but it resulted in some loss of data for the motor, working 
memory, and inhibition domains (due to, e.g., the use of customized or 
otherwise more complex multielectrode arrays for which it was not 
possible to reliably estimate current density). We found that this parameter 
did not inform variability in behavioral outcomes and generally exhibited 
much greater posterior uncertainty; thus, given our already-strict 
inclusion criteria, we do not use it in the models and results described 
below. For completeness, however, we  visualize these models in 
Supplementary Figure S1.

2.3 Hierarchical Bayesian meta-regression: 
model specification and estimation

Given that nearly all studies reported multiple behavioral outcomes 
as a function of their tDCS manipulations, we  used a hierarchical 
Bayesian meta-regression framework to model the average magnitude 
of behavioral effects associated with our design parameters of interest, 
accounting for both intra- and inter-study variability in the effects of 

neurostimulation across all reported comparisons. We elected to use a 
Bayesian framework over a comparable frequentist framework for 
several reasons. First, Bayesian methods afford probabilistic estimates 
in favor of hypotheses and the existence of an effect by computing full 
posterior distributions given the observed data, which in turn allow for 
more direct estimates of uncertainty surrounding an effect. Second, 
Bayesian methods allow us to be pragmatic in incorporating our prior 
beliefs (or perhaps alternatively, our lack of strong prior convictions) 
into a model and help us control for potential bias by retaining identical 
prior assumptions regardless of the data or cognitive domain. Finally, 
Bayesian methods allow for principled, probabilistic model comparison, 
useful for exploratory analyses and quantifying uncertainty in 
performance between models using different sets of parameters.

All models were specified and estimated using Stan3 and brms 
(Bürkner, 2017) in R. For consistency, and to avoid the possibility that 
any given model could be  unduly influenced by arbitrary prior 
specifications, key parameters for all models were estimated under the 
same set of weakly-informative priors:

 Intercept Normal ,~ 0 1� �

 Slopes Normal ,~ .0 2 5� �

 Random effect SD Half Cauchy ,~ .� � �0 0 5

Note that, because we  obtained standard errors around each 
recorded effect size, we could incorporate these values directly into the 
model likelihoods, precluding the need to estimate noise variance as 
an additional free parameter. These priors were selected based on 
previous recommendations for Bayesian meta-analysis (Williams 
et al., 2018; Reis et al., 2023) with one notable change. Typically, a 
traditional meta-analysis only models an intercept (capturing the 
average effect size pooled across studies): a Normal(0, 1) prior for this 
term is arguably quite sensible in these situations (this assumes with 
95% probability that the ‘true’ pooled effect lies somewhere between 
g = [−2, 2]). However, here we are not just pooling effect sizes on 
average, but also determining the extent to which effect sizes are 
systematically moderated by differences in experiment design factors 
(that is, we  also need to model slopes). Given that we  do not 
necessarily have a good a priori guess as to how, for example, effect 
size might differ on average between Anodal and Cathodal 
stimulation, we use a wider, weaker prior.

In constructing the design matrix for each model, categorical 
regressors (e.g., stimulation polarity) were coded using sum-to-zero 
deviation contrasts, which enable more traditional ‘ANOVA-like’ 
comparisons of mean differences between a given factor level and a 
reference level. Continuous regressors (e.g., stimulation intensity) were 
centered about their respective means. We further specified a random 
intercept term to account for variation in reported effects across studies. 
Random slopes were omitted, both to minimize model complexity (and 
thereby ensure convergence) and because many comparisons are 

3 https://mc-stan.org
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empirically unidentifiable within a given study (e.g., many studies 
reported either anodal vs. sham or cathodal vs. sham stimulation designs, 
so one cannot estimate differential effects between the two on an 
individual study level). Thus, using Wilkinson notation, an additive 
model containing all predictors may be written as:

 

hedges se stdErrorG stimPolarity targetRegion

individual

G| � � �
�

~

iizedTarget targetLaterality numSessStim

stimDurationPerSe

� �
� sss stimIntensity stimOnlineOffline

numElectrodes designTy

� �
� � ppe |studyID� � �1

Continuous predictors such as stimulation intensity imply a single 
slope, while categorical factors such as stimulation polarity imply k – 1 
contrasts, where k is the number of factor levels (so, for example, the 
polarity term tests for differences associated with Anodal vs. Cathodal 
stimulation, whereas the stimulation timing term may imply two fit 
parameters: one for Offline vs. Mixed comparisons, and one for 
Online vs. Mixed).

Robust exploration of the posterior space for all models was 
performed via Hamiltonian Monte Carlo, with four independent 
chains of 15,000 iterations each (5,000 of which were used as warm-up 
samples). We  ensured that all models properly converged to 
equilibrium for all parameters using classical benchmarks, including: 
the effective sample size (considering the autocorrelation between 
independent posterior draws); the Monte Carlo standard error 
(relative to the posterior SD); R-hat (the variance ratio between each 
chain relative to all chains); and no divergent Monte Carlo transitions 
after warm-up.

For statistical inference, we consider 95% credibility intervals 
(using the highest posterior density interval) around the posterior 
median parameter estimates along with the ‘probability of 
direction’ (pd), capturing the proportion of the posterior density 
above or below zero. Here, pd can range from 0.50 (indicating that 
the posterior is centered at zero, i.e., half its density lies above zero 
and half below zero) to 1 (in the most extreme case, that no 
proportion of the posterior density intersects zero)—thus, values 
of pd closer to 1 indicate more evidence for the presence of a 
directional/nonzero effect, and pd > 0.95 can roughly be thought of 
as a Bayesian analogue to the frequentist p-value, such that less 
than 5% of the full posterior distribution intersects zero (Makowski 
et al., 2019). However, an important point here is that we do not 
wish to frame these results in terms of ‘statistical significance’, but 
rather a simple consideration of evidence for nonzero differences 
given the posterior densities for each parameter. Bayes factors are 
not reported due to their sensitivity to priors and because they 
often (regrettably) encourage the sorts of binary thinking about 
hypotheses that Bayesian methods are meant to circumvent. 
Instead, we  compute a Bayesian analogue of Cohen’s d for 
categorical predictors by taking the posterior draws for each 
regressor and dividing them by the square root of the summed 
residual variances and random effects variances (as per convention 
for hierarchical linear models) (Westfall et al., 2014), yielding a 
posterior distribution for each non-continuous model-level effect. 
Finally, fit indices were computed using the conditional R2 over the 
full model (taking both fixed and random effects together), and the 
marginal R2 capturing variance that can be attributed to the fixed 
effects alone (Gelman et al., 2019).

2.4 Exploratory modeling of interaction 
effects

The models described above focused simply on additive, main effects 
for each predictor of interest—we did not have any a priori hypotheses 
related to how these various experiment design parameters might interact 
to produce differential behavioral outcomes. However, it is likely that 
interaction effects do exist between these factors. One general challenge 
with modeling these potential effects in an exploratory fashion is 
combinatorial explosion: given the number of parameters under 
consideration, the possible model space is massive and may include 
models with many higher-order interactions that are uninterpretable.

In an effort to perform an exploratory search in a restricted, albeit 
principled and maximally-unbiased fashion, we focused on models 
containing either two-way or three-way interactions (the latter of 
which included all three marginal two-way interactions) constructed 
on a dataset comprised of all domains combined. This would allow us 
to identify interaction models that appear to generalize across 
domains and subsequently test the extent to which they inform 
domain-specific models. To assess the performance of candidate 
models against the ‘base model’ (i.e., solely including additive, main 
effects), we used Bayesian approximate leave-one-out cross validation 
with Pareto-smoothed importance sampling (PSIS) (Vehtari et al., 
2017; Paananen et al., 2021; Vehtari et al., 2024). In brief, this approach 
takes advantage of our fully Bayesian modeling framework to 
circumvent typically-costly cross-validation routines requiring many 
model re-fits, instead using PSIS to imagine the likelihood our model 
would assign to each datapoint as if they were held-out, yielding a new 
cross-validated posterior predictive distribution over the data (a 
pointwise predictive density). We  can then directly quantify the 
difference in predictive performance between candidate and base 
models by comparing their mean, expected log pointwise predictive 
densities (ELPDs), which has an associated standard error: the ratio 
of the ELPD differential to the standard error of the difference (akin 
to a Z-statistic) is a simple summary metric that can inform us 
whether the addition of putative interaction terms significantly 
improves predictive performance above the base, additive model (a 
fairly liberal criterion is to check whether the absolute value |ELPDDiff 
/ SEDiff| > 2, similar to a two-tailed test at α = 0.05).

Under this framework, we first performed a comprehensive sweep 
over all possible inclusions of a single two-way interaction term (28 
models total). None of these candidate models, however, suggested a 
significant improvement in predictive performance above the base model 
(Supplementary Table S3). We then performed a similarly exhaustive 
sweep over 56 candidate three-way interaction models, and here, there 
were three models that suggested significant improvement over the base 
model (Supplementary Table S4), each with the following terms: (1) 
Design Type (Within- vs. Between-Subjects) × Number of Electrodes in 
Montage × Stim Intensity (mA); (2) Design Type × Number of Electrodes 
× Stim Duration per Session (min); and (3) Design Type × Number of 
Electrodes × Stim Duration. Notably, there was considerable overlap in 
the relevant factors for each candidate interaction—we therefore fit a 
four-way interaction model that provided, at best, a marginal 
improvement over the base model and did not significantly outperform 
any of the individual three-way models (Table 2).

Because the four-way model did not confer a particular advantage 
over any individual three-way model, we excluded it from further 
testing and instead consider the various three-way models noted 
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above to be  competitive. These were subsequently applied to each 
individual domain to assess the extent to which they may inform 
domain-specific differences in behavioral effects above and beyond 
their respective base, additive models.

3 Results

3.1 Motor performance

Under a simple additive model, analysis of 253 effects across 42 
studies in the motor domain revealed little consistency in the 
relationships between stimulation/experiment parameters and the 
likelihood of conferring positive or negative behavioral effects 
(Figure 2A; Table 3). However, there was a considerable advantage when 
using a within-subjects design vs. a between-subjects design, such that 
within-subjects designs were consistently associated with stronger 
positive effects (d = 1.35, 95CI = [0.93, 1.78]; b = 1.11 SD = 0.22, 
95CI = [0.68, 1.55], pd = 1). We also observed some evidence for target-
specific effects, such that stimulating DLPFC tended to yield smaller 
behavioral differences, relative to the more motor-relevant cerebellum 
(d = −0.53, 95CI = [−1.13, 0.002]; b = −0.43, SD = 0.22, 95CI = [−0.86, 
−0.01], pd = 0.977), although the credibility intervals for this effect lightly-
intersect zero. We note that, due to restrictions on the number of possible 
contrasts one can uniquely-estimate for a given factor, there remain 
many potential comparisons that are not reflected under the model fit. 
However, given that this is a Bayesian framework, it is possible to 
‘simulate’ new data under the generative model and derive posterior 
predictive distributions that describe the expected value (i.e., the likely 
effect size) one would observe under certain stimulation/experiment 
parameters. By integrating out other factors from these predictive 
distributions, we can approximate the average marginal effect (AME) one 
might expect for novel comparisons. This here reveals potential benefits 
to stimulating M1 vs. DLPFC (Median predictive difference = 0.35, 
95CI = [0.11, 0.58]) as well as a potential detriment to stimulating online 
vs. offline (Median predictive difference = −0.20, 95CI = [−0.39, −0.01]).

Applying the candidate interaction terms described previously to 
the motor domain did not reveal any significant increases in 
performance relative to the base model (Supplementary Table S5). 
The three-way interaction model including Design Type × Num 
Electrodes × Stim Duration provided the best overall predictive 
accuracy—however, this was not meaningfully different from the 
cross-validated performance of the base model with only additive 
terms (ELPDDiff = −33.53, SEDiff = 16.58, ELPDDiff / SEDiff = −1.88). That 
being said, while the highest-performing candidate model did not 

significantly outperform the base model, it nevertheless suggested the 
presence of potential interaction effects including (most importantly) 
the full three-way interaction (b = 0.76, SD = 0.28, 95CI = [0.21, 1.31], 
pd = 0.996). It is unclear whether the increase in model complexity is 
justifiable given the nonsignificant difference in predictive 
performance, but we report the full set of parameter estimates for this 
model in Supplementary Table S6.

3.2 Visual search

The visual search model spanned 176 effects across 18 studies 
(Figure 2B; Table 4). One challenge of this domain was the lack of 
variability in stimulation target sites. The posterior parietal cortex 
(PPC) was highly overrepresented as a stimulation target in this 
sample, comprising 110/176 effects; conversely, only four effects were 
derived from visual cortex stimulation. The remaining regions 
spanned various areas of the prefrontal cortex, including the FEF (14 
effects) and DLPFC (16 effects). We elected to retain the visual cortex 
target as its own factor level (although this estimate is highly 
unreliable, as reflected by the wide credibility interval) and collapse all 
PFC regions into one group, yielding 62 total effects. Bilateral 
stimulation (14/176 effects) and mixed online/offline stimulation 
designs (15/176 effects) were also underrepresented here.

Despite the disparities across several of these parameters, 
we observed evidence for a moderate effect of stimulation polarity: 
cathodal stimulation was associated with smaller behavioral effects in 
these studies relative to anodal stimulation (d = −0.55, 95CI = [−1.14, 
−0.08]; b = −0.22, SD = 0.08, 95CI = [−0.37, −0.06], pd = 0.996). 
Perhaps counterintuitively, we  also saw evidence for moderately 
weaker behavioral effects when targeting PPC compared to the 
combined grouping of all PFC targets (d = −0.58, 95CI = [−1.29, 
−0.004]; b = −0.23, SD = 0.10, 95CI = [−0.42, −0.03], pd = 0.988), 
although this effect is difficult to interpret given the lack of specificity 
in PFC regions. No additional trends were observed for other fixed 
effects or predictive AMEs in this domain.

With respect to potential interaction effects, here the base model 
provided the best predictive performance—strongly exceeding 
candidate interaction models with the exception of a model including 
a Design Type × Stim Intensity × Stim Duration interaction, with which 
it was tightly competitive (ELPDDiff = −0.10, SEDiff = 1.59, ELPDDiff / 
SEDiff = −0.06; Supplementary Table S7). Notably, however, despite the 
similarity in predictive performance, neither the three-way interaction 
term nor any of the marginal two-way interaction terms for this model 
provided clear evidence for nonzero effects. We observed, at best, an 

TABLE 2 Differences in candidate model predictive performance derived via Bayesian approximate leave-one-out cross-validation.

