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Introduction: Continuous recognition tasks (CRTs) assess episodic memory

(EM), the central functional disturbance in Alzheimer’s disease and several

related disorders. The online MemTrax computerized CRT provides a platform

for screening and assessment that is engaging and can be repeated frequently.

MemTrax presents complex visual stimuli, which require complex involvement

of the lateral and medial temporal lobes and can be completed in less than

2 min. Results include number of correct recognitions (HITs), recognition failures

(MISSes = 1-HITs), correct rejections (CRs), false alarms (FAs = 1-CRs), total

correct (TC = HITs + CRs), and response times (RTs) for each HIT and FA. Prior

analyses of MemTrax CRT data show no effects of sex but an effect of age on

performance. The number of HITs corresponds to faster RT-HITs more closely

than TC, and CRs do not relate to RT-HITs. RT-HITs show a typical skewed

distribution, and cumulative RT-HITs fit a negative survival curve (RevEx). Thus,

this study aimed to define precisely the effects of sex and age on HITS, CRs,

RT-HITs, and the dynamics of RTs in an engaged population.

Methods: MemTrax CRT online data on 18,255 individuals was analyzed for sex,

age, and distributions of HITs, CRs, MISSes, FAs, TC, and relationships to both

RT-HITs and RT-FAs.

Results: HITs corresponded more closely to RT-HITs than did TC because CRs

did not relate to RT-HITs. RT-FAs had a broader distribution than RT-HITs and

were faster than RT-HITs in about half of the sample, slower in the other half.

Performance metrics for men and women were the same. HITs declined with

age as RT-HITs increased. CRs also decreased with age and RT-FAs increased,

but with no correlation. The group over aged 50 years had RT-HITs distributions

slower than under 50 years. For both age ranges, the RevEx model explained

more than 99% of the variance in RT-HITs.
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Discussion: The dichotomy of HITs and CRs suggests opposing cognitive

strategies: (1) less certainty about recognitions, in association with slower RT-

HITs and lower HIT percentages suggests recognition difficulty, leading to more

MISSes, and (2) decreased CRs (more FAs) but faster RTs to HITs and FAs,

suggesting overly quick decisions leading to errors. MemTrax CRT performance

provides an indication of EM (HITs and RT-HITs may relate to function of the

temporal lobe), executive function (FAs may relate to function of the frontal

lobe), processing speed (RTs), cognitive ability, and age-related changes. This

CRT provides potential clinical screening utility for early Alzheimer’s disease and

other conditions affecting EM, other cognitive functions, and more accurate

impairment assessment to track changes over time.
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memory, episodic memory, dementia, cognitive assessment, response time

Introduction

Aging affects learning, memory, and cognitive function, and
the number and proportion of elderly individuals with various
levels of cognitive dysfunction are rapidly increasing (Gbd 2019
Dementia Forecasting Collaborators, 2022; Singh et al., 2023;
Chithiramohan et al., 2024; Malzbender et al., 2024). Cognitive
disorders, from mild impairment to severe dementia, are caused
by a variety of conditions from Alzheimer’s disease (AD) to
cerebrovascular diseases, the sixth and fourth leading causes
of death in the United States, respectively in 20231. In these
conditions, cognitive impairment is characterized predominantly
by deterioration of episodic memory (EM), defined here as a type
of long-term memory (LTM) for previous experiences, such as
an item or event which persists for minutes, hours, days, or a
lifetime, through distracting occurrences. In most dementias, EM
function deteriorates over several years, so those affected forget
gradually and progressively more information after a few minutes
have passed. In fact, accelerated forgetting after distraction is
probably the best predictor of cognitive decline (Wearn et al., 2020),
reflecting concurrent medial temporal lobe atrophy (Marizzoni
et al., 2019), the region of the brain directly responsible for
initiating EM. A variety of acute insults affecting the medial
temporal lobe, including traumatic brain injury and hypoxic
encephalopathy, can cause sudden and permanent impairment
of EM. Thus, there is a pressing need to develop effective
and efficient tests to determine the level of EM impairment
for medical and social assessments and interventions. With the
ever-increasing implementations, applications, and utilizations
of computers and online systems, cognitive assessment can be
performed quickly and cost effectively (Sabbagh et al., 2020;
Chan et al., 2021; Ding et al., 2022), including tests which
are “culture-fair” (Chithiramohan et al., 2024) and use analysis
with machine learning techniques (Bergeron et al., 2019, 2020;
Nwanosike et al., 2022). One such test for this purpose, MemTrax
(Ashford et al., 2019), was developed for screening of cognitive
impairment specifically related to EM dysfunction. The MemTrax

1 https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm –
Provisional Leading Causes of Death for 2023 - CDC Wonder- accessed
3/26/2024

platform has proven to be engaging with over a million individuals
having taken the test across several countries, with many users
taking it more than 100 times and some over 1,000 times
(Ashford et al., 2022a).

Signal detection tasks and continuous
recognition tasks

Measurement of learning, memory, and related cognitive
functions frequently relies on signal detection tasks (SDTs). One
type of SDT instructs a participant to attend to all task stimuli and
detect specific “target” stimuli (Goldstein et al., 2019). In such SDTs,
the user is instructed to attend to the screen which provides the
stimuli, and the task can last for a prolonged period, i.e., over many
minutes or even hours. The instructions for such SDTs must reside
in working memory (WM, managed by attention and executive
systems) while the “target” stimuli reside in limited-capacity,
modality-independent short-term memory (STM, which can only
retain a limited number of items of information for less than a
minute without distraction). These SDTs do not significantly assess
EM because the instructions and “target” stimuli are constantly
refreshed during the task.

Information processing models (IPMs) account for the events
that occur in the brain of the participant during such SDTs, with
the initial neural processing of each new stimulus conceptualized
as occurring in sensory memory (SM, lasting only a few seconds)
(Sperling, 1963). The timing and accuracy of behaviors performed
in response to the “target” stimuli during the task are the metrics of
interest. These measures reflect the effort expended by those brain
events engaged when the electrical representations of the stimulus
reach the massive capacity and modality-dependent cortical region.
In SDTs where there are predetermined target stimuli and non-
target stimuli, each stimulus occurs and is represented within the
STM of the defined target specified for processing (Sternberg,
1966). These STM representations interact with processes as
directed and instructed to operate in WM (Baddeley, 1982) to
determine if the newly presented stimulus matches a “target” or
not. At the neurophysiological level, neural systems compare each
newly presented stimulus to neural representations in the assigned
cortical region of the target stimulus using the neuronally encoded
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criteria in STM to decide whether the new stimulus matches the
designated target and is recognized (Ashford et al., 1998). In these
tasks, the level of function of STM can be gauged by the number of
stimuli set as targets at the beginning of the task (Sternberg, 1966).

The continuous recognition task (CRT) is a different testing
approach within the SDT category and has become a standard
approach for assessing EM (Hockley, 1982, 2022). In a CRT, stimuli
are presented in a series, and the participant is instructed to
attend to each stimulus and indicate if a stimulus is a repetition
of one previously shown in the series. If the stimulus is new, the
participant is instructed to encode the new item. With ongoing
stimuli, the number of items quickly exceeds the capacity of STM.
Consequently, new items much be transferred into EM for later
access. Accordingly, a CRT is an important approach to EM
assessment.

Neural processing of information and
episodic memory in a CRT

When a stimulus is presented in a CRT, its representation
in brain neural networks must be compared with representations
which were previously presented. However, the number of stimuli
presented rapidly exceeds the capacity of STM. Accordingly, the
IPM must be revised to consider that the neural representation
of the new stimulus must be compared to the integrated
representations of previously processed information in massive-
capacity and modality-independent EM. This comparison may
elicit a recognition response in the brain’s processing system,
indicating a repeated, image, that is, a “target.” If there is no
perceptual recognition of the new stimulus (i.e., the stimulus is not
recognized as repeated), the information about the new stimulus,
now residing in STM, will be transferred into EM for inclusion
in analyses of subsequent trials. Later in the test, these neural
processes can retrieve information about this stimulus from all
previously presented stimuli residing in EM for analysis (Baddeley
and Hitch, 2000; Baddeley et al., 2019). Newly presented stimuli
will each be compared to previously presented stimuli to determine
whether it is a repeated (“target”) image.

Whereas the discussion of WM, STM, and EM provides a
rubric for understanding the psychological processes constituted
by the brain’s neural systems, the critical issue is that the neural
systems process information in a parallel and massively reciprocal
fashion across networks containing billions of neurons (Hawkins
and Ahmad, 2016; Sherwood et al., 2020), and when information
moves from STM into EM, the pattern of activation of trillions of
synapses is analyzed. If the pattern is recognized during a CRT, the
instructed action is performed, but if the pattern is not recognized,
then a neurochemical activation is initiated to establish the new
pattern in the neural network (Ashford et al., 2011a). It is this latter
activation, associated with the fundamental neuroplasticity of the
brain, that is the important component tested by the MemTrax CRT
described here (Ashford, 2023).

Signal Detection Theory provides empirical and analytical
methods for exploring factors suggested to alter information
processing during a task (Massaro and Friedman, 1990). One
factor is the participant’s internal state. Other factors are external
events not related to the task. These factors alter the quality and

distinctiveness of the representation persisting in each memory
construct, specifically the activation states of the recruited neural
networks and the sensitivity for engagement of the information
processing apparatus. These theoretical constructs are relevant to
explain the central neural processing that occurs during specific
cognitive assessment tests, in this case, a CRT, but there is a question
about whether the specific mathematical models associated with
this theory (d′ and beta) are applicable when new stimulus
information is constantly being added to the array of items already
presented.