Candidate model ELPDDiff SEDiff ELPDDiff / SEDiff

Design Type × Stim Intensity × Stim Duration × Num Electrodes — — —

Design Type × Num Electrodes × Stim Intensity −10.984 7.330 −1.499

Design Type × Stim Intensity × Stim Duration −16.034 10.357 −1.548

Design Type × Num Electrodes × Stim Duration −18.334 10.245 −1.790

Base Model (Only Additive Terms) −33.532 16.581 −2.022

The four-way interaction model provided the best performance overall and thus differences in fit are presented with respect to this model. ELPDDiff gives the mean difference in the expected log 
pointwise predictive densities (negative values shown here indicate decrements in predictive performance relative to the top model); SEDiff gives the standard error of the difference. The top 
model significantly differs in performance from any other model where |ELPDDiff / SEDiff| > 2.
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inconclusive trend for a two-way interaction between stimulation 
intensity and duration where the 95% credibility interval over the 
posterior included zero (b = 0.05, SD = 0.03, 95CI = [−0.003, 0.11], 
pd = 0.969). Beyond this, we only observed evidence for an effect of 
stimulation polarity in the same direction as seen in the base model (i.e., 
such that cathodal stimulation was associated with reduced behavioral 
effects on average; d = −0.95, 95CI = [−3.24, −0.02]; b = −0.23, SD = 0.08, 
95CI = [−0.39, −0.07], pd = 0.998). The full summary of statistics for this 
competitive interaction model are compiled in Supplementary Table S8.

3.3 Working memory

We next assessed 115 effects reported in 16 working memory 
studies (Figure 2C; Table 5). Here we faced similar difficulties with 

unbalanced representation of target brain regions, with montages 
focused on the DLPFC in 90/115 reported effects. Other sparsely-
represented regions (including the cerebellum, PPC, and temporal 
lobe) were therefore grouped into a ‘Non-DLPFC’ category. This 
domain was also the only other to employ subject-specific, 
individualized targeting—although this occurred only in one study 
with 5 reported effects. Furthermore, unlike other domains which 
applied anodal and cathodal stimulation fairly evenly, these studies 
almost exclusively applied anodal stimulation (103/115 effects). 
Bilateral stimulation also failed to be  represented in this domain. 
Ultimately, none of the available contrasts suggested a reliable 
advantage or disadvantage to working memory performance, nor did 
examination of posterior predictive AMEs. Removal of highly-
unbalanced factors also had no effect on the results, so we retain them 
here for transparency.

FIGURE 2

Contrasting estimates of multiple neurostimulation and experimental parameters on behavioral performance outcomes, both within-domain and 
between-domain. For categorical predictors (e.g., target laterality), contrasts were specified in an A – B fashion, such that level B served as the 
reference point. Thus, positive values suggest larger effect sizes (on average) for level A compared to B; negative values indicate the reverse. For 
continuous predictors (e.g., stimulation intensity), positive values suggest larger effect sizes with increasing values of the predictor (e.g., stronger 
stimulation dosages); negative values suggest the inverse association. Values closer to zero indicate weak or no association with performance 
outcomes, either at the level of mean differences between factor levels or a linear relationship with continuous predictors. Point intervals give 90–95% 
credibility intervals (i.e., highest density intervals) around the median posterior estimates (thick lines  =  90% CI; thin lines  =  95% CI; solid gradient areas 
indicate the 95% CI). (A) Motor performance, (B) Visual search, (C) Working memory, (D) Vigilance, (E) Inhibition, (F) Domain-General.
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Turning to our model comparison set, the best performing model 
included a three-way interaction between Design Type × Stim Intensity 
× Stim Duration—but again, this failed to significantly beat the base 
model in terms of predictive performance (ELPDDiff = −3.10, SEDiff = 2.50, 
ELPDDiff / SEDiff = −1.24; Supplementary Table S9). Furthermore, this 
particular candidate model, while ostensibly offering the highest 
predictive utility, also demonstrated more degenerate behavior during 
sampling, consistently yielding several divergent Monte Carlo transitions 
regardless of numerous attempts at adjusting sampling behavior. While 
these make up an extremely small proportion of the total number of 
MCMC iterations run, it nevertheless suggests a more unwieldy posterior 
geometry, and this in turn can hamper the interpretability/reliability of 
parameter estimates. Here we see several potential effects that were not 
apparent in the base model, including a potential advantage for using 
larger electrode montages (b = 0.14, SD = 0.06, 95CI = [0.02, 0.27], 
pd = 0.989) and some evidence trending towards a two-way interaction 
between stimulation intensity and duration (b = −0.15, SD = 0.05, 
95CI = [−0.25, −0.04], pd = 0.991). The full set of parameter estimates for 
this model can be found in Supplementary Table S10, although we urge 
some caution in their interpretation given the aforementioned challenges 
with convergence.

3.4 Vigilance

The effects of tDCS on performance in vigilance tasks were 
modeled over 15 studies reporting 93 effects (Figure 2D; Table 6). 
Similar to working memory, most studies here employed anodal 

stimulation designs (83 effects) focused on the DLPFC (51 effects). 
Additional brain regions were grouped into ‘Other PFC’ and 
‘Temporal–Parietal’ categories. Most design parameters did not 
suggest any associations with behavioral outcomes; however, 
we  observed a small positive relationship with the number of 
electrodes used in the montage (b = 0.08, SD = 0.04, 95CI = [0.01, 0.15], 
pd = 0.983). We note that this may have been driven by two studies 
using a more complex montage comprised of 10 electrodes (yielding 
11 effects)—other studies employed between 2 and 5 electrodes. Thus, 
we  caution against overinterpreting this particular effect. Further 
comparisons of posterior predictive densities and AMEs did not reveal 
additional associations beyond the estimated contrasts.

The base model further demonstrated the best performance 
relative to all candidate interaction models; however, it was not 
significantly better than any candidate model. The closest contender 
was again the model including a Design Type × Stim Intensity × Stim 
Duration interaction (ELPDDiff = −0.67, SEDiff = 1.48, ELPDDiff / 
SEDiff = −0.45; Supplementary Table S11)—although no individual 
main effects or interaction effects under this model yielded any 
nonzero effects (Supplementary Table S12). Thus, the inclusion of 
interaction terms does not inform differences under this domain any 
more than those scantly observed in the base model.

3.5 Inhibition

A survey of 84 effects across 15 inhibition studies did not 
reveal any meaningful associations between any stimulation or 

TABLE 3 Summary of meta-regression parameters for motor performance.

Fixed predictors Post. Med. Est. Post. SD 95CI (pd)

Intercept −0.04 0.62 −1.32 – 1.22 (0.524)

Polarity: Anodal – Cathodal −0.07 0.08 −0.23 – 0.08 (0.829)

Target: DLPFC – Cerebellum −0.43 0.22 −0.86 – −0.01 (0.977)

Target: M1 – Cerebellum −0.09 0.19 −0.47 – 0.29 (0.672)

Target: Parietal – Cerebellum −0.15 0.20 −0.55 – 0.25 (0.767)

Target: Other PFC – Cerebellum −0.41 0.42 −1.24 – 0.41 (0.838)

Individualized target: Yes – No −0.23 0.22 −0.68 – 0.19 (0.854)

Laterality: Left – Bilateral −0.10 0.19 −0.48 – 0.26 (0.709)

Laterality: Right – Bilateral −0.05 0.15 −0.34 – 0.25 (0.627)

Number of stimulation sessions 0.02 0.04 −0.06 – 0.12 (0.718)

Stimulation duration/session (min) 0.03 0.03 −0.04 – 0.10 (0.801)

Stimulation intensity (mA) −0.16 0.26 −0.71 – 0.36 (0.725)

Stimulation timing: Offline – Mixed 0.26 0.25 −0.24 – 0.77 (0.844)

Stimulation timing: Online – Mixed 0.06 0.24 −0.42 – 0.55 (0.591)

Number of electrodes in montage −0.08 0.07 −0.24 – 0.06 (0.863)

Design: Within – Between 1.11 0.22 0.68–1.55 (1.00)

Random effects (N studies = 42)

σStudyID (Intercept) 0.82 0.14 0.58–1.14

N total effects = 253

Marginal R2 = 0.25 [0.16, 0.34]

Conditional R2 = 0.41 [0.34, 0.47]
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experiment parameters and behavior (Figure 2E; Table 7). Again, 
there was little variability in brain regions targeted for stimulation: 
75/84 effects were localized to the DLPFC. The remaining effects 
spanned the inferior frontal junction and parietal cortex and were 
therefore collapsed into an ‘Other’ term during the original model 
fit. Removing this predictor from the model did not affect the 
results. There was also less variability in target laterality (no effects 
under bilateral stimulation) and the number of stimulation 

sessions (only one session reported per subject). Assessments of 
posterior predictive densities and AMEs did not reveal any other 
potential effects not captured in the base model. Although several 
parameters trended towards a nonzero effect, there is inconclusive 
evidence for any reliable differences in behavioral performance 
given variation in design parameters under this domain.

Here we again saw superior performance for the base model over 
candidate interaction models. This time, however, the base model 

TABLE 4 Summary of meta-regression parameters for visual search.

Fixed predictors Post. Med. Est. Post. SD 95CI (pd)

Intercept 0.25 0.98 −1.86 – 2.29 (0.599)

Polarity: Anodal – Cathodal −0.22 0.08 −0.37 – −0.06 (0.996)

Target: PPC – PFC −0.23 0.10 −0.42 – −0.03 (0.988)

Target: Visual – PFC 0.38 0.50 −0.67 – 1.40 (0.773)

Laterality: Left – Bilateral −0.19 0.26 −0.70 – 0.31 (0.777)

Laterality: Right – Bilateral −0.10 0.25 −0.59 – 0.38 (0.658)

Number of stimulation sessions 0.11 0.13 −0.16 – 0.38 (0.801)

Stimulation duration/session (min) 0.01 0.02 −0.02 – 0.05 (0.753)

Stimulation intensity (mA) 0.10 0.15 −0.20 – 0.38 (0.743)

Stimulation timing: Offline – Mixed −0.32 0.23 −0.79 – 0.13 (0.920)

Stimulation timing: Online – Mixed −0.25 0.17 −0.59 – 0.08 (0.928)

Number of electrodes in montage −0.19 0.44 −1.11 – 0.76 (0.664)

Design: Within – Between 0.19 0.26 −0.36 – 0.74 (0.760)

Random effects (N studies = 18)

σStudyID (Intercept) 0.40 0.11 0.23–0.65

N total effects = 176

Marginal R2 = 0.36 [0.10, 0.49]

Conditional R2 = 0.50 [0.39, 0.59]

TABLE 5 Summary of meta-regression parameters for working memory.

Fixed predictors Post. Med. Est. Post. SD 95CI (pd)

Intercept 0.67 0.41 −0.20 – 1.58 (0.943)

Polarity: Anodal – Cathodal 0.08 0.13 −0.17 – 0.34 (0.725)

Target: Non-DLPFC – DLPFC −0.06 0.10 −0.25 – 0.13 (0.734)

Individualized target: Yes – No 0.65 0.35 −0.08 – 1.40 (0.963)

Laterality: Right – Left 0.03 0.10 −0.16 – 0.22 (0.605)

Number of stimulation sessions 0.02 0.04 −0.07 – 0.10 (0.692)

Stimulation duration/session (min) 0.01 0.01 −0.01 – 0.04 (0.833)

Stimulation intensity (mA) −0.44 0.26 −1.01 – 0.09 (0.953)

Stimulation timing: Offline – Mixed 0.35 0.21 −0.11 – 0.81 (0.941)

Stimulation timing: Online – Mixed 0.26 0.19 −0.16 – 0.69 (0.906)

Number of electrodes in montage 0.10 0.07 −0.05 – 0.25 (0.921)

Design: Within – Between −0.14 0.18 −0.54 – 0.23 (0.786)

Random effects (N studies = 16)

σStudyID (Intercept) 0.22 0.11 0.04–0.47

N total effects = 115

Marginal R2 = 0.16 [0.06, 0.31]

Conditional R2 = 0.14 [0.07, 0.21]
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consistently, significantly beat all three potential candidates—no 
exploratory model provided competitive predictive performance 
(Supplementary Table S13).

3.6 Combined model

Finally, we considered a domain-general model combining all 
106 studies and 721 effects across all domains (Figure 2F; Table 8). 

Here we omitted the individualized target parameter (due to its 
scarce representation beyond motor performance tasks) as well as 
the regional target parameter to instead focus on broader trends 
related to stimulation and experiment design. Taken together, there 
was considerable heterogeneity across all relevant effects, with 
stimulation polarity and within- vs. between-subject designs 
providing inconclusive evidence for domain-general associations 
with behavior: cathodal stimulation tended to produce somewhat 
smaller behavioral effects on average (d = −0.19, 95CI = [−0.39, 

TABLE 6 Summary of meta-regression parameters for vigilance.

Fixed predictors Post. Med. Est. Post. SD 95CI (pd)

Intercept −0.81 0.67 −2.19 – 0.57 (0.883)

Polarity: Anodal – Cathodal 0.03 0.12 −0.20 – 0.26 (0.607)

Target: Other PFC – DLPFC 0.03 0.23 −0.48 – 0.50 (0.552)

Target: Temporal–Parietal – DLPFC −0.00 0.09 −0.19 – 0.18 (0.526)

Laterality: Left – Bilateral 0.10 0.21 −0.35 – 0.55 (0.687)

Laterality: Right – Bilateral 0.07 0.26 −0.50 – 0.58 (0.601)

Number of stimulation sessions 0.01 0.17 −0.35 – 0.37 (0.528)

Stimulation duration/session (min) 0.02 0.02 −0.03 – 0.08 (0.841)

Stimulation intensity (mA) 0.00 0.22 −0.49 – 0.46 (0.507)

Stimulation timing: Offline – Mixed −0.04 0.16 −0.38 – 0.28 (0.595)

Stimulation timing: Online – Mixed −0.01 0.13 −0.28 – 0.25 (0.536)

Number of electrodes in montage 0.08 0.04 0.01–0.15 (0.982)

Design: Within – Between 0.12 0.09 −0.07 – 0.29 (0.891)

Random effects (N studies = 15)

σStudyID (Intercept) 0.13 0.09 0.01–0.35

N total effects = 93

Marginal R2 = 0.40 [0.23, 0.53]

Conditional R2 = 0.41 [0.26, 0.52]

TABLE 7 Summary of meta-regression parameters for inhibition.

Fixed predictors Post. Med. Est. Post. SD 95CI (pd)

Intercept 0.71 0.62 −0.53 – 2.14 (0.879)

Polarity: Anodal – Cathodal −0.09 0.08 −0.24 – 0.07 (0.865)

Target: Other – DLPFC 0.17 0.14 −0.10 – 0.45 (0.892)

Laterality: Right – Left −0.12 0.12 −0.36 – 0.12 (0.836)

Stimulation duration/session (min) −0.01 0.02 −0.06 – 0.03 (0.751)

Stimulation intensity (mA) 0.00 0.14 −0.31 – 0.29 (0.514)

Stimulation timing: Offline – Mixed 0.19 0.30 −0.39 – 0.90 (0.745)

Stimulation timing: Online – Mixed −0.03 0.33 −0.65 – 0.73 (0.534)

Number of electrodes in montage −0.10 0.08 −0.29 – 0.07 (0.900)

Design: Within – Between 0.04 0.21 −0.40 – 0.53 (0.581)

Random effects (N studies = 15)

σStudyID (Intercept) 0.35 0.14 0.14–0.68

N total effects = 84

Marginal R2 = 0.23 [0.09, 0.40]

Conditional R2 = 0.36 [0.22, 0.50]
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0.02]; b = −0.07, SD = 0.04, 95CI = [−0.15, 0], pd = 0.971), while 
within-subjects designs produced larger effects (d = 0.32, 95CI = [0, 
0.65]; b = 0.13, SD = 0.07, 95CI = [0, 0.26], pd = 0.973). Posterior 
predictive AMEs further suggested that online stimulation may 
yield smaller effects than offline stimulation (Median predictive 
difference = −0.14, 95CI = [−0.24, −0.04]).