The processes involved in the management of CRT stimuli
are responsible for the timing and accuracy of the decision that
a stimulus matches the designated “target” that the individual is
instructed to recognize and so indicate by a response. In the CRT,
one of the four behavioral options to a presented stimulus occurs,
a HIT (user recognizes the pattern of the presented stimulus as a
match and responds with the prescribed action), a correct rejection
(CR, the user does not recognize the presented stimulus since the
stimulus had not been previously shown, and the user does not
respond), a MISS (user fails to recognize the repeated presented
stimulus and the user does not respond), and a false alarm (FA,
user falsely perceives the presented stimulus as a repeat, and the
user responds inappropriately with the prescribed response). The
HITs and CRs can be summed to provide the total correct (TC)
trials. For every presentation, timing is recorded from the onset
of the stimulus until the activation of the sensor or 3,000 ms.
Response time for either HITs or FAs is recorded as the number
of milliseconds from the onset of the stimulus to the activation
of the sensor (e.g., spacebar) by the user, and the next stimulus is
shown immediately. If the sensor is not activated by 3,000 ms, the
next stimulus is shown at that time. Responses and non-responses
are noted according to the presentation order to tabulate HITs,
FAs, CRs, and MISSes, and at the end, the average RT-HITs and
RT-FAs is calculated. Numerous other metrics could potentially be
computed for each individual, including RT distribution factors.

In the processing of information by the brain, there
are “bottom-up” sensory processes and “top-down” cognitive
processes. Sensory processes involve the sense organ (in this case,
the eye) and the direct pathway to the primary cortical brain
region (in this case, the occipital cortex). There are also numerous
pathways through the brainstem to activate the brain in response to
an incoming stimulus. However, there are also higher-level cortical
processes (in this case involving the frontal and temporal lobes)
that contain the knowledge acquired by the person performing the
task and can direct the processing of the incoming information.
These “top-down” cognitive processes, including “efferent control”
(Pribram, 1967), are responsible for guiding the neural processing
during these tasks (Stanislaw and Todorov, 1999). Signal detection
theory suggests that mathematical relationships between responses
toward stimuli presented during a task explain the effects that
experimental manipulation and clinical phenomena have on task
performance, but this theoretical approach may not apply to a CRT
that is constantly providing new information.

Neural processing – the effects of aging

An important question is the extent to which processes
change over the lifespan and are affected by disorders such as
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dementia. Age alters the ability to behave as instructed and
affects information processing operations which store and search
for and retrieve factual and declarative information previously
consolidated in EM (Baddeley et al., 2019). Age (including age-
related neurodegenerative processes) is also well known to affect
the ability to learn and expend effort during tests (Luo and Craik,
2008). These effects are greater on some tasks than on others (Grady
and Craik, 2000). For instance, slight age-related decrements occur
during more automatic and stimulus driven tasks that require
minimal instruction. Examples of cognitive tests that are less
affected by age include STM tasks (repeating items over brief spans
or without distraction), recognition memory tasks assessing remote
LTM, accessing distant information, and WM tasks requiring the
person to hold a sequence of items for a few seconds before
repeating the string.

In the original AD description (Alzheimer, 1907), the patient
could repeat words but not recall them after distraction. Similarly,
the progressive effects of age are more disruptive in EM tasks
that increase immediate involvement, such as instructing the user
to hold or manipulate material in memory beyond the attention
span or to process additional information while maintaining the
first set of material in memory. These age effects are substantial
during tasks that instruct the user to initiate processing, as is
done during free or cued recall, to manipulate information held in
memory, or to maintain information while concurrently processing
incoming stimuli (Luo and Craik, 2008). As the stimuli become
progressively more complex, the analytical requirements increase,
and the inadequacies of the information processing system become
more apparent, thus reflecting the continuum of normal cognitive
function progressing to mild cognitive impairment and memory
dysfunction (Hall et al., 2015; Ashford, 2023).

The main issue addressed here is to what extent the metrics of
a CRT can provide information about the specific function of EM
processes along the continuum of age. Age may alter instruction-
directed explicit, intentional, and self-directed control of attention
and learning during memory monitoring, encoding, the transition
of declarative information to concept, and the accessing of
cognitive processes. While age alters the ability of stimuli to
affect processing, it does so without altering non-declarative
implicit procedural memory involving automatic engagement
of these events.

Consistent with the observations that age alters storage in
and retrieval from EM differently than it alters the temporary
maintenance of that information in STM, it is expected that
analysis of the CRT will show specific age-related changes. Thus,
inability to intentionally self-direct control of processes will affect
the encoding of a stimulus the first time it appears and limit
the depth of encoding. This test of EM may specifically reflect
the common complaint by older adults about their difficulty
in recalling information from semantic and episodic categories
in LTM, as well as slowed processing and recognition. These
effects on attention, learning, memory, and cognition begin in
early life, even before 20 years of age, but the impact is usually
extremely small and not problematic until after 60 years, at which
time exponential decline becomes noticeable. However, variation
in performance on such tasks also occurs and becomes more
substantial across individuals with increased age (Ashford and
Bayley, 2013; Malzbender et al., 2024).