As described previously, the competing set of three-way interaction 
models was originally defined by concatenating together the data from 
all domains. Thus, each candidate model significantly outperformed 
the base model (Supplementary Table S4) while remaining competitive 
with each other (Supplementary Table S14). The best-performing 
candidate included a strong three-way interaction between Design 
Type × Num Electrodes × Stim Intensity (b = −0.49, SD = 0.10, 
95CI = [−0.69, −0.29], pd = 1), which suggested that the montages with 
more electrodes may produce larger behavioral effects as raw 
stimulation intensity increases under between-subjects designs—but 
this relationship is reversed in within-subjects designs, such that 
one might expect increasingly-diminishing returns with more 
complex montages and stronger stimulation intensities 
(Supplementary Figure S2; Supplementary Table S15). The second-best 
model included a three-way interaction for Design Type × Stim 
Intensity × Stim Duration (b = −0.11, SD = 0.03, 95CI = [−0.17, −0.06], 
pd = 1): here, we saw similar trends as in the previous model, such that 
longer and stronger applications of tDCS may confer an advantage in 
between-subjects studies, but this is again reversed for within-subjects 
designs (Supplementary Figure S3; Supplementary Table S16). Finally, 
the third candidate model provided evidence for a three-way 
interaction between Design Type × Num Electrodes × Stim Duration 
(b = 0.06, SD = 0.02, 95CI = [0.03, 0.09], pd = 1), where longer stimulation 
durations coupled with larger montages may provide a specific benefit 
to within-subject designs, whereas between-subject designs are 
relatively invariant to combined changes in these factors 
(Supplementary Figure S4; Supplementary Table S17).

4 Discussion

When designing a neurostimulation experiment, researchers 
are presented with a vast decision tree. For example, one must 
determine where in the brain to apply stimulation; to what 
intensity and for how long; whether to apply it online (as subjects 
are performing a task) or offline; and whether to apply ‘excitatory’ 
or ‘inhibitory’ stimulation. The net effect of neurostimulation 
ultimately depends on a complex constellation of these factors—
and while some of these decisions have clear theoretical/empirical 
guides (e.g., targeting brain regions previously known to 
be associated with task performance), many others remain open to 
the subjective preferences of the researcher, and there is no clear 
consensus or standardization of the optimal approach. In this 
report, we  sought to identify which of these stimulation and 
experimental design factors confer the strongest likelihood of 
behavioral effects in tDCS studies, using a hierarchical, Bayesian 
meta-regression approach across five cognitive domains.

We observed considerable heterogeneity in these associations, 
with little consensus between domains. When combining all studies 
and effects under a purely-additive, domain-general model, only two 
factors emerged with a modicum of consistency: (1) the polarity of 
stimulation, with cathodal vs. sham designs often producing reduced 
behavioral effects relative to anodal vs. sham designs (perhaps in line 
with the naïve notion that cathodal stimulation is primarily inhibitory), 
and (2) within-subject experimental designs conferring larger effects 
than between-subject designs (which may be unsurprising given that 
within-subject comparisons are generally considered to be  more 
powerful—which is to say, for an identical assumed effect size a priori, 
within-subject manipulations require fewer subjects to reach the same 
level of power relative to between-subjects). These associations were 
modest at best when considering the full range of variance in reported 
effects; however, stronger associations with polarity and statistical 

TABLE 8 Summary of meta-regression parameters across all domains.

Fixed predictors Post. Med. Est. Post. SD 95CI (pd)

Intercept −0.01 0.15 −0.31 – 0.29 (0.532)

Polarity: Anodal – Cathodal −0.07 0.04 −0.15 – 0.00 (0.971)

Laterality: Left – Bilateral −0.13 0.09 −0.31 – 0.06 (0.914)

Laterality: Right – Bilateral −0.12 0.09 −0.30 – 0.06 (0.904)

Number of stimulation sessions 0.01 0.02 −0.03 – 0.05 (0.660)

Stimulation duration/session (min) 0.01 0.01 −0.01 – 0.02 (0.866)

Stimulation intensity (mA) 0.02 0.07 −0.11 – 0.15 (0.619)

Stimulation timing: Offline – Mixed 0.03 0.09 −0.15 – 0.21 (0.624)

Stimulation timing: Online – Mixed −0.11 0.09 −0.28 – 0.06 (0.893)

Number of electrodes in montage 0.01 0.02 −0.04 – 0.06 (0.681)

Design: Within – Between 0.13 0.07 0.00–0.26 (0.972)

Random effects (N studies = 106)

σStudyID (Intercept) 0.39 0.04 0.32–0.46

N total effects = 721

Marginal R2 = 0.05 [0.02, 0.09]

Conditional R2 = 0.29 [0.25, 0.33]
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design were seen across visual search and motor performance tasks, 
respectively.

The results of our exploratory interaction analyses are also 
somewhat difficult to interpret, given that no candidate model 
significantly generalized to individual cognitive domains—the 
improvements in predictive performance when including various 
three-way interaction terms were most appreciable when combining 
data across domains. However, there are several notable trends that 
may be worthy of consideration. For example, the use of between- vs. 
within-subject designs was consistently a relevant factor in each 
candidate model. In cases where this factor interacted with 
Stimulation Intensity × Num Electrodes (Supplementary Figure S2; 
Supplementary Table S15) and Stimulation Intensity × Stim 
Duration (Supplementary Figure S3; Supplementary Table S16), it 
appeared that the benefit of larger montages and longer stimulation 
durations (respectively) reversed for between- vs. within-subject 
designs—however, this switch primarily occurred out in the tails of 
the observed stimulation intensities (i.e., at least 3 mA or more). 
While such high intensities were seen in our review, they are not 
necessarily representative of most tDCS studies on the whole. At 
lower, more traditional stimulation intensities (e.g., ~1 mA), within-
subjects designs generally still held an advantage over between-
subjects. Furthermore, it is worth noting that factors such as 
stimulation intensity generally only informed differences in 
behavioral outcomes when included in an interaction—this seems 
reasonable given that the effectiveness of a given intensity may 
critically depend upon the duration of stimulation and/or the extent 
of an electrode montage. However, deeper interpretation of these 
results is made somewhat difficult given that raw intensity alone 
does not necessarily reflect the dosage of stimulation applied to the 
target (typically operationalized as current density), nor does the 
three-way interaction identified here. We attempted to model this 
factor in each domain (Supplementary Figure S1), but it was not 
reliably estimable for all studies (resulting in loss of data) and 
otherwise did not appear to be predictive of outcome variability. 
There are a number of potential reasons for this (e.g., individual 
differences in brain anatomy mediating differences in the effective 
current density at the target) which warrant future investigation, and 
it is similarly critical for other empirical work to report this 
information in their Methods sections to help aid in the 
interpretation of results. In sum, while it nevertheless remains 
unclear as to whether (or to what extent) specific stimulation or 
experimental parameters can reliably induce desired behavioral 
outcomes, these findings may provide a useful reference for 
researchers designing future behavioral studies in addition to more 
systematic investigations of how various tDCS parameters may 
interact to modulate behavior.

A growing number of published meta-analyses have attempted to 
quantify and characterize patterns of uncertainty and variability in 
neurostimulation-related effects on cognition and behavior. However, 
to date, many of these previous efforts have taken a more piecemeal 
approach, focused on specific tasks/domains, individual behavioral 
measures (e.g., accuracy or reaction time), or a limited range of 
stimulation parameters (e.g., particular target brain regions, or 
differentiating between anodal or cathodal stimulation alone) 
(Jacobson et al., 2012; Brunoni and Vanderhasselt, 2014; Dedoncker 
et al., 2016; Hill et al., 2016; Mancuso et al., 2016; Imburgio and Orr, 
2018; Oldrati and Schutter, 2018; Schroeder et al., 2020). Our goal, by 

contrast, was to take a more holistic view capturing a broad range of 
design factors and behaviors. This presented a number of challenges, 
including uneven representation of some stimulation/experimental 
parameters across domains, making it difficult to robustly contrast 
certain effects. In a sense, these imbalances could be interpreted as a 
de facto consensus on which brain regions ‘should’ be targeted, or 
which type of stimulation to apply, etc., when probing behaviors under 
a given domain. Yet, our analyses demonstrate that there is still a 
profound degree of heterogeneity across these parameters, suggesting 
the need for deeper consideration when planning and designing 
tDCS studies.

4.1 Uncontrollable sources of variability

The design elements under investigation here are generally 
considered to be controllable sources of variability in neurostimulation 
studies (i.e., easily-manipulated by experimenters in a systematic 
fashion), but there nevertheless remain a host of uncontrollable sources 
of variability that may further hamper one’s ability to elicit behavioral 
effects and contribute to inconsistent results across studies. Critically 
among these are a number of neuroanatomical factors that likely 
influence the propagation of electrical current through the brain and 
the degree to which stimulation actually produces the presumed 
effects on neuronal activity. For example, neurons running parallel to 
an applied electric field generally appear to exhibit the hypothesized 
excitatory and inhibitory effects of anodal and cathodal stimulation 
(respectively), but neurons running orthogonally to the field may not 
(Rahman et al., 2013; Lafon et al., 2017). Inter-individual variability 
in the local orientation of neurons within a target brain region might 
therefore preclude effective neuromodulation during tDCS. Other 
variables such as head size, head fat content, skull thickness, and sulcal 
depth can also mediate the effectiveness of tDCS (Kessler et al., 2013; 
Truong et al., 2013; Opitz et al., 2015; Bikson et al., 2016), which 
together could manifest as further individual differences in behavior, 
washing out a mean difference between one stimulation/task 
condition and another.

The development of improved, neuroanatomically-informed 
current modeling techniques, particularly with respect to individual-
specific optimization of electrode placements and stimulation dosage, 
may be able to mitigate some of these factors (Datta et al., 2012; Kim 
et al., 2014; Woods et al., 2016; Saturnino et al., 2019). Recent advances 
in electrical field modeling, including the Realistic Volumetric 
Approach to Simulate Transcranial Electrical Stimulation (ROAST) 
software (Huang et al., 2019), the dose-target determination index 
(DTDI) (Kashyap et al., 2021), and other novel approaches combining 
meta-analysis with simulation of electrical fields (Wischnewski et al., 
2021) have highlighted that it is not sufficient to simply place an 
electrode montage over a given brain area and assume that it is 
receiving focal stimulation. The frequently-observed mixed findings 
across tDCS studies may in large part be  due to variability and 
suboptimality in the actual strength/focality of electric fields over the 
desired target brain region (Wischnewski et al., 2021). We advocate 
strongly for the use of these field modeling techniques whenever 
possible as an additional control over stimulation targeting.

Finally, and more generally, there remain many other challenging 
sources of variability (e.g., baseline cognitive abilities, neurochemistry, 
circadian rhythms, blood pressure, genetic factors, etc.) (Li et al., 2015; 
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Hsu et  al., 2016; Rosen et  al., 2016) which, while not necessarily 
impossible to control for, are frequently impractical or unrealistic for 
any given study to measure and factor into their analyses. Because 
these variables are often so difficult to quantify (and as such, are rarely 
reported), the sum total of their influence on the heterogenous nature 
of effects modeled here cannot be ascertained. Nevertheless, a more 
complete understanding of these issues is imperative as the field 
moves forward.

4.2 Limitations of this study

As aforementioned, we  applied highly-restrictive inclusion 
criteria when collating data for this meta-analysis. While this was 
necessary to enable more straightforward tests of our key stimulation 
and experimental parameters, these findings may not be  fully-
representative of the literature on the whole (although the high 
degree of variability observed is in line with prior work). One critical 
omission of note spans studies using customized/individualized 
stimulation protocols beyond target placement alone: for example, 
paradigms which vary stimulation intensity on an individual basis to 
standardize the dosage (current density) applied to the target. Our 
models required stimulation intensity to be held constant for a given 
reported effect, but such individualized approaches are becoming 
increasingly more commonplace. Thus, while our results may reflect 
historical trends in stimulation outcomes (especially with respect to 
conventional designs), they may not adequately account for present 
trends using more sophisticated methods. Future meta-analytic work 
would benefit from more direct comparisons between conventional 
and contemporary approaches to stimulation designs.

As an additional limitation, we  desired to identify more 
generalizable trends in how these design parameters relate to 
behavioral outcomes, both within and between domains—but 
collapsing across multiple task paradigms and performance metrics 
may actually obscure reliable effects that would otherwise be apparent 
in a more focal meta-analysis. Even when simplifying behavioral 
effects to ‘positive’ and ‘negative’ outcomes, it is unlikely that any given 
study tests/measures a particular psychological construct in the same 
way, which might amplify the inherent noise variance under 
the model.

Finally, while we attempted to explore potential interactions 
between various experiment design factors, this was still somewhat 
limited in scope—to limit complexity and reduce the putative 
model space, we  considered at most the inclusion of a single 
three-way interaction term (along with its marginal two-way 
interactions) and performed this selection based on data combined 
across domains rather than within each domain. While on the one 
hand this allowed us to assess generalizability of the identified 
candidate models, it is also possible that each domain may produce 
different sets of candidate interactions. Furthermore, in order to 
be consistent with our base, additive models across all domains, 
we retained the same sets of weaky-informative priors: but in a 
Bayesian model comparison and variable selection scenario, 
sparsity-inducing priors (e.g., a regularized horseshoe) may 
be preferable. These are often extremely delicate in the context of 
hierarchical models, though, and may produce degenerate 
sampling behavior and difficulties with convergence. Future 
experimental work would greatly benefit from systematic 

investigations of these parameters and the potential ways in which 
they jointly-modulate behavioral performance outcomes, and this 
modeling framework could also potentially be  combined with 
tDCS simulation methods (Wischnewski et al., 2021) to further 
inform experimental design principles for 
neurostimulation researchers.

5 Conclusion

In conclusion, our comprehensive meta-analysis across five 
cognitive domains reveals a complex and heterogenous landscape 
of associations between neurostimulation and behavioral 
outcomes. While some trends emerge, such as the advantage of 
within-subject designs and the influence of stimulation polarity, 
overall, there is little consensus on the optimal stimulation and 
experimental parameters for reliably inducing desired behavioral 
outcomes using tDCS. The field of neurostimulation research faces 
the challenge of contending with uncontrollable sources of 
variability, including various neuroanatomical and individual 
difference factors, which may further contribute to the 
inconsistency observed across studies. This study underscores the 
need for deeper consideration and standardization of experimental 
design in tDCS studies and highlights the importance of developing 
neuroanatomically-informed current modeling techniques to 
better understand and control for sources of variability. Future 
research should continue to investigate the complex interplay of 
these parameters and their potential interactions to advance our 
understanding of the effects of tDCS on cognitive and 
behavioral performance.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

TS: Conceptualization, Data curation, Formal analysis, Methodology, 
Writing – original draft, Writing – review & editing. SL: Conceptualization, 
Data curation, Writing – review & editing. LL: Conceptualization, Data 
curation, Writing – review & editing. HS: Data curation, Writing – review 
& editing. JS: Data curation, Writing – review & editing. PS: Data curation, 
Writing – review & editing. KD: Data curation, Writing – review & 
editing. MM: Conceptualization, Funding acquisition, Project 
administration, Supervision, Writing – review & editing. TB: 
Conceptualization, Funding acquisition, Project administration, 
Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This research 
was sponsored by the U.S. Army DEVCOM Soldier Center under 
contract #W911NF-D-19-0001 to the Institute for Collaborative 

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Santander et al. 10.3389/fnhum.2024.1305446

Frontiers in Human Neuroscience 17 frontiersin.org

Biotechnologies at the University of California, Santa Barbara. The 
opinions expressed herein are those of the authors and do not reflect 
those of the United  States government. The U.S. government is 
authorized to reproduce and distribute reprints for Government 
purposes notwithstanding any copyright notation herein.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnhum.2024.1305446/
full#supplementary-material

References
Abellaneda-Perez, K., Vaque-Alcazar, L., Perellon-Alfonso, R., Bargallo, N., Kuo, M. F., 

Pascual-Leone, A., et al. (2019). Differential tDCS and tACS effects on working memory-
related neural activity and resting-state connectivity. Front. Neurosci. 13:1440. doi: 
10.3389/fnins.2019.01440

Ambrus, G. G., Chaieb, L., Stilling, R., Rothkegel, H., Antal, A., and Paulus, W. (2016). 
Monitoring transcranial direct current stimulation induced changes in cortical 
excitability during the serial reaction time task. Neurosci. Lett. 616, 98–104. doi: 
10.1016/j.neulet.2016.01.039

Anderson, E. J., Mannan, S. K., Husain, M., Rees, G., Sumner, P., Mort, D. J., et al. 
(2007). Involvement of prefrontal cortex in visual search. Exp. Brain Res. 180, 289–302. 
doi: 10.1007/s00221-007-0860-0

Angius, L., Santarnecchi, E., Pascual-Leone, A., and Marcora, S. M. (2019). 
Transcranial direct current stimulation over the left dorsolateral prefrontal cortex 
improves inhibitory control and endurance performance in healthy individuals. 
Neuroscience 419, 34–45. doi: 10.1016/j.neuroscience.2019.08.052

Ankri, Y. L. E., Braw, Y., Luboshits, G., and Meiron, O. (2020). The effects of stress and 
transcranial direct current stimulation (tDCS) on working memory: a randomized 
controlled trial. Cogn. Affect. Behav. Neurosci. 20, 103–114. doi: 10.3758/
s13415-019-00755-7

Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P., and Paulus, W. 
(2004). Facilitation of visuo-motor learning by transcranial direct current stimulation 
of the motor and extrastriate visual areas in humans. Eur. J. Neurosci. 19, 2888–2892. 
doi: 10.1111/j.1460-9568.2004.03367.x

Appelhans, B. M. (2009). Neurobehavioral inhibition of reward-driven feeding: 
implications for dieting and obesity. Obesity (Silver Spring) 17, 640–647. doi: 10.1038/
oby.2008.638

Apsvalka, D., Ramsey, R., and Cross, E. S. (2018). Anodal tDCS over primary motor 
cortex provides no advantage to learning motor sequences via observation. Neural Plast. 
2018, 1–14. doi: 10.1155/2018/1237962

Aron, A. R., Robbins, T. W., and Poldrack, R. A. (2004). Inhibition and the right 
inferior frontal cortex. Trends Cogn. Sci. 8, 170–177. doi: 10.1016/j.tics.2004.02.010

Aron, A. R., Robbins, T. W., and Poldrack, R. A. (2014). Inhibition and the right 
inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185. doi: 10.1016/j.
tics.2013.12.003

Assecondi, S., Hu, R., Eskes, G., Pan, X., Zhou, J., and Shapiro, K. (2021). Impact of 
tDCS on working memory training is enhanced by strategy instructions in individuals 
with low working memory capacity. Sci. Rep. 11:5531. doi: 10.1038/s41598-021-84298-3

Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. (2016). 
Enhancing working memory training with transcranial direct current stimulation. J. 
Cogn. Neurosci. 28, 1419–1432. doi: 10.1162/jocn_a_00979

Axelrod, V., Rees, G., Lavidor, M., and Bar, M. (2015). Increasing propensity to mind-
wander with transcranial direct current stimulation. Proc. Natl. Acad. Sci. USA 112, 
3314–3319. doi: 10.1073/pnas.1421435112

Baddeley, A. (1992). Working memory. Science 255, 556–559. doi: 10.1126/
science.1736359

Ball, K., Lane, A. R., Smith, D. T., and Ellison, A. (2013). Site-dependent effects of 
tDCS uncover dissociations in the communication network underlying the processing 
of visual search. Brain Stimul. 6, 959–965. doi: 10.1016/j.brs.2013.06.001

Ballard, H. K., Eakin, S. M., Maldonado, T., and Bernard, J. A. (2021). Using high-
definition transcranial direct current stimulation to investigate the role of the 

dorsolateral prefrontal cortex in explicit sequence learning. PLoS One 16:e0246849. doi: 
10.1371/journal.pone.0246849

Ballard, H. K., Goen, J. R. M., Maldonado, T., and Bernard, J. A. (2019). Effects of 
cerebellar transcranial direct current stimulation on the cognitive stage of sequence 
learning. J. Neurophysiol. 122, 490–499. doi: 10.1152/jn.00036.2019

Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., and Nitsche, M. A. (2013). 
Partially non-linear stimulation intensity-dependent effects of direct current stimulation 
on motor cortex excitability in humans. J. Physiol. 591, 1987–2000. doi: 10.1113/
jphysiol.2012.249730

Baumert, A., Buchholz, N., Zinkernagel, A., Clarke, P., MacLeod, C., Osinsky, R., et al. 
(2020). Causal underpinnings of working memory and Stroop interference control: 
testing the effects of anodal and cathodal tDCS over the left DLPFC. Cogn. Affect. Behav. 
Neurosci. 20, 34–48. doi: 10.3758/s13415-019-00726-y

Bestmann, S., de Berker, A. O., and Bonaiuto, J. (2015). Understanding the behavioural 
consequences of noninvasive brain stimulation. Trends Cogn. Sci. 19, 13–20. doi: 
10.1016/j.tics.2014.10.003

Bestmann, S., and Walsh, V. (2017). Transcranial electrical stimulation. Curr. Biol. 27, 
R1258–R1262. doi: 10.1016/j.cub.2017.11.001

Biggs, A. T., Cain, M. S., and Mitroff, S. R. (2015). Cognitive training can reduce 
civilian casualties in a simulated shooting environment. Psychol. Sci. 26, 1164–1176. doi: 
10.1177/0956797615579274

Bikson, M., Datta, A., Rahman, A., and Scaturro, J. (2010). Electrode montages for 
tDCS and weak transcranial electrical stimulation: role of "return" electrode's position 
and size. Clin. Neurophysiol. 121, 1976–1978. doi: 10.1016/j.clinph.2010.05.020

Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., et al. (2016). 
Safety of transcranial direct current stimulation: evidence based update 2016. Brain 
Stimul. 9, 641–661. doi: 10.1016/j.brs.2016.06.004

Bikson, M., Name, A., and Rahman, A. (2013). Origins of specificity during tDCS: 
anatomical, activity-selective, and input-bias mechanisms. Front. Hum. Neurosci. 7:688. 
doi: 10.3389/fnhum.2013.00688

Bikson, M., Paulus, W., Esmaeilpour, Z., Kronberg, G., and Nitsche, M. A. (2019). 
“Mechanisms of acute and after effects of transcranial direct current stimulation” in 
Practical guide to transcranial direct current stimulation. eds. H. Knotkova, M. 
Nitsche, M. Bikson and A. Woods (Cham, Switzerland: Springer), 81–113.

Bikson, M., Rahman, A., and Datta, A. (2012). Computational models of transcranial 
direct current stimulation. Clin. EEG Neurosci. 43, 176–183. doi: 
10.1177/1550059412445138

Boehringer, A., Macher, K., Dukart, J., Villringer, A., and Pleger, B. (2013). Cerebellar 
transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 
6, 649–653. doi: 10.1016/j.brs.2012.10.001

Boggio, P. S., Castro, L. O., Savagim, E. A., Braite, R., Cruz, V. C., Rocha, R. R., et al. 
(2006). Enhancement of non-dominant hand motor function by anodal transcranial 
direct current stimulation. Neurosci. Lett. 404, 232–236. doi: 10.1016/j.
neulet.2006.05.051

Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., and 
Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated 
with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 25, 
123–129.

Bolognini, N., Fregni, F., Casati, C., Olgiati, E., and Vallar, G. (2010). Brain polarization 
of parietal cortex augments training-induced improvement of visual exploratory and 
attentional skills. Brain Res. 1349, 76–89. doi: 10.1016/j.brainres.2010.06.053

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1305446/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1305446/full#supplementary-material
https://doi.org/10.3389/fnins.2019.01440
https://doi.org/10.1016/j.neulet.2016.01.039
https://doi.org/10.1007/s00221-007-0860-0
https://doi.org/10.1016/j.neuroscience.2019.08.052
https://doi.org/10.3758/s13415-019-00755-7
https://doi.org/10.3758/s13415-019-00755-7
https://doi.org/10.1111/j.1460-9568.2004.03367.x
https://doi.org/10.1038/oby.2008.638
https://doi.org/10.1038/oby.2008.638
https://doi.org/10.1155/2018/1237962
https://doi.org/10.1016/j.tics.2004.02.010
https://doi.org/10.1016/j.tics.2013.12.003
https://doi.org/10.1016/j.tics.2013.12.003
https://doi.org/10.1038/s41598-021-84298-3
https://doi.org/10.1162/jocn_a_00979
https://doi.org/10.1073/pnas.1421435112
https://doi.org/10.1126/science.1736359
https://doi.org/10.1126/science.1736359
https://doi.org/10.1016/j.brs.2013.06.001
https://doi.org/10.1371/journal.pone.0246849
https://doi.org/10.1152/jn.00036.2019
https://doi.org/10.1113/jphysiol.2012.249730
https://doi.org/10.1113/jphysiol.2012.249730
https://doi.org/10.3758/s13415-019-00726-y
https://doi.org/10.1016/j.tics.2014.10.003
https://doi.org/10.1016/j.cub.2017.11.001
https://doi.org/10.1177/0956797615579274
https://doi.org/10.1016/j.clinph.2010.05.020
https://doi.org/10.1016/j.brs.2016.06.004
https://doi.org/10.3389/fnhum.2013.00688
https://doi.org/10.1177/1550059412445138
https://doi.org/10.1016/j.brs.2012.10.001
https://doi.org/10.1016/j.neulet.2006.05.051
https://doi.org/10.1016/j.neulet.2006.05.051
https://doi.org/10.1016/j.brainres.2010.06.053


Santander et al. 10.3389/fnhum.2024.1305446

Frontiers in Human Neuroscience 18 frontiersin.org

Bonaiuto, J. J., and Bestmann, S. (2015). Understanding the nonlinear physiological 
and behavioral effects of tDCS through computational neurostimulation. Prog. Brain 
Res. 222, 75–103. doi: 10.1016/bs.pbr.2015.06.013

Borragan, G., Gilson, M., Guerrero-Mosquera, C., Di Ricci, E., Slama, H., and 
Peigneux, P. (2018). Transcranial direct current stimulation does not counteract 
cognitive fatigue, but induces sleepiness and an inter-hemispheric shift in brain 
oxygenation. Front. Psychol. 9:2351. doi: 10.3389/fpsyg.2018.02351

Boudewyn, M., Roberts, B. M., Mizrak, E., Ranganath, C., and Carter, C. S. (2019). 
Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG 
markers of proactive control. Cogn. Neurosci. 10, 57–65. doi: 
10.1080/17588928.2018.1551869

Brunnauer, A., Segmiller, F. M., Loschner, S., Grun, V., Padberg, F., and Palm, U. 
(2018). The effects of transcranial direct current stimulation (tDCS) on psychomotor 
and visual perception functions related to driving skills. Front. Behav. Neurosci. 12:16. 
doi: 10.3389/fnbeh.2018.00016

Brunoni, A. R., and Vanderhasselt, M. A. (2014). Working memory improvement with 
non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review 
and meta-analysis. Brain Cogn. 86, 1–9. doi: 10.1016/j.bandc.2014.01.008

Bürkner, P.-C. (2017). Brms: an R package for Bayesian multilevel models using Stan. 
J. Stat. Softw. 80, 1–28. doi: 10.18637/jss.v080.i01

Callan, D. E., Falcone, B., Wada, A., and Parasuraman, R. (2016). Simultaneous tDCS-
fMRI identifies resting state networks correlated with visual search enhancement. Front. 
Hum. Neurosci. 10:72. doi: 10.3389/fnhum.2016.00072

Cantarero, G., Spampinato, D., Reis, J., Ajagbe, L., Thompson, T., Kulkarni, K., et al. 
(2015). Cerebellar direct current stimulation enhances on-line motor skill acquisition 
through an effect on accuracy. J. Neurosci. 35, 3285–3290. doi: 10.1523/
JNEUROSCI.2885-14.2015

Caulfield, K. A., Indahlastari, A., Nissim, N. R., Lopez, J. W., Fleischmann, H. H., 
Woods, A. J., et al. (2022). Electric field strength from prefrontal transcranial direct 
current stimulation determines degree of working memory response: a potential 
application of reverse-calculation modeling? Neuromodulation 25, 578–587. doi: 
10.1111/ner.13342

Chambers, C. D., Garavan, H., and Bellgrove, M. A. (2009). Insights into the neural 
basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. 
Rev. 33, 631–646. doi: 10.1016/j.neubiorev.2008.08.016

Chan, L. K. H., and Hayward, W. G. (2013). Visual search. Wiley Interdiscip. Rev. Cogn. 
Sci. 4, 415–429. doi: 10.1002/wcs.1235

Chew, T., Ho, K. A., and Loo, C. K. (2015). Inter- and intra-individual variability in 
response to transcranial direct current stimulation (tDCS) at varying current intensities. 
Brain Stimul. 8, 1130–1137. doi: 10.1016/j.brs.2015.07.031

Chrysikou, E. G., Gorey, C., and Aupperle, R. L. (2017). Anodal transcranial direct 
current stimulation over right dorsolateral prefrontal cortex alters decision making 
during approach-avoidance conflict. Soc. Cogn. Affect. Neurosci. 12, 468–475. doi: 
10.1093/scan/nsw140

Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D., 
et al. (2012). TDCS guided using fMRI significantly accelerates learning to identify 
concealed objects. NeuroImage 59, 117–128. doi: 10.1016/j.neuroimage.2010.11.036

Coffman, B. A., Trumbo, M. C., Flores, R. A., Garcia, C. M., van der Merwe, A. J., 
Wassermann, E. M., et al. (2012). Impact of tDCS on performance and learning of target 
detection: interaction with stimulus characteristics and experimental design. 
Neuropsychologia 50, 1594–1602. doi: 10.1016/j.neuropsychologia.2012.03.012

Congdon, E., Mumford, J. A., Cohen, J. R., Galvan, A., Canli, T., and Poldrack, R. A. 
(2012). Measurement and reliability of response inhibition. Front. Psychol. 3:37. doi: 
10.3389/fpsyg.2012.00037

Cosman, J. D., Atreya, P. V., and Woodman, G. F. (2015). Transient reduction of visual 
distraction following electrical stimulation of the prefrontal cortex. Cognition 145, 
73–76. doi: 10.1016/j.cognition.2015.08.010

Coulborn, S., Bowman, H., Miall, R. C., and Fernandez-Espejo, D. (2020). Effect of 
tDCS over the right inferior parietal lobule on mind-wandering propensity. Front. Hum. 
Neurosci. 14:230. doi: 10.3389/fnhum.2020.00230

DaSilva, A. F., Volz, M. S., Bikson, M., and Fregni, F. (2011). Electrode positioning and 
montage in transcranial direct current stimulation. J. Vis. Exp. 51:e2744. doi: 
10.3791/2744-v

Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., and Bikson, M. (2009). Gyri-precise 
head model of transcranial direct current stimulation: improved spatial focality using a 
ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207, 207.e1. 
doi: 10.1016/j.brs.2009.03.005

Datta, A., Truong, D., Minhas, P., Parra, L. C., and Bikson, M. (2012). Inter-individual 
variation during transcranial direct current stimulation and normalization of dose 
using MRI-derived computational models. Front. Psych. 3:91. doi: 10.3389/
fpsyt.2012.00091

Davidson, J. E., and Sternberg, R. J. (2003). The psychology of problem solving. New 
York, NY, US: Cambridge University Press.