Hypotheses

The effects of age on the ability of the user to engage
elaborative encoding strategies that enable transfer of information
into EM storage and the ability to execute processes as
instructed (Jonides et al., 2000), though central in AD and
related dementias, are difficult to measure. Traditionally, these
processes are measured using the face-to-face administration
practices of neuropsychological assessment tools that involve
trained professionals. Computer implementations of such tasks still
do not provide the depth of processing provided with assessment
by trained professionals. Importantly, most computer-based tools
are not focused on EM and do not provide appropriate or precise
measures of EM essential for clinical evaluation or follow-up or
research outcomes (Sabbagh et al., 2020; Chan et al., 2021; Ashford
et al., 2022b; Ding et al., 2022; Ashford, 2023; Chithiramohan et al.,
2024).

MemTrax provides a method for quickly and precisely
measuring EM, the central process affected by AD and several
related dementias. This study re-examined behavioral data
produced by the online application of the MemTrax CRT (Ashford
et al., 2019), using an approach that separates TC into HITs
and CRs, and a novel analytic method for response time, reverse
exponential (RevEx) (Ashford et al., 2022a). These variables were
further examined in this study to determine relationships with age
and sex.

The hypotheses are as follows:

1. First we hypothesized that distributions for HITs and CRs are
different phenomena, so the TC value is actually made-up of
unrelated variables and does not represent a single function.

2. Secondly, we hypothesized that HITs and CRs follow
separate probabilistic patterns, and potentially have different
clinical utility.

3. The third hypothesis was that RT-HITs correspond to HITs,
less to TC and not to CRs (or FAs).

4. We also hypothesized that the temporal distribution of RTs for
both HITs and FAs follow the RevEx model.

5. And lastly, we hypothesized that these metrics would decline
with age but would not differ between the sexes.

This analytical approach is novel and provides value and
practical insight to the function of EM, which could be related to
clinical disorders.

Materials and methods

Development of the MemTrax CRT

The first publication of the MemTrax CRT was based on
audience presentations using a PowerPoint slide display and paper
response forms administered to 1,018 subjects between July 2007
and June 2008 at 25 community sites (Ashford et al., 2011b).

HAPPYneuron, a French company, provided the first major
online application of MemTrax between September 22, 2011 and
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August 22, 2013, with over 30,000 tests taken.2 Users were asked
to sign up and provide year of birth, month of birth, sex, level
of education, though there was no method for verification of this
information. The first analysis of the HAPPYneuron data focused
on the effects of age and sex on TC (as percent correct) and mean
response time (RT) for 18,007 individuals taking the test for the
first time (Ashford et al., 2019). There was a small, but significant
adverse effect of age on TC and RT-HITs, and TC decreased as RT-
HITs increased. While more than 4 times as many women took the
test as men, there were no significant performance decrements with
age that differed between the sexes.

In the next implementation of MemTrax, May 27, 2014 to May
7, 2022), 602,272 individuals took the test, and there were 344,165
first-time users identified. This analysis divided TC into HITs and
CRs (Ashford et al., 2022a). The number of HITs corresponded
significantly with faster RT-HITs, though CRs did not. In fact,
those with the fewest CRs (most FAs) had the fastest RT-HITs. The
distribution of RTs to HITs was basically the same in both studies,
showing a positively skewed distribution typical of RT studies.
However, examination of the cumulative RT curve in this study
showed that the distribution fit a negative survival curve with a
2-factor exponential equation, characterized by an R2 exceeding
−0.99, thus explaining more than 99% of the variance (RevEx
model).

Initial population selection

The present study is a reanalysis of the HAPPYneuron data.
The full HAPPYneuron data set included 30,435 times the test was
taken online. Of these times, 25,146 unique users were identified.
In this set, 1,483 individuals noted an age over 100 years (date of
test – provided birthdate, month and year only, mostly birthdays
not entered correctly). Review and approval of the protocol
was provided by the Stanford Institutional Review Board and
authorization for anonymous data collection and analysis was only
granted for individuals over the age of 21 years, so, 9,794 tests
for individuals who indicated age was less than 21 years were
eliminated, leaving 20,641 individuals. Further, 1,372 individuals
did not indicate a birthdate, leaving 19,269. Of these, 89 duplicate
IDs were found and removed, leaving 18,979 unique individuals
aged 21–100 years who took the test for the first time.

Study design

The online HAPPYneuron MemTrax task presented 50 images,
25 new and 25 repeat images, in a pseudo random order (Figure 1),
with the instruction to respond to repeated images as quickly
as possible (Ashford et al., 2019). HAPPYneuron changed the
pictures each month and used one of four order sets. The required
response was a spacebar tap. Users were allowed up to 3 s after
stimulus presentation to respond. The 3-s time was acceptable for
individuals of all ages. When an individual made a response, the
next image was shown immediately (or at least after 50 ms).

2 www.memtrax.com

The stimuli were complex, “interesting” pictures from five
separate categories, with five pictures from each category. Of the
five pictures, four were repeated once and one repeated twice. The
first 2 pictures were always new, but there could have been up to
4 new or old pictures in a row, with the interval between the first
show and the repeat varying from 1 to 45 pictures. RT to each
stimulus was recorded and available for analysis. A HIT was defined
as a response to a repeated stimulus that occurred between 50 and
2,900 ms after the stimulus onset, and the RT-HIT was recorded.
CR for an initial presentation occurred when no response was
made after a stimulus onset for 3,000 ms. A MISS was identified
when there was no response to a repeated stimulus between 50 and
2,900 ms. A FA was any response to an initial presentation of a
stimulus, and the RT-FA was recorded. The distribution and time
of responses of HITs represents EM function.

Sample selection

Of the first tests taken, about 2.2% of the full sample (561)
made no responses (0/50) and an additional 0.7% had no better
than random chance TC responses (30/50, 60% correct, ranging
from 5 HITs with 25 Correct Rejections to 25 HITs with 5 Correct
Rejections). Among this group, 629 tests had less than 60% correct,
many with no responses, leaving 18,350 individuals with better
than chance performance. Also, 238 (1%) had fewer than 30 (60%)
TCs. There were 64 individuals who had 30, 31, or 32 TC (mostly
due to missed true positive responses, few responses). Users with
32 or fewer TC (<65%) (better than 60%, which would still be
better than chance by 2 additional correct responses) were removed
(permissible range: 8/25 HITs with 25/25 CRs to 25/25 HITs with
8/25 CRs). Of these remaining users, 494 had fewer than 16 HITs
and 126 had fewer than 16 CRs.

There were 61 users with RT-HITs greater than 1,800 ms, and
599 with less than 550 ms. There were 38 users with RT-HITs
between 266 and 538 ms, but none of these individuals had more
than 30/50 total correct (one with 540 ms had 49/50 correct, next
fastest 558 ms had 50/50 correct). Thirteen users had average
RT-HITs slower than 2,000 ms (max 2,376) and were omitted
from the analysis.

After this selection process, the sample analyzed here included
18,265 individuals. In this group, 5,795 men, 12,383 women
(Figure 2A), 87 sex not indicated. There was little difference in the
average number of responses for males and females (Figure 2B),
the optimal number being 25. The average number of responses
declined slightly with age (Figure 2C). The selected individuals had
performances of 33–50 TC with RT-HITs 540–2,000 ms. Of these
users, 364 (1.5%) had fewer than 35 TC (70% correct trials), and
774 (3%) had fewer than 40 TC (80% correct trials) (Figure 2D).
In examining the incorrect responses to images shown for the first
time, there were 7,201 individuals with average RT-FAs less than
558 ms.

Statistical analysis

To test the hypotheses, we determined HITs, CRs, FAs, TC, and
RT-HITs and RT-FAs for each age group and sex. The following
plots correspond to the five hypotheses:
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FIGURE 1

Graphical display of the MemTrax CRT.

1. First hypothesis, distributions for TC, HITs, and CRs
(Figures 3A–C).

2. Second hypothesis HITs, CRs probabilistic patterns
(Figures 4A–D).

3. Third hypothesis, RT-HITs corresponds to HITs
(Figures 6A–C, 7A–E).

4. Fourth hypothesis, RTs follow the RevEx model
(Figures 8A–D).

5. Fifth hypothesis: metrics decline with age not differing by sex
(Figures 2C, 3D, E, 5A–D, 8E, F).

Results

Analysis of data from selected population

The age distribution shown in Figure 2A was nearly identical
to that of the prior study of this data set (Ashford et al., 2019)
with similar numbers of users, 5,795 male and 12,383 female (87
not declared), and more than twice as many female users as male,
with the major group being women between 40 and 70 years of
age (Figure 2A). Further, the pattern of responses follows the
pattern of descriptions of a much larger data set, which had no user
information, e.g., age, sex, and education (Ashford et al., 2022a).
The distribution of responses is also similar, showing 28.5% of
the male users and 26.9% of the female users making exactly 25
responses (the ideal number), as shown in Figure 2B. There was
about a half point difference in the average number of responses
between ages 21 (24.5) and 75 (24.1) years (Figure 2C). The
average number of responses was 24.30 for men and 24.39 for

women. The regression lines for age for men and for women
were similar, decreasing from 24.5 at age 21 years to 24.1 at age
85 years (Figure 2C). Users making exactly 25 responses averaged
97% correct, while those making only 20 responses (5 too few)
averaged 87% correct and those making 30 responses (5 too many)
averaged 89% correct (Figure 2D). These results are essentially
the same as the data set in a recent analysis of fully anonymous
data without demographic information from www.memtrax.com
(Ashford et al., 2022a).