Dayan, E., Censor, N., Buch, E. R., Sandrini, M., and Cohen, L. G. (2013). Noninvasive 
brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16, 
838–844. doi: 10.1038/nn.3422

de Berker, A. O., Bikson, M., and Bestmann, S. (2013). Predicting the behavioral 
impact of transcranial direct current stimulation: issues and limitations. Front. Hum. 
Neurosci. 7:613. doi: 10.3389/fnhum.2013.00613

Dedoncker, J., Brunoni, A. R., Baeken, C., and Vanderhasselt, M. A. (2016). A 
systematic review and Meta-analysis of the effects of transcranial direct current 
stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and 
neuropsychiatric samples: influence of stimulation parameters. Brain Stimul. 9, 501–517. 
doi: 10.1016/j.brs.2016.04.006

Denis, G., Zory, R., and Radel, R. (2019). Testing the role of cognitive inhibition in 
physical endurance using high-definition transcranial direct current stimulation over 
the prefrontal cortex. Hum. Mov. Sci. 67:102507. doi: 10.1016/j.humov.2019.102507

D'Esposito, M. (2007). From cognitive to neural models of working memory. Philos. 
Trans. R. Soc. Lond. Ser. B Biol. Sci. 362, 761–772. doi: 10.1098/rstb.2007.2086

Donner, T., Kettermann, A., Diesch, E., Ostendorf, F., Villringer, A., and Brandt, S. A. 
(2000). Involvement of the human frontal eye field and multiple parietal areas in covert 
visual selection during conjunction search. Eur. J. Neurosci. 12, 3407–3414. doi: 
10.1046/j.1460-9568.2000.00223.x

Doppelmayr, M., Pixa, N. H., and Steinberg, F. (2016). Cerebellar, but not motor or 
parietal, high-density anodal transcranial direct current stimulation facilitates motor 
adaptation. J. Int. Neuropsychol. Soc. 22, 928–936. doi: 10.1017/S1355617716000345

Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., and Camprodon, J. A. (2019). 
tDCS to the left DLPFC modulates cognitive and physiological correlates of executive 
function in a state-dependent manner. Brain Stimul. 12, 1456–1463. doi: 10.1016/j.
brs.2019.06.006

Dumel, G., Bourassa, M. E., Charlebois-Plante, C., Desjardins, M., Doyon, J., 
Saint-Amour, D., et al. (2018a). Multisession anodal transcranial direct current 
stimulation induces motor cortex plasticity enhancement and motor learning 
generalization in an aging population. Clin. Neurophysiol. 129, 494–502. doi: 10.1016/j.
clinph.2017.10.041

Dumel, G., Bourassa, M. E., Charlebois-Plante, C., Desjardins, M., Doyon, J., 
Saint-Amour, D., et al. (2018b). Motor learning improvement remains 3 months after a 
multisession anodal tDCS intervention in an aging population. Front. Aging Neurosci. 
10:335. doi: 10.3389/fnagi.2018.00335

Duncan, J., and Owen, A. M. (2000). Common regions of the human frontal lobe 
recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483. doi: 10.1016/
S0166-2236(00)01633-7

Eckstein, M. P. (2011). Visual search: a retrospective. J. Vis. 11:14. doi: 10.1167/11.5.14

Edgcumbe, D. R., Thoma, V., Rivolta, D., Nitsche, M. A., and Fu, C. H. Y. (2019). 
Anodal transcranial direct current stimulation over the right dorsolateral prefrontal 
cortex enhances reflective judgment and decision-making. Brain Stimul. 12, 652–658. 
doi: 10.1016/j.brs.2018.12.003

Ehsani, F., Bakhtiary, A. H., Jaberzadeh, S., Talimkhani, A., and Hajihasani, A. (2016). 
Differential effects of primary motor cortex and cerebellar transcranial direct current 
stimulation on motor learning in healthy individuals: a randomized double-blind sham-
controlled study. Neurosci. Res. 112, 10–19. doi: 10.1016/j.neures.2016.06.003

Ellison, A., Ball, K. L., and Lane, A. R. (2017). The behavioral effects of tDCS on visual 
search performance are not influenced by the location of the reference electrode. Front. 
Neurosci. 11:520. doi: 10.3389/fnins.2017.00520

Ellison, A., Ball, K. L., Moseley, P., Dowsett, J., Smith, D. T., Weis, S., et al. (2014). 
Functional interaction between right parietal and bilateral frontal cortices during visual 
search tasks revealed using functional magnetic imaging and transcranial direct current 
stimulation. PLoS One 9:e93767. doi: 10.1371/journal.pone.0093767

Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E., 
Knotkova, H., et al. (2018). Incomplete evidence that increasing current intensity of 
tDCS boosts outcomes. Brain Stimul. 11, 310–321. doi: 10.1016/j.brs.2017.12.002

Falcone, M., Bernardo, L., Wileyto, E. P., Allenby, C., Burke, A. M., Hamilton, R., et al. 
(2019). Lack of effect of transcranial direct current stimulation (tDCS) on short-term 
smoking cessation: results of a randomized, sham-controlled clinical trial. Drug Alcohol 
Depend. 194, 244–251. doi: 10.1016/j.drugalcdep.2018.10.016

Falcone, B., Coffman, B. A., Clark, V. P., and Parasuraman, R. (2012). Transcranial 
direct current stimulation augments perceptual sensitivity and 24-hour retention in a 
complex threat detection task. PLoS One 7:e34993. doi: 10.1371/journal.pone.0034993

Falcone, B., Wada, A., Parasuraman, R., and Callan, D. E. (2018). Individual 
differences in learning correlate with modulation of brain activity induced by 
transcranial direct current stimulation. PLoS One 13:e0197192. doi: 10.1371/journal.
pone.0197192

Fan, J., Voisin, J., Milot, M. H., Higgins, J., and Boudrias, M. H. (2017). Transcranial 
direct current stimulation over multiple days enhances motor performance of a grip 
task. Ann. Phys. Rehabil. Med. 60, 329–333. doi: 10.1016/j.rehab.2017.07.001

Fehring, D. J., Illipparampil, R., Acevedo, N., Jaberzadeh, S., Fitzgerald, P. B., and 
Mansouri, F. A. (2019). Interaction of task-related learning and transcranial direct 
current stimulation of the prefrontal cortex in modulating executive functions. 
Neuropsychologia 131, 148–159. doi: 10.1016/j.neuropsychologia.2019.05.011

Ferrucci, R., Brunoni, A. R., Parazzini, M., Vergari, M., Rossi, E., Fumagalli, M., et al. 
(2013). Modulating human procedural learning by cerebellar transcranial direct current 
stimulation. Cerebellum 12, 485–492. doi: 10.1007/s12311-012-0436-9

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/bs.pbr.2015.06.013
https://doi.org/10.3389/fpsyg.2018.02351
https://doi.org/10.1080/17588928.2018.1551869
https://doi.org/10.3389/fnbeh.2018.00016
https://doi.org/10.1016/j.bandc.2014.01.008
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.3389/fnhum.2016.00072
https://doi.org/10.1523/JNEUROSCI.2885-14.2015
https://doi.org/10.1523/JNEUROSCI.2885-14.2015
https://doi.org/10.1111/ner.13342
https://doi.org/10.1016/j.neubiorev.2008.08.016
https://doi.org/10.1002/wcs.1235
https://doi.org/10.1016/j.brs.2015.07.031
https://doi.org/10.1093/scan/nsw140
https://doi.org/10.1016/j.neuroimage.2010.11.036
https://doi.org/10.1016/j.neuropsychologia.2012.03.012
https://doi.org/10.3389/fpsyg.2012.00037
https://doi.org/10.1016/j.cognition.2015.08.010
https://doi.org/10.3389/fnhum.2020.00230
https://doi.org/10.3791/2744-v
https://doi.org/10.1016/j.brs.2009.03.005
https://doi.org/10.3389/fpsyt.2012.00091
https://doi.org/10.3389/fpsyt.2012.00091
https://doi.org/10.1038/nn.3422
https://doi.org/10.3389/fnhum.2013.00613
https://doi.org/10.1016/j.brs.2016.04.006
https://doi.org/10.1016/j.humov.2019.102507
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1046/j.1460-9568.2000.00223.x
https://doi.org/10.1017/S1355617716000345
https://doi.org/10.1016/j.brs.2019.06.006
https://doi.org/10.1016/j.brs.2019.06.006
https://doi.org/10.1016/j.clinph.2017.10.041
https://doi.org/10.1016/j.clinph.2017.10.041
https://doi.org/10.3389/fnagi.2018.00335
https://doi.org/10.1016/S0166-2236(00)01633-7
https://doi.org/10.1016/S0166-2236(00)01633-7
https://doi.org/10.1167/11.5.14
https://doi.org/10.1016/j.brs.2018.12.003
https://doi.org/10.1016/j.neures.2016.06.003
https://doi.org/10.3389/fnins.2017.00520
https://doi.org/10.1371/journal.pone.0093767
https://doi.org/10.1016/j.brs.2017.12.002
https://doi.org/10.1016/j.drugalcdep.2018.10.016
https://doi.org/10.1371/journal.pone.0034993
https://doi.org/10.1371/journal.pone.0197192
https://doi.org/10.1371/journal.pone.0197192
https://doi.org/10.1016/j.rehab.2017.07.001
https://doi.org/10.1016/j.neuropsychologia.2019.05.011
https://doi.org/10.1007/s12311-012-0436-9


Santander et al. 10.3389/fnhum.2024.1305446

Frontiers in Human Neuroscience 19 frontiersin.org

Filmer, H. L., Ehrhardt, S. E., Bollmann, S., Mattingley, J. B., and Dux, P. E. (2019). 
Accounting for individual differences in the response to tDCS with baseline levels of 
neurochemical excitability. Cortex 115, 324–334. doi: 10.1016/j.cortex.2019.02.012

Filmer, H. L., Lyons, M., Mattingley, J. B., and Dux, P. E. (2017a). Anodal tDCS applied 
during multitasking training leads to transferable performance gains. Sci. Rep. 7:12988. 
doi: 10.1038/s41598-017-13075-y

Filmer, H. L., Varghese, E., Hawkins, G. E., Mattingley, J. B., and Dux, P. E. (2017b). 
Improvements in attention and decision-making following combined behavioral training 
and brain stimulation. Cereb. Cortex 27, 3675–3682. doi: 10.1093/cercor/bhw189

Focke, J., Kemmet, S., Krause, V., Keitel, A., and Pollok, B. (2017). Cathodal 
transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) 
stabilizes a newly learned motor sequence. Behav. Brain Res. 316, 87–93. doi: 10.1016/j.
bbr.2016.08.032

Fregni, F., Boggio, P. S., Lima, M. C., Ferreira, M. J., Wagner, T., Rigonatti, S. P., et al. 
(2006). A sham-controlled, phase II trial of transcranial direct current stimulation for 
the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209. doi: 
10.1016/j.pain.2006.02.023

Friedrich, J., and Beste, C. (2018). Paradoxical, causal effects of sensory gain 
modulation on motor inhibitory control – a tDCS, EEG-source localization study. Sci. 
Rep. 8:17486. doi: 10.1038/s41598-018-35879-2

Friehs, M. A., and Frings, C. (2019). Offline beats online: transcranial direct current 
stimulation timing influences on working memory. Neuroreport 30, 795–799. doi: 
10.1097/WNR.0000000000001272

Fujiyama, H., Hinder, M. R., Barzideh, A., Van de Vijver, C., Badache, A. C., 
Manrique, C. M., et al. (2017). Preconditioning tDCS facilitates subsequent tDCS effect 
on skill acquisition in older adults. Neurobiol. Aging 51, 31–42. doi: 10.1016/j.
neurobiolaging.2016.11.012

Furuya, S., Klaus, M., Nitsche, M. A., Paulus, W., and Altenmuller, E. (2014). Ceiling 
effects prevent further improvement of transcranial stimulation in skilled musicians. J. 
Neurosci. 34, 13834–13839. doi: 10.1523/JNEUROSCI.1170-14.2014

Gandiga, P. C., Hummel, F. C., and Cohen, L. G. (2006). Transcranial DC stimulation 
(tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. 
Clin. Neurophysiol. 117, 845–850. doi: 10.1016/j.clinph.2005.12.003

Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A. (2019). R-squared for Bayesian 
regression models. Am. Stat. 73, 307–309. doi: 10.1080/00031305.2018.1549100

Gilbert, P. F., and Thach, W. T. (1977). Purkinje cell activity during motor learning. 
Brain Res. 128, 309–328. doi: 10.1016/0006-8993(77)90997-0

Gilhooly, K. J. (2004). “Working memory and planning” in The cognitive psychology 
of planning. eds. R. Morris and G. Ward (London: Routledge), 71–88.