Correctness of responses

The average number of responses per participant was
compared to the average number of correct responses. The modal
correct responses occurred at 25 (Figure 3A), the ideal number
(Figure 2B). A steeper decline in correctness occurred for fewer
than more responses. Further, the average number of responses
also declined as the total number of correct responses decreased
(Figure 3B). There was a marked proportional relationship
between number of responses and HITs below 25 responses,
and a similarly marked but inversely proportional and unrelated
relationship for CRs above 25 responses (Figure 3C). However,
there was a relatively small effect of age on number of HITs or CRs
(Figures 3D, E).

Population distribution of correct
responses

There was a progressive increase in the total number
of users who performed from 66% correct (33/50) to 96%
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correct (48/50) (Figure 4A and Table 1A, TC). Based
on the relationship between HITs and CRs, there was a
substantially steeper slope for CRs than HITs (Figure 4B
and Table 1A, HITs and CRs). Cumulative percentiles of
these data (Figures 4C, D) showed a clear progression
that explains over 96% of the variance for total correct,

99.5% for the HITs, and 95% for the CRs. Clearly, HITs
are more reflective of a different dimension of correctness
than CRs. These distributions of correctness (Ashford
et al., 2022a), provide a performance-based estimation of
a person’s cognitive ability (data suitable for clinical use in
Tables 1A, B).
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FIGURE 2
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FIGURE 2

Relationships between number of individuals, sex, age, and responses. (A) Distribution of the number of male and female users by age. (B) Percent of
responses per test is maximum at the ideal number, 25, with little difference related to sex either at this maximum, or with fewer responses or more
responses. (C) There is a slight decrease of total responses with age, though the effect of sex with respect to age is minimal. (D) Maximum correct
occurs at 25 responses, with a relatively symmetric decline of percent of correct trials increasing to 30 responses or decreasing to 20 responses.

Response times to HITs and false alarms

The mean RT-HITs and the mean RT-FAs were calculated for
each individual. The fastest RT-HITs mean was 538 ms. There
were 13 users removed from this analysis for RT-HITs slower than
2,000 ms, which would be more than 3 SD beyond the mean.
Among males, 2,298 (39.7%) made no FAs (range of non-zero FAs:

256–2,993 ms), while among females, 4,454 (36.0%) made no FAs
(range of non-zero FAs: 256–2,286 ms).

Individual variability was found to be a substantially greater
contributor to variance in RT than age. The plots and regression
lines for RT-HITs show tremendous variability. However, there was
essentially no difference in the distribution with respect to age for
men and women for RT-HITs (Figure 5A). Since many individuals

Frontiers in Human Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1304221
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1304221 March 28, 2024 Time: 15:12 # 9

Clifford et al. 10.3389/fnhum.2024.1304221

had no FAs, the analysis of the RT-FAs metric is problematic and
shows more variability. The RT-FAs show that women were slightly
faster than the men across the age range in their RTs for FAs
(Figure 5B).

The relationship between participant scores averaged for each
year of age with calculated SD shows a substantial relationship with
age, which is pronounced for the RT-HITs (Figure 5C). In spite of
the significance of this effect, the magnitude is less than 15% from
20 to 85 years (about 880–1,000 ms) and small compared to the
population variability (data suitable for clinical use in Table 1C).
RT-FAs are overall slower than RT-HITs and show even more

variability (Figure 5D). There is essentially no relationship between
RT-FAs and RT-HITs (males: y = 0.58x + 101, R2 = 0.025; females:
y = 0.64x + 67, R2 = 0.29).

Response time relationship to response
correctness

This analysis first plotted RTs as a function of TC (total
correct = HITs + CRs) and then that value was separated by HITs
and CRs. As has been shown in prior studies, the RT-HITs have

A

B
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FIGURE 3
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D
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FIGURE 3

Correctness of responses. (A) The maximum number of average correct response, 48.6, occurs at 25, the optimal number of responses, and the
distribution is similar for men and women. (B) Same data with average number of responses for each level of total correct responses for individuals
at that level, particularly showing the decreased number of responses with fewer total correct. (C) This analysis breaks the total correct into HITs and
CRs and shows the number of HITS and CRs for each specific response count. Dashed lines show the calculated numbers for random performance,
indicating the degree to which the responses of individuals in general are not random. Panels (D,E) show the average number of HITs and CRs
averaged for each age, the quadratic (polynomial) regression line, and a line 2 SD for the whole population below the regression line.
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an inversely proportional dependence on total correct responses
with an R2 of about 10% (Figure 6A). However, there was a
stronger relationship between RT-HITs and number of HITs, with
an R2 closer to 13%, similar for men and women (Figure 6B).
In contrast, the number of CRs had essentially no relationship
with RT-HITs (Figure 6C). Therefore, the number of HITs was

the factor generating the relationship between correctness and
RT-HITs, and the number of CRs does not contribute to this
relationship.

Additional plots that compared the RT-HITs in association
with the numbers of HITs and CR for users scoring between
21 and 25 (perfect) correct for each variable were constructed

A

B

FIGURE 4
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FIGURE 4

Number of users and cumulative percent of individuals associated with each number correct. (A) Number of users for total correct. Panel (B) shows
the same data separated by HITs and CRs. The next graphs show the cumulative percent for the population: panel (C) for TC (total correct); and
panel (D) for HITs and CRs. Note that all three cumulative plots show a major exponential relationship between responses and correctness, with the
highest relationship shown with HITs, R2 = 0.995. The numerical values of the raw data are shown in Table 1A for clinical purposes.

to examine the dichotomy of HITs and CRs (Figures 7A–
E). When the number of CRs is held constant, there was a
significant and linear relationship with the number of HITs,
with a higher proportion of HITs associated with faster RT-HITs.
However, when the number of HITs was held constant, there

was a minimal relationship of the RT-HITs with the number
of CRs, actually starting out slightly negative (suggesting a few
CRs could make RT faster), but with lower HIT counts. These
graphs clearly show there is no relationship between RT-HITs and
CRs.
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TABLE 1A Total correct (TC), total HITS, and total CRs, with percentiles
and Z-scores relative to the mean numbers for each measure.

Percentile Z-score

TC

50 99.90 3.09

49 86.65 1.11

48 65.41 0.40

47 44.87 −0.13

46 28.94 −0.56

45 17.63 −0.93

44 10.90 −1.23

43 6.93 −1.48

42 4.62 −1.68

41 3.02 −1.88

40 2.06 −2.04

39 1.36 −2.21

38 0.95 −2.35

37 0.64 −2.49

36 0.46 −2.60

35 0.36 −2.69

34 0.24 −2.82

33 0.10 −3.08

HITS

25 99.90 3.09

24 67.91 0.47

23 40.51 −0.24

22 23.21 −0.73

21 13.82 −1.09

20 8.18 −1.39

19 5.14 −1.63

18 3.41 −1.82

17 2.27 −2.00

16 1.54 −2.16

15 1.09 −2.29

14 0.72 −2.45

13 0.57 −2.53

12 0.38 −2.67

11 0.28 −2.77

10 0.19 −2.90

9 0.10 −3.08

CRs

25 99.90 3.09

24 62.83 0.33

23 27.71 −0.59

22 9.96 −1.28

21 3.48 −1.81

20 1.17 −2.27

19 0.28 −2.77

18 0.13 −3.01

17 0.08 −3.17

16 0.04 −3.33

TABLE 1B Average number of HITs and CRs and −1, −1.5, and −2 SD, by
10-year age cohorts.

Mean −1 SD +1.5 SD −2 SD

HITS

Male age

21–31 23.5 21.4 20.4 19.3

31–40 23.5 21.4 20.4 19.3

41–51 23.4 21.3 20.3 19.2

51–60 23.3 21.2 20.2 19.1

61–70 23.2 21.1 20.1 18.9

71–81 23 20.9 19.9 18.7

81–90 22.8 20.6 19.5 18.5

Female age

21–31 23.4 21.3 20.3 19.3

31–40 23.4 21.4 20.4 19.4

41–51 23.4 21.3 20.3 19.3

51–60 23.2 21.2 20.2 19.1

61–70 22.9 20.9 19.9 18.8

71–81 22.5 20.4 19.4 18.4

81–90 21.9 19.9 18.9 17.9

CRs (correct
rejections)

Male age

21–31 24.1 23.2 22.8 22.3

31–40 24.1 23.2 22.8 22.3

41–51 24 23.1 22.7 22.2

51–60 23.9 23 22.6 22.1

61–70 23.8 22.9 22.5 21.9

71–81 23.6 22.7 22.3 21.8

81–90 23.4 22.5 22.1 21.6

Female age

21–31 24 23 22.5 22

31–40 24 23 22.5 22

41–51 23.9 22.9 22.4 21.9

51–60 23.8 22.8 22.3 21.8

61–70 23.6 22.6 22.1 21.6

71–81 23.4 22.4 21.9 21.4

81–90 23.2 22.2 21.7 21.2

More than 2 SD is generally considered abnormal. Two values outside 1.5 SD are considered
possible impairment.

Response time distributions, the RevEx
model

As shown previously with a different data set (Ashford
et al., 2022a), RT-HITs in this CRT showed a positively skewed
distribution (Figure 8A). Also, the present analysis of the
broader distribution of RT-FAs showed a similar positively skewed
distribution (for the reduced number of individuals making FAs;
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Figure 8B). When the two curves were transformed with a
cumulative distribution, the RT-HITs showed a tighter distribution,
and the RT-FAs distribution showed a faster RT about 40% of the
time and a progressively slower RT for 60% of the users (Figure 8C).
When a negative logarithm of the cumulative distributions was
plotted, a reverse exponential regression line (RevEx) explained
more than 99% of the variance for the distribution of the RT-HITs.
There was a substantially different distribution for RT-FAs, though
the exponential regression line still explained better than 98% of
the distribution. For both curves, there was a notable fall-off at the
longer RTs suggesting that the rare extremely slow responses are
related to phenomena that are not part of the test activities.