Gladwin, T. E., den Uyl, T. E., Fregni, F. F., and Wiers, R. W. (2012). Enhancement of 
selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci. 
Lett. 512, 33–37. doi: 10.1016/j.neulet.2012.01.056

Gomez-Ariza, C. J., Martin, M. C., and Morales, J. (2017). Tempering proactive 
cognitive control by transcranial direct current stimulation of the right (but not the left) 
lateral prefrontal cortex. Front. Neurosci. 11:282. doi: 10.3389/fnins.2017.00282

Grasso, P. A., Tonolli, E., and Miniussi, C. (2020). Effects of different transcranial 
direct current stimulation protocols on visuo-spatial contextual learning formation: 
evidence of homeostatic regulatory mechanisms. Sci. Rep. 10:4622. doi: 10.1038/
s41598-020-61626-7

Grier, R. A., Warm, J. S., Dember, W. N., Matthews, G., Galinsky, T. L., and 
Parasuraman, R. (2003). The vigilance decrement reflects limitations in effortful 
attention, not mindlessness. Hum. Factors 45, 349–359. doi: 10.1518/hfes.45.3.349.27253

Hammer, A., Mohammadi, B., Schmicker, M., Saliger, S., and Munte, T. F. (2011). 
Errorless and errorful learning modulated by transcranial direct current stimulation. 
BMC Neurosci. 12:72. doi: 10.1186/1471-2202-12-72

Hampshire, A., and Sharp, D. J. (2015). Contrasting network and modular perspectives 
on inhibitory control. Trends Cogn. Sci. 19, 445–452. doi: 10.1016/j.tics.2015.06.006

Hancock, P. A. (2017). On the nature of vigilance. Hum. Factors 59, 35–43. doi: 
10.1177/0018720816655240

Hanken, K., Bosse, M., Mohrke, K., Eling, P., Kastrup, A., Antal, A., et al. (2016). 
Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct 
current stimulation. Front. Neurol. 7:154. doi: 10.3389/fneur.2016.00154

Hashemirad, F., Fitzgerald, P. B., Zoghi, M., and Jaberzadeh, S. (2017). Single-session 
anodal tDCS with small-size stimulating electrodes over Frontoparietal superficial sites 
does not affect motor sequence learning. Front. Hum. Neurosci. 11:153. doi: 10.3389/
fnhum.2017.00153

Heroux, M. E., Loo, C. K., Taylor, J. L., and Gandevia, S. C. (2017). Questionable 
science and reproducibility in electrical brain stimulation research. PLoS One 
12:e0175635. doi: 10.1371/journal.pone.0175635

Hill, A. T., Fitzgerald, P. B., and Hoy, K. E. (2016). Effects of anodal transcranial direct 
current stimulation on working memory: a systematic review and Meta-analysis of 
findings from healthy and neuropsychiatric populations. Brain Stimul. 9, 197–208. doi: 
10.1016/j.brs.2015.10.006

Hinson, J. M., Jameson, T. L., and Whitney, P. (2003). Impulsive decision making and 
working memory. J. Exp. Psychol. Learn. Mem. Cogn. 29, 298–306. doi: 
10.1037/0278-7393.29.2.298

Horn, N. R., Dolan, M., Elliott, R., Deakin, J. F., and Woodruff, P. W. (2003). Response 
inhibition and impulsivity: an fMRI study. Neuropsychologia 41, 1959–1966. doi: 
10.1016/S0028-3932(03)00077-0

Horvath, J. C., Carter, O., and Forte, J. D. (2014). Transcranial direct current 
stimulation: five important issues we aren't discussing (but probably should be). Front. 
Syst. Neurosci. 8:2. doi: 10.3389/fnsys.2014.00002

Horvath, J. C., Carter, O., and Forte, J. D. (2016a). No significant effect of transcranial 
direct current stimulation (tDCS) found on simple motor reaction time comparing 15 
different simulation protocols. Neuropsychologia 91, 544–552. doi: 10.1016/j.
neuropsychologia.2016.09.017

Horvath, J. C., Forte, J. D., and Carter, O. (2015a). Quantitative review finds no 
evidence of cognitive effects in healthy populations from single-session transcranial 
direct current stimulation (tDCS). Brain Stimul. 8, 535–550. doi: 10.1016/j.
brs.2015.01.400

Horvath, J. C., Forte, J. D., and Carter, O. (2015b). Evidence that transcranial direct 
current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond 
MEP amplitude modulation in healthy human subjects: a systematic review. 
Neuropsychologia 66, 213–236. doi: 10.1016/j.neuropsychologia.2014.11.021

Horvath, J. C., Vogrin, S. J., Carter, O., Cook, M. J., and Forte, J. D. (2016b). Effects of 
a common transcranial direct current stimulation (tDCS) protocol on motor evoked 
potentials found to be highly variable within individuals over 9 testing sessions. Exp. 
Brain Res. 234, 2629–2642. doi: 10.1007/s00221-016-4667-8

Houk, J. C., Buckingham, J. T., and Barto, A. G. (1996). Models of the cerebellum and 
motor learning. Behav. Brain Sci. 19, 368–383. doi: 10.1017/S0140525X00081474

Hsu, T. Y., Juan, C. H., and Tseng, P. (2016). Individual differences and state-dependent 
responses in transcranial direct current stimulation. Front. Hum. Neurosci. 10:643. doi: 
10.3389/fnhum.2016.00643

Huang, Y., Datta, A., Bikson, M., and Parra, L. C. (2019). Realistic volumetric-
approach to simulate transcranial electric stimulation-ROAST-a fully automated open-
source pipeline. J. Neural Eng. 16:056006. doi: 10.1088/1741-2552/ab208d

Hussey, E. K., Fontes, E. B., Ward, N., Westfall, D. R., Kao, S. C., Kramer, A. F., et al. 
(2020). Combined and isolated effects of acute exercise and brain stimulation on 
executive function in healthy young adults. J. Clin. Med. 9:1410. doi: 10.3390/
jcm9051410

Imburgio, M. J., and Orr, J. M. (2018). Effects of prefrontal tDCS on executive 
function: methodological considerations revealed by meta-analysis. Neuropsychologia 
117, 156–166. doi: 10.1016/j.neuropsychologia.2018.04.022

Ironside, M., O'Shea, J., Cowen, P. J., and Harmer, C. J. (2016). Frontal cortex 
stimulation reduces vigilance to threat: implications for the treatment of depression and 
anxiety. Biol. Psychiatry 79, 823–830. doi: 10.1016/j.biopsych.2015.06.012

Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., et al. (2016). 
Animal models of transcranial direct current stimulation: methods and mechanisms. 
Clin. Neurophysiol. 127, 3425–3454. doi: 10.1016/j.clinph.2016.08.016

Jacobson, L., Koslowsky, M., and Lavidor, M. (2012). tDCS polarity effects in motor 
and cognitive domains: a meta-analytical review. Exp. Brain Res. 216, 1–10. doi: 10.1007/
s00221-011-2891-9

Jacoby, N., and Lavidor, M. (2018). Null tDCS effects in a sustained attention task: the 
modulating role of learning. Front. Psychol. 9:476. doi: 10.3389/fpsyg.2018.00476

Jin, Y., Lee, J., Kim, S., and Yoon, B. (2019). Noninvasive brain stimulation over M1 
and DLPFC cortex enhances the learning of bimanual isometric force control. Hum. 
Mov. Sci. 66, 73–83. doi: 10.1016/j.humov.2019.03.002

Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. 
(1995). Functional MRI evidence for adult motor cortex plasticity during motor skill 
learning. Nature 377, 155–158. doi: 10.1038/377155a0

Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. 
(1998). The acquisition of skilled motor performance: fast and slow experience-driven 
changes in primary motor cortex. Proc. Natl. Acad. Sci. USA 95, 861–868. doi: 10.1073/
pnas.95.3.861

Karthikeyan, R., Smoot, M. R., and Mehta, R. K. (2021). Anodal tDCS augments and 
preserves working memory beyond time-on-task deficits. Sci. Rep. 11:19134. doi: 
10.1038/s41598-021-98636-y

Kashyap, R., Bhattacharjee, S., Arumugam, R., Bharath, R. D., Udupa, K., Oishi, K., 
et al. (2021). Focality-oriented selection of current dose for transcranial direct current 
stimulation. J. Pers. Med. 11:940. doi: 10.3390/jpm11090940

Kessler, S. K., Minhas, P., Woods, A. J., Rosen, A., Gorman, C., and Bikson, M. (2013). 
Dosage considerations for transcranial direct current stimulation in children: a 
computational modeling study. PLoS One 8:e76112. doi: 10.1371/journal.pone.0076112

Kim, J. H., Kim, D. W., Chang, W. H., Kim, Y. H., Kim, K., and Im, C. H. (2014). 
Inconsistent outcomes of transcranial direct current stimulation may originate from 
anatomical differences among individuals: electric field simulation using individual MRI 
data. Neurosci. Lett. 564, 6–10. doi: 10.1016/j.neulet.2014.01.054

Kirk, R. (2013). Experimental design: procedures for the behavioral sciences. 
Thousand Oaks, California Available at: https://methods.sagepub.com/book/
experimental-design.

Kitazawa, S., Kimura, T., and Yin, P. B. (1998). Cerebellar complex spikes encode both 
destinations and errors in arm movements. Nature 392, 494–497. doi: 10.1038/33141

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.cortex.2019.02.012
https://doi.org/10.1038/s41598-017-13075-y
https://doi.org/10.1093/cercor/bhw189
https://doi.org/10.1016/j.bbr.2016.08.032
https://doi.org/10.1016/j.bbr.2016.08.032
https://doi.org/10.1016/j.pain.2006.02.023
https://doi.org/10.1038/s41598-018-35879-2
https://doi.org/10.1097/WNR.0000000000001272
https://doi.org/10.1016/j.neurobiolaging.2016.11.012
https://doi.org/10.1016/j.neurobiolaging.2016.11.012
https://doi.org/10.1523/JNEUROSCI.1170-14.2014
https://doi.org/10.1016/j.clinph.2005.12.003
https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1016/0006-8993(77)90997-0
https://doi.org/10.1016/j.neulet.2012.01.056
https://doi.org/10.3389/fnins.2017.00282
https://doi.org/10.1038/s41598-020-61626-7
https://doi.org/10.1038/s41598-020-61626-7
https://doi.org/10.1518/hfes.45.3.349.27253
https://doi.org/10.1186/1471-2202-12-72
https://doi.org/10.1016/j.tics.2015.06.006
https://doi.org/10.1177/0018720816655240
https://doi.org/10.3389/fneur.2016.00154
https://doi.org/10.3389/fnhum.2017.00153
https://doi.org/10.3389/fnhum.2017.00153
https://doi.org/10.1371/journal.pone.0175635
https://doi.org/10.1016/j.brs.2015.10.006
https://doi.org/10.1037/0278-7393.29.2.298
https://doi.org/10.1016/S0028-3932(03)00077-0
https://doi.org/10.3389/fnsys.2014.00002
https://doi.org/10.1016/j.neuropsychologia.2016.09.017
https://doi.org/10.1016/j.neuropsychologia.2016.09.017
https://doi.org/10.1016/j.brs.2015.01.400
https://doi.org/10.1016/j.brs.2015.01.400
https://doi.org/10.1016/j.neuropsychologia.2014.11.021
https://doi.org/10.1007/s00221-016-4667-8
https://doi.org/10.1017/S0140525X00081474
https://doi.org/10.3389/fnhum.2016.00643
https://doi.org/10.1088/1741-2552/ab208d
https://doi.org/10.3390/jcm9051410
https://doi.org/10.3390/jcm9051410
https://doi.org/10.1016/j.neuropsychologia.2018.04.022
https://doi.org/10.1016/j.biopsych.2015.06.012
https://doi.org/10.1016/j.clinph.2016.08.016
https://doi.org/10.1007/s00221-011-2891-9
https://doi.org/10.1007/s00221-011-2891-9
https://doi.org/10.3389/fpsyg.2018.00476
https://doi.org/10.1016/j.humov.2019.03.002
https://doi.org/10.1038/377155a0
https://doi.org/10.1073/pnas.95.3.861
https://doi.org/10.1073/pnas.95.3.861
https://doi.org/10.1038/s41598-021-98636-y
https://doi.org/10.3390/jpm11090940
https://doi.org/10.1371/journal.pone.0076112
https://doi.org/10.1016/j.neulet.2014.01.054
https://methods.sagepub.com/book/experimental-design
https://methods.sagepub.com/book/experimental-design
https://doi.org/10.1038/33141


Santander et al. 10.3389/fnhum.2024.1305446

Frontiers in Human Neuroscience 20 frontiersin.org

Koenigs, M., Ukueberuwa, D., Campion, P., Grafman, J., and Wassermann, E. (2009). 
Bilateral frontal transcranial direct current stimulation: failure to replicate classic 
findings in healthy subjects. Clin. Neurophysiol. 120, 80–84. doi: 10.1016/j.
clinph.2008.10.010

Korman, M., Raz, N., Flash, T., and Karni, A. (2003). Multiple shifts in the 
representation of a motor sequence during the acquisition of skilled performance. Proc. 
Natl. Acad. Sci. USA 100, 12492–12497. doi: 10.1073/pnas.2035019100

Kuehne, M., Schmidt, K., Heinze, H. J., and Zaehle, T. (2019). Modulation of 
emotional conflict processing by high-definition transcranial direct current stimulation 
(HD-TDCS). Front. Behav. Neurosci. 13:224. doi: 10.3389/fnbeh.2019.00224

Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is (little more than) working-
memory capacity?! Intelligence 14, 389–433. doi: 10.1016/S0160-2896(05)80012-1

Lafon, B., Rahman, A., Bikson, M., and Parra, L. C. (2017). Direct current stimulation 
alters neuronal input/output function. Brain Stimul. 10, 36–45. doi: 10.1016/j.
brs.2016.08.014

Lanina, A. A., Feurra, M., and Gorbunova, E. S. (2018). No effect of the right posterior 
parietal cortex tDCS in dual-target visual search. Front. Psychol. 9:2112. doi: 10.3389/
fpsyg.2018.02112

Leite, J., Carvalho, S., Fregni, F., and Goncalves, O. F. (2011). Task-specific effects of 
tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting 
performance. PLoS One 6:e24140. doi: 10.1371/journal.pone.0024140

Li, L. M., Uehara, K., and Hanakawa, T. (2015). The contribution of interindividual 
factors to variability of response in transcranial direct current stimulation studies. Front. 
Cell. Neurosci. 9:181. doi: 10.3389/fncel.2015.00181

Loo, C. K., Alonzo, A., Martin, D., Mitchell, P. B., Galvez, V., and Sachdev, P. (2012). 
Transcranial direct current stimulation for depression: 3-week, randomised, sham-
controlled trial. Br. J. Psychiatry 200, 52–59. doi: 10.1192/bjp.bp.111.097634

Loo, C. K., Husain, M. M., McDonald, W. M., Aaronson, S., O'Reardon, J. P., 
Alonzo, A., et al. (2018). International randomized-controlled trial of transcranial direct 
current stimulation in depression. Brain Stimul. 11, 125–133. doi: 10.1016/j.
brs.2017.10.011

Loo, C. K., Sachdev, P., Martin, D., Pigot, M., Alonzo, A., Malhi, G. S., et al. (2010). A 
double-blind, sham-controlled trial of transcranial direct current stimulation for the 
treatment of depression. Int. J. Neuropsychopharmacol. 13, 61–69. doi: 10.1017/
S1461145709990411

Lopez-Alonso, V., Cheeran, B., Rio-Rodriguez, D., and Fernandez-Del-Olmo, M. 
(2014). Inter-individual variability in response to non-invasive brain stimulation 
paradigms. Brain Stimul. 7, 372–380. doi: 10.1016/j.brs.2014.02.004

Lopez-Alonso, V., Fernandez-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., 
and Cheeran, B. (2015). Intra-individual variability in the response to anodal 
transcranial direct current stimulation. Clin. Neurophysiol. 126, 2342–2347. doi: 
10.1016/j.clinph.2015.03.022

Luna, F. G., Roman-Caballero, R., Barttfeld, P., Lupianez, J., and Martin-Arevalo, E. 
(2020). A high-definition tDCS and EEG study on attention and vigilance: brain 
stimulation mitigates the executive but not the arousal vigilance decrement. 
Neuropsychologia 142:107447. doi: 10.1016/j.neuropsychologia.2020.107447

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Ludecke, D. (2019). Indices of 
effect existence and significance in the Bayesian framework. Front. Psychol. 10:2767. doi: 
10.3389/fpsyg.2019.02767

Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., and Farah, M. J. (2016). Does transcranial 
direct current stimulation improve healthy working memory?: a Meta-analytic review. 
J. Cogn. Neurosci. 28, 1063–1089. doi: 10.1162/jocn_a_00956

Manuel, A. L., David, A. W., Bikson, M., and Schnider, A. (2014). Frontal tDCS 
modulates orbitofrontal reality filtering. Neuroscience 265, 21–27. doi: 10.1016/j.
neuroscience.2014.01.052

Marshall, L., Kirov, R., Brade, J., Molle, M., and Born, J. (2011). Transcranial electrical 
currents to probe EEG brain rhythms and memory consolidation during sleep in 
humans. PLoS One 6:e16905. doi: 10.1371/journal.pone.0016905

Martin, D. M., Liu, R., Alonzo, A., Green, M., and Loo, C. K. (2014). Use of transcranial 
direct current stimulation (tDCS) to enhance cognitive training: effect of timing of 
stimulation. Exp. Brain Res. 232, 3345–3351. doi: 10.1007/s00221-014-4022-x

McIntire, L. K., McKinley, R. A., Goodyear, C., and Nelson, J. (2014). A comparison 
of the effects of transcranial direct current stimulation and caffeine on vigilance and 
cognitive performance during extended wakefulness. Brain Stimul. 7, 499–507. doi: 
10.1016/j.brs.2014.04.008

McIntire, L. K., McKinley, R. A., Nelson, J. M., and Goodyear, C. (2017). Transcranial 
direct current stimulation versus caffeine as a fatigue countermeasure. Brain Stimul. 10, 
1070–1078. doi: 10.1016/j.brs.2017.08.005

Minarik, T., Sauseng, P., Dunne, L., Berger, B., and Sterr, A. (2015). Effects of anodal 
transcranial direct current stimulation on visually guided learning of grip force control. 
Biology (Basel) 4, 173–186. doi: 10.3390/biology4010173

Miranda, P. C., Faria, P., and Hallett, M. (2009). What does the ratio of injected current 
to electrode area tell us about current density in the brain during tDCS? Clin. 
Neurophysiol. 120, 1183–1187. doi: 10.1016/j.clinph.2009.03.023

Miyake, A., and Shah, P. (1999). “Models of working memory: mechanisms of active 
maintenance and executive control” in Models of working memory: Mechanisms of 

active maintenance and executive control. eds. A. Miyake and P. Shah (New York, NY, 
US: Cambridge University Press), 1–27.

Monte-Silva, K., Kuo, M. F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., 
et al. (2013). Induction of late LTP-like plasticity in the human motor cortex by 
repeated non-invasive brain stimulation. Brain Stimul. 6, 424–432. doi: 10.1016/j.
brs.2012.04.011

Murphy, O. W., Hoy, K. E., Wong, D., Bailey, N. W., Fitzgerald, P. B., and Segrave, R. A. 
(2020). Transcranial random noise stimulation is more effective than transcranial direct 
current stimulation for enhancing working memory in healthy individuals: Behavioural 
and electrophysiological evidence. Brain Stimul. 13, 1370–1380. doi: 10.1016/j.
brs.2020.07.001

Naka, M., Matsuzawa, D., Ishii, D., Hamada, H., Uchida, T., Sugita, K., et al. (2018). 
Differential effects of high-definition transcranial direct current stimulation on verbal 
working memory performance according to sensory modality. Neurosci. Lett. 687, 
131–136. doi: 10.1016/j.neulet.2018.09.047

Nakamoto, H., and Mori, S. (2012). Experts in fast-ball sports reduce anticipation 
timing cost by developing inhibitory control. Brain Cogn. 80, 23–32. doi: 10.1016/j.
bandc.2012.04.004

Naros, G., Geyer, M., Koch, S., Mayr, L., Ellinger, T., Grimm, F., et al. (2016). Enhanced 
motor learning with bilateral transcranial direct current stimulation: impact of polarity 
or current flow direction? Clin. Neurophysiol. 127, 2119–2126. doi: 10.1016/j.
clinph.2015.12.020

Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S., and Parasuraman, R. (2014). 
Enhancing vigilance in operators with prefrontal cortex transcranial direct current 
stimulation (tDCS). NeuroImage 85, 909–917. doi: 10.1016/j.neuroimage.2012.11.061

Nelson, J. M., McKinley, R. A., McIntire, L. K., Goodyear, C., and Walters, C. (2015). 
Augmenting visual search performance with transcranial direct current stimulation 
(tDCS). Mil. Psychol. 27, 335–347. doi: 10.1037/mil0000085

Nguemeni, C., Stiehl, A., Hiew, S., and Zeller, D. (2021). No impact of cerebellar 
anodal transcranial direct current stimulation at three different timings on motor 
learning in a sequential finger-tapping task. Front. Hum. Neurosci. 15:631517. doi: 
10.3389/fnhum.2021.631517

Nikolin, S., Loo, C. K., Bai, S., Dokos, S., and Martin, D. M. (2015). Focalised 
stimulation using high definition transcranial direct current stimulation (HD-tDCS) to 
investigate declarative verbal learning and memory functioning. NeuroImage 117, 11–19. 
doi: 10.1016/j.neuroimage.2015.05.019

Nitsche, M. A., and Bikson, M. (2017). Extending the parameter range for tDCS: safety 
and tolerability of 4 mA stimulation. Brain Stimul. 10, 541–542. doi: 10.1016/j.
brs.2017.03.002

Nitsche, M.A., Knotkova, H., and Woods, A.J., M. Bikson. Challenges, open questions 
and future direction in transcranial direct current stimulation research and applications. 
In: H. Knotkova, M. Nitsche, M. Bikson and A. Woods, editors. Practical guide to 
transcranial direct current stimulation. Cham, Switzerland: Springer. (2019). p. 627–639.

Nitsche, M. A., and Paulus, W. (2000). Excitability changes induced in the human 
motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639. 
doi: 10.1111/j.1469-7793.2000.t01-1-00633.x

Nobre, A. C., Coull, J. T., Walsh, V., and Frith, C. D. (2003). Brain activations during 
visual search: contributions of search efficiency versus feature binding. NeuroImage 18, 
91–103. doi: 10.1006/nimg.2002.1329

Nydam, A. S., Sewell, D. K., and Dux, P. E. (2018). Cathodal electrical stimulation of 
frontoparietal cortex disrupts statistical learning of visual configural information. Cortex 
99, 187–199. doi: 10.1016/j.cortex.2017.11.008

Oldrati, V., Colombo, B., and Antonietti, A. (2018). Combination of a short 
cognitive training and tDCS to enhance visuospatial skills: a comparison between 
online and offline neuromodulation. Brain Res. 1678, 32–39. doi: 10.1016/j.
brainres.2017.10.002

Oldrati, V., Patricelli, J., Colombo, B., and Antonietti, A. (2016). The role of 
dorsolateral prefrontal cortex in inhibition mechanism: a study on cognitive reflection 
test and similar tasks through neuromodulation. Neuropsychologia 91, 499–508. doi: 
10.1016/j.neuropsychologia.2016.09.010

Oldrati, V., and Schutter, D. (2018). Targeting the human cerebellum with transcranial 
direct current stimulation to modulate behavior: a Meta-analysis. Cerebellum 17, 
228–236. doi: 10.1007/s12311-017-0877-2

Opitz, A., Paulus, W., Will, S., Antunes, A., and Thielscher, A. (2015). Determinants 
of the electric field during transcranial direct current stimulation. NeuroImage 109, 
140–150. doi: 10.1016/j.neuroimage.2015.01.033

Paananen, T., Piironen, J., Bürkner, P. C., and Vehtari, A. (2021). Implicitly adaptive 
importance sampling. Stat. Comput. 31:16. doi: 10.1007/s11222-020-09982-2

Parasuraman, R. (1976). Consistency of individual differences in human vigilance 
performance: an abilities classification analysis. J. Appl. Psychol. 61, 486–492. doi: 
10.1037/0021-9010.61.4.486

Parasuraman, R., Warm, J. S., and See, J. E. (1998). Brain systems of vigilance. The 
attentive brain. Cambridge, MA, US: The MIT Press, 221–256.

Parma, J. O., Profeta, V., Andrade, A. G. P., Lage, G. M., and Apolinario-Souza, T. 
(2021). TDCS of the primary motor cortex: learning the absolute dimension of a 
complex motor task. J. Mot. Behav. 53, 431–444. doi: 10.1080/00222895.2020.1792823

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.clinph.2008.10.010
https://doi.org/10.1016/j.clinph.2008.10.010
https://doi.org/10.1073/pnas.2035019100
https://doi.org/10.3389/fnbeh.2019.00224
https://doi.org/10.1016/S0160-2896(05)80012-1
https://doi.org/10.1016/j.brs.2016.08.014
https://doi.org/10.1016/j.brs.2016.08.014
https://doi.org/10.3389/fpsyg.2018.02112
https://doi.org/10.3389/fpsyg.2018.02112
https://doi.org/10.1371/journal.pone.0024140
https://doi.org/10.3389/fncel.2015.00181
https://doi.org/10.1192/bjp.bp.111.097634
https://doi.org/10.1016/j.brs.2017.10.011
https://doi.org/10.1016/j.brs.2017.10.011
https://doi.org/10.1017/S1461145709990411
https://doi.org/10.1017/S1461145709990411
https://doi.org/10.1016/j.brs.2014.02.004
https://doi.org/10.1016/j.clinph.2015.03.022
https://doi.org/10.1016/j.neuropsychologia.2020.107447
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.1162/jocn_a_00956
https://doi.org/10.1016/j.neuroscience.2014.01.052
https://doi.org/10.1016/j.neuroscience.2014.01.052
https://doi.org/10.1371/journal.pone.0016905
https://doi.org/10.1007/s00221-014-4022-x
https://doi.org/10.1016/j.brs.2014.04.008
https://doi.org/10.1016/j.brs.2017.08.005
https://doi.org/10.3390/biology4010173
https://doi.org/10.1016/j.clinph.2009.03.023
https://doi.org/10.1016/j.brs.2012.04.011
https://doi.org/10.1016/j.brs.2012.04.011
https://doi.org/10.1016/j.brs.2020.07.001
https://doi.org/10.1016/j.brs.2020.07.001
https://doi.org/10.1016/j.neulet.2018.09.047
https://doi.org/10.1016/j.bandc.2012.04.004
https://doi.org/10.1016/j.bandc.2012.04.004
https://doi.org/10.1016/j.clinph.2015.12.020
https://doi.org/10.1016/j.clinph.2015.12.020
https://doi.org/10.1016/j.neuroimage.2012.11.061
https://doi.org/10.1037/mil0000085
https://doi.org/10.3389/fnhum.2021.631517
https://doi.org/10.1016/j.neuroimage.2015.05.019
https://doi.org/10.1016/j.brs.2017.03.002
https://doi.org/10.1016/j.brs.2017.03.002
https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
https://doi.org/10.1006/nimg.2002.1329
https://doi.org/10.1016/j.cortex.2017.11.008
https://doi.org/10.1016/j.brainres.2017.10.002
https://doi.org/10.1016/j.brainres.2017.10.002
https://doi.org/10.1016/j.neuropsychologia.2016.09.010
https://doi.org/10.1007/s12311-017-0877-2
https://doi.org/10.1016/j.neuroimage.2015.01.033
https://doi.org/10.1007/s11222-020-09982-2
https://doi.org/10.1037/0021-9010.61.4.486
https://doi.org/10.1080/00222895.2020.1792823


Santander et al. 10.3389/fnhum.2024.1305446

Frontiers in Human Neuroscience 21 frontiersin.org

Pixa, N. H., Steinberg, F., and Doppelmayr, M. (2017). High-definition transcranial 
direct current stimulation to both primary motor cortices improves unimanual and 
bimanual dexterity. Neurosci. Lett. 643, 84–88. doi: 10.1016/j.neulet.2017.02.033

Plewnia, C., Zwissler, B., Langst, I., Maurer, B., Giel, K., and Kruger, R. (2013). Effects 
of transcranial direct current stimulation (tDCS) on executive functions: influence of 
COMT Val/met polymorphism. Cortex 49, 1801–1807. doi: 10.1016/j.cortex.2012.11.002

Polania, R., Nitsche, M. A., and Ruff, C. C. (2018). Studying and modifying brain 
function with non-invasive brain stimulation. Nat. Neurosci. 21, 174–187. doi: 10.1038/
s41593-017-0054-4

Pollok, B., Keitel, A., Foerster, M., Moshiri, G., Otto, K., and Krause, V. (2020). The 
posterior parietal cortex mediates early offline-rather than online-motor sequence 
learning. Neuropsychologia 146:107555. doi: 10.1016/j.neuropsychologia.2020.107555

Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. 
Neuroscience 139, 23–38. doi: 10.1016/j.neuroscience.2005.06.005

Prichard, G., Weiller, C., Fritsch, B., and Reis, J. (2014). Effects of different electrical 
brain stimulation protocols on subcomponents of motor skill learning. Brain Stimul. 7, 
532–540. doi: 10.1016/j.brs.2014.04.005

Pupikova, M., Simko, P., Gajdos, M., and Rektorova, I. (2021). Modulation of working 
memory and resting-state fMRI by tDCS of the right Frontoparietal network. Neural 
Plast. 2021, 1–9. doi: 10.1155/2021/5594305

Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., et al. (2013). 
Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. 
J. Physiol. 591, 2563–2578. doi: 10.1113/jphysiol.2012.247171

Ramaraju, S., Roula, M. A., and McCarthy, P. W. (2018). Modelling the effect of 
electrode displacement on transcranial direct current stimulation (tDCS). J. Neural Eng. 
15:016019. doi: 10.1088/1741-2552/aa8d8a

Rassovsky, Y., Dunn, W., Wynn, J. K., Wu, A. D., Iacoboni, M., Hellemann, G., et al. 
(2018). Single transcranial direct current stimulation in schizophrenia: randomized, 
cross-over study of neurocognition, social cognition, ERPs, and side effects. PLoS One 
13:e0197023. doi: 10.1371/journal.pone.0197023

Reinhart, R. M., and Woodman, G. F. (2015). Enhancing long-term memory with 
stimulation tunes visual attention in one trial. Proc. Natl. Acad. Sci. USA 112, 625–630. 
doi: 10.1073/pnas.1417259112

Reis, J., and Fritsch, B. (2011). Modulation of motor performance and motor learning 
by transcranial direct current stimulation. Curr. Opin. Neurol. 24, 590–596. doi: 10.1097/
WCO.0b013e32834c3db0

Reis, D. J., Kaizer, A. M., Kinney, A. R., Bahraini, N. H., Holliday, R., Forster, J. E., et al. 
(2023). A practical guide to random-effects Bayesian meta-analyses with application to 
the psychological trauma and suicide literature. Psychol. Trauma 15, 121–130. doi: 
10.1037/tra0001316

Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. 
(2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple 
days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 106, 1590–1595. doi: 
10.1073/pnas.0805413106

Rich, T. L., and Gillick, B. T. (2019). Electrode placement in transcranial direct current 
stimulation-how reliable is the determination of C3/C4? Brain Sci. 9:69. doi: 10.3390/
brainsci9030069

Rich, T. L., Menk, J. S., Rudser, K. D., Chen, M., Meekins, G. D., Pena, E., et al. (2017). 
Determining electrode placement for transcranial direct current stimulation: a 
comparison of EEG- versus TMS-guided methods. Clin. EEG Neurosci. 48, 367–375. doi: 
10.1177/1550059417709177

Robertson, E. M., Pascual-Leone, A., and Miall, R. C. (2004). Current concepts in 
procedural consolidation. Nat. Rev. Neurosci. 5, 576–582. doi: 10.1038/nrn1426

Rocha, K., Marinho, V., Magalhaes, F., Carvalho, V., Fernandes, T., Ayres, M., et al. 
(2020). Unskilled shooters improve both accuracy and grouping shot having as reference 
skilled shooters cortical area: an EEG and tDCS study. Physiol. Behav. 224:113036. doi: 
10.1016/j.physbeh.2020.113036

Rosen, D. S., Erickson, B., Kim, Y. E., Mirman, D., Hamilton, R. H., and Kounios, J. 
(2016). Anodal tDCS to right dorsolateral prefrontal cortex facilitates performance for 
novice jazz improvisers but hinders experts. Front. Hum. Neurosci. 10:579. doi: 10.3389/
fnhum.2016.00579

Rumpf, J. J., Wegscheider, M., Hinselmann, K., Fricke, C., King, B. R., Weise, D., et al. (2017). 
Enhancement of motor consolidation by post-training transcranial direct current stimulation 
in older people. Neurobiol. Aging 49, 1–8. doi: 10.1016/j.neurobiolaging.2016.09.003

Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., and Gordon, B. (2012). Target 
optimization in transcranial direct current stimulation. Front. Psych. 3:90. doi: 10.3389/
fpsyt.2012.00090

Samaei, A., Ehsani, F., Zoghi, M., Hafez Yosephi, M., and Jaberzadeh, S. (2017). Online 
and offline effects of cerebellar transcranial direct current stimulation on motor learning 
in healthy older adults: a randomized double-blind sham-controlled study. Eur. J. 
Neurosci. 45, 1177–1185. doi: 10.1111/ejn.13559

Sanes, J. N., and Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annu. 
Rev. Neurosci. 23, 393–415. doi: 10.1146/annurev.neuro.23.1.393

Saturnino, G. B., Siebner, H. R., Thielscher, A., and Madsen, K. H. (2019). Accessibility 
of cortical regions to focal TES: dependence on spatial position, safety, and practical 
constraints. NeuroImage 203:116183. doi: 10.1016/j.neuroimage.2019.116183

Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., and Wenderoth, N. 
(2013). Task-specific effect of transcranial direct current stimulation on motor learning. 
Front. Hum. Neurosci. 7:333. doi: 10.3389/fnhum.2013.00333

Schroeder, P. A., Schwippel, T., Wolz, I., and Svaldi, J. (2020). Meta-analysis of the 
effects of transcranial direct current stimulation on inhibitory control. Brain Stimul. 13, 
1159–1167. doi: 10.1016/j.brs.2020.05.006

Sevilla-Sanchez, M., Hortobágyi, T., Fogelson, N., Iglesias-Soler, E., Carballeira, E., 
and Fernandez-del-Olmo, M. (2021). Small enhancement of bimanual typing 
performance after 20 sessions of tDCS in healthy young adults. Neuroscience 466, 26–35. 
doi: 10.1016/j.neuroscience.2021.05.001

Shilo, G., and Lavidor, M. (2019). Non-linear effects of cathodal transcranial direct 
current stimulation (tDCS) of the primary motor cortex on implicit motor learning. Exp. 
Brain Res. 237, 919–925. doi: 10.1007/s00221-019-05477-3

Spampinato, D. A., Satar, Z., and Rothwell, J. C. (2019). Combining reward and 
M1 transcranial direct current stimulation enhances the retention of newly learnt 
sensorimotor mappings. Brain Stimul. 12, 1205–1212. doi: 10.1016/j.
brs.2019.05.015

Sung, K., and Gordon, B. (2018). Transcranial direct current stimulation (tDCS) 
facilitates overall visual search response times but does not interact with visual search 
task factors. PLoS One 13:e0194640. doi: 10.1371/journal.pone.0194640

Talimkhani, A., Abdollahi, I., Mohseni-Bandpei, M. A., Ehsani, F., Khalili, S., and 
Jaberzadeh, S. (2019). Differential effects of Unihemispheric concurrent dual-site and 
conventional tDCS on motor learning: a randomized, sham-controlled study. Basic Clin. 
Neurosci. 10, 59–72. doi: 10.32598/bcn.9.10.350

Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., et al. 
(2010). Anodal transcranial direct current stimulation enhances procedural 
consolidation. J. Neurophysiol. 104, 1134–1140. doi: 10.1152/jn.00661.2009

Thach, W. T. (1996). On the specific role of the cerebellum in motor learning and 
cognition: clues from PET activation and lesion studies in man. Behav. Brain Sci. 19, 
411–433. doi: 10.1017/S0140525X00081504

Thomas, F., Pixa, N. H., Berger, A., Cheng, M. Y., Doppelmayr, M., and Steinberg, F. 
(2020). Neither cathodal nor anodal transcranial direct current stimulation on the left 
dorsolateral prefrontal cortex alone or applied during moderate aerobic exercise 
modulates executive function. Neuroscience 443, 71–83. doi: 10.1016/j.
neuroscience.2020.07.017

Toth, A. J., Ramsbottom, N., Constantin, C., Milliet, A., and Campbell, M. J. (2021). 
The effect of expertise, training and neurostimulation on sensory-motor skill in esports. 
Comput. Hum. Behav. 121:106782. doi: 10.1016/j.chb.2021.106782

Truong, D. Q., Magerowski, G., Blackburn, G. L., Bikson, M., and Alonso-Alonso, M. 
(2013). Computational modeling of transcranial direct current stimulation (tDCS) in 
obesity: impact of head fat and dose guidelines. Neuroimage Clin. 2, 759–766. doi: 
10.1016/j.nicl.2013.05.011

van Schouwenburg, M. R., Sligte, I. G., Giffin, M. R., Günther, F., Koster, D., 
Spronkers, F. S., et al. (2021). Effects of Midfrontal brain stimulation on sustained 
attention. J. Cogn. Enhanc. 5, 62–72. doi: 10.1007/s41465-020-00179-z

Vannorsdall, T. D., van Steenburgh, J. J., Schretlen, D. J., Jayatillake, R., Skolasky, R. L., 
and Gordon, B. (2016). Reproducibility of tDCS results in a randomized trial: failure to 
replicate findings of tDCS-induced enhancement of verbal fluency. Cogn. Behav. Neurol. 
29, 11–17. doi: 10.1097/WNN.0000000000000086

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation 
using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432. doi: 
10.1007/s11222-016-9696-4

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed 
importance sampling. J. Mach. Learn. Res. 25, 1–58.

Vergallito, A., Feroldi, S., Pisoni, A., and Romero Lauro, L. J. (2022). Inter-individual 
variability in tDCS effects: a narrative review on the contribution of stable, variable, and 
contextual factors. Brain Sci. 12:522. doi: 10.3390/brainsci12050522

Vines, B. W., Cerruti, C., and Schlaug, G. (2008). Dual-hemisphere tDCS 
facilitates greater improvements for healthy subjects' non-dominant hand 
compared to uni-hemisphere stimulation. BMC Neurosci. 9:103. doi: 
10.1186/1471-2202-9-103

Vollmann, H., Conde, V., Sewerin, S., Taubert, M., Sehm, B., Witte, O. W., et al. (2013). 
Anodal transcranial direct current stimulation (tDCS) over supplementary motor area 
(SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimul. 6, 
101–107. doi: 10.1016/j.brs.2012.03.018

von Rein, E., Hoff, M., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., et al. (2015). 
Improving motor performance without training: the effect of combining mirror visual 
feedback with transcranial direct current stimulation. J. Neurophysiol. 113, 2383–2389. 
doi: 10.1152/jn.00832.2014

Wagner, J., Lo Monaco, S., Conto, F., Parrott, D., Battelli, L., and Rusconi, E. (2020). 
Effects of transcranial direct current stimulation over the posterior parietal cortex on 
novice X-ray screening performance. Cortex 132, 1–14. doi: 10.1016/j.
cortex.2020.08.002

Warm, J. S., Parasuraman, R., and Matthews, G. (2008). Vigilance requires hard 
mental work and is stressful. Hum. Factors 50, 433–441. doi: 
10.1518/001872008X312152

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.neulet.2017.02.033
https://doi.org/10.1016/j.cortex.2012.11.002
https://doi.org/10.1038/s41593-017-0054-4
https://doi.org/10.1038/s41593-017-0054-4
https://doi.org/10.1016/j.neuropsychologia.2020.107555
https://doi.org/10.1016/j.neuroscience.2005.06.005
https://doi.org/10.1016/j.brs.2014.04.005
https://doi.org/10.1155/2021/5594305
https://doi.org/10.1113/jphysiol.2012.247171
https://doi.org/10.1088/1741-2552/aa8d8a
https://doi.org/10.1371/journal.pone.0197023
https://doi.org/10.1073/pnas.1417259112
https://doi.org/10.1097/WCO.0b013e32834c3db0
https://doi.org/10.1097/WCO.0b013e32834c3db0
https://doi.org/10.1037/tra0001316
https://doi.org/10.1073/pnas.0805413106
https://doi.org/10.3390/brainsci9030069
https://doi.org/10.3390/brainsci9030069
https://doi.org/10.1177/1550059417709177
https://doi.org/10.1038/nrn1426
https://doi.org/10.1016/j.physbeh.2020.113036
https://doi.org/10.3389/fnhum.2016.00579
https://doi.org/10.3389/fnhum.2016.00579
https://doi.org/10.1016/j.neurobiolaging.2016.09.003
https://doi.org/10.3389/fpsyt.2012.00090
https://doi.org/10.3389/fpsyt.2012.00090
https://doi.org/10.1111/ejn.13559
https://doi.org/10.1146/annurev.neuro.23.1.393
https://doi.org/10.1016/j.neuroimage.2019.116183
https://doi.org/10.3389/fnhum.2013.00333
https://doi.org/10.1016/j.brs.2020.05.006
https://doi.org/10.1016/j.neuroscience.2021.05.001
https://doi.org/10.1007/s00221-019-05477-3
https://doi.org/10.1016/j.brs.2019.05.015
https://doi.org/10.1016/j.brs.2019.05.015
https://doi.org/10.1371/journal.pone.0194640
https://doi.org/10.32598/bcn.9.10.350
https://doi.org/10.1152/jn.00661.2009
https://doi.org/10.1017/S0140525X00081504
https://doi.org/10.1016/j.neuroscience.2020.07.017
https://doi.org/10.1016/j.neuroscience.2020.07.017
https://doi.org/10.1016/j.chb.2021.106782
https://doi.org/10.1016/j.nicl.2013.05.011
https://doi.org/10.1007/s41465-020-00179-z
https://doi.org/10.1097/WNN.0000000000000086
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.3390/brainsci12050522
https://doi.org/10.1186/1471-2202-9-103
https://doi.org/10.1016/j.brs.2012.03.018
https://doi.org/10.1152/jn.00832.2014
https://doi.org/10.1016/j.cortex.2020.08.002
https://doi.org/10.1016/j.cortex.2020.08.002
https://doi.org/10.1518/001872008X312152


Santander et al. 10.3389/fnhum.2024.1305446

Frontiers in Human Neuroscience 22 frontiersin.org

Westfall, J., Kenny, D. A., and Judd, C. M. (2014). Statistical power and optimal design 
in experiments in which samples of participants respond to samples of stimuli. J. Exp. 
Psychol. Gen. 143, 2020–2045. doi: 10.1037/xge0000014

Wiethoff, S., Hamada, M., and Rothwell, J. C. (2014). Variability in response to 
transcranial direct current stimulation of the motor cortex. Brain Stimul. 7, 468–475. 
doi: 10.1016/j.brs.2014.02.003

Williams, D. R., Rast, P., and Burkner, P. (2018). Bayesian meta-analysis with weakly 
informative prior distributions: PsyArXiv, 1–19. doi: 10.31234/osf.io/7tbrm

Wischnewski, M., Mantell, K. E., and Opitz, A. (2021). Identifying regions in 
prefrontal cortex related to working memory improvement: a novel meta-analytic 
method using electric field modeling. Neurosci. Biobehav. Rev. 130, 147–161. doi: 
10.1016/j.neubiorev.2021.08.017

Wolfe, J. M. (2010). Visual search. Curr. Biol. 20, R346–R349. doi: 10.1016/j.cub.2010.02.016

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., et al. 
(2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. 
Clin. Neurophysiol. 127, 1031–1048. doi: 10.1016/j.clinph.2015.11.012

Zimerman, M., Heise, K. F., Gerloff, C., Cohen, L. G., and Hummel, F. C. (2014). 
Disrupting the ipsilateral motor cortex interferes with training of a complex motor task 
in older adults. Cereb. Cortex 24, 1030–1036. doi: 10.1093/cercor/bhs385

Zivanovic, M., Paunovic, D., Konstantinovic, U., Vulic, K., Bjekic, J., and Filipovic, S. R. 
(2021). The effects of offline and online prefrontal vs parietal transcranial direct current 
stimulation (tDCS) on verbal and spatial working memory. Neurobiol. Learn. Mem. 
179:107398. doi: 10.1016/j.nlm.2021.107398

Zwissler, B., Sperber, C., Aigeldinger, S., Schindler, S., Kissler, J., and Plewnia, C. 
(2014). Shaping memory accuracy by left prefrontal transcranial direct current 
stimulation. J. Neurosci. 34, 4022–4026. doi: 10.1523/JNEUROSCI.5407-13.2014

https://doi.org/10.3389/fnhum.2024.1305446
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1037/xge0000014
https://doi.org/10.1016/j.brs.2014.02.003
https://doi.org/10.31234/osf.io/7tbrm
https://doi.org/10.1016/j.neubiorev.2021.08.017
https://doi.org/10.1016/j.cub.2010.02.016
https://doi.org/10.1016/j.clinph.2015.11.012
https://doi.org/10.1093/cercor/bhs385
https://doi.org/10.1016/j.nlm.2021.107398
https://doi.org/10.1523/JNEUROSCI.5407-13.2014

	Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation
	1 Introduction
	1.1 Stimulation parameters
	1.2 Experimental and statistical parameters
	1.3 Performance domains

	2 Methods
	2.1 Study search and selection
	2.2 Data extraction, effect size estimation, and parameter coding
	2.3 Hierarchical Bayesian meta-regression: model specification and estimation
	2.4 Exploratory modeling of interaction effects

	3 Results
	3.1 Motor performance
	3.2 Visual search
	3.3 Working memory
	3.4 Vigilance
	3.5 Inhibition
	3.6 Combined model

	4 Discussion
	4.1 Uncontrollable sources of variability
	4.2 Limitations of this study

	5 Conclusion
	Data availability statement
	Author contributions

	 References