Response time distribution and age

To assess the effect of age on the RT-HITs distribution,
individuals were divided according to the median age, 50 years
old, and the RevEx curves were calculated for the younger and
older groups. The users under 50 years old had a slightly faster
distribution of RT-HITs than those over 50 years old (Figure 8E).
Of further interest, the exponential regression function of the
cumulative distribution showed that the users with the slower RTs
had greater age-related slowing (Figure 8F). The statistical and age-
cohort distributions are provided (Tables 1C, D), though there is a
basic question of whether the definition of abnormality can be made
statistically or in relation to the patient’s age or that of a “young” and
“healthy” adult.

Discussion

Standard clinical tests of neuropsychological and cognitive
function utilize face-to-face, paper-and-pencil tests administered
by trained neuropsychologists or technicians. However, new
computerized tests may be able to provide greater precision and
improved efficiency. In particular, the tests used for measuring
learning, memory, and cognitive functions in participants, often
self-reporting concern, are a major problem in clinical settings.
Direct face-to-face interactions may bias observations and not
provide adequately precise assessment of these critical brain
functions. Further, such data are susceptible to inter- and intra-
rater variability that contributes to type 1 and 2 error when included
in the diagnostic process. The present study examined whether
behavioral metrics reflecting learning, memory and cognition
provided by participants 21–100 years old who voluntarily
performed the MemTrax computerized application of a CRT could
yield clinically meaningful data.

This easy-to-use MemTrax test was accessed by online users
without known clinical concerns or cognitive impairment and
without supervision. Participants in the present dataset provided
no clinical information or indications of supervision. Though there
were self-report questions, they could not be verified. Participants
may have had different motivations for accessing the task. For
example, the preponderance of participants were women in the
early menopause and menopause range (40–65 years old), which
is known to be associated with memory complaints (such as “brain
fog”); though, after 80, when women outnumber men 2:1 in the

general population, there was an equal number of users across
both sexes. Comparing male and female users across the age
range and establishing the continuity and the validity of the data
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FIGURE 5

The average RTs performed by all participants with a polynomial
regression and R2. Panel (A) shows the RT averages for individuals’
HITs, showing the slight increase of RT-HITs with age, similar for
men and women, as previously reported (Ashford et al., 2019). Panel
(B) shows the RT averages for FAs, with fewer individuals, both men
and women. A small difference in men and women is present, with
a slightly higher proportion of men having FAs and slightly slower
RT-FAs. Panel (C) shows the average for each age, providing a
similar pattern of RT change with respect to age as the regression
line in panel (A), but the significance with respect to age is greatly
increased. Panel (D) shows the same for FAs, also comparable to
the raw data, but the significance of the regression lines is less than
for the RT-HITs.

produced by MemTrax is substantiated and replicates prior studies
(Ashford et al., 2022a).

MemTrax is in the family of SDTs which uses the CRT
paradigm. However, there is an important question regarding
whether Signal Detection Theory is applicable to this CRT. The
stimuli presented by the MemTrax CRT activate the range of
sensory and cognitive processes that IPMs suggest are occurring in
the brain of a participant attending to and responding as instructed
to those stimuli during the test. Signal Detection Theory provides a
mathematical framework to differentiate between target stimuli and
non-target stimuli. With this theory, an image being shown for the
first time would be the non-target, while the repeated image would
be the target. In this model, the occurrence of target and non-target
stimuli would theoretically each be normally distributed along a
line of probability. Signal Detection Theory provides a format to
calculate a d’ factor which defines how far apart the probabilities
are for the two distributions. Also, there is a beta factor which
defines whether the observer is more or less likely to respond to
a target or non-target, along the continuum. A question raised
by this study was whether the Signal Detection Theory concept
of a d′ factor could be related to HITs and FAs, and whether a
beta factor could relate the tendency to under- or over-respond
and explain performance. However, since the distributions of HITs
and FAs had separate relationships to TC and RT, there is no
probabilistic relationship between them, and accordingly, Signal
Detection Theory does not appear to apply to the analysis of the
MemTrax CRT. This finding is consistent with similar studies of
CRTs (Fuchs et al., 1999). In a CRT, the HITs represent a complex
recognition event, not just the distinguishing of a signal from a
noise, and the FAs represent the tendency to lack inhibition in the
complex decision to respond or not respond. Thus, the HITs are
an indication of the brain’s ability to store stimulus information in
EM and recognize it later, a function of the temporal lobe (Ashford
et al., 1998; Sherwood et al., 2020), which is particularly impaired by
damage to the hippocampus (Stark et al., 2002), a hallmark of AD.
Alternatively, the tendency to over-respond (lack of inhibition) is a
frontal lobe issue (Konorski, 1972), unrelated to recognition ability,
which occurs in distributed and interactive cortical networks that
encode information into EM (Fuster and Bressler, 2012; Sherwood
et al., 2020).

This study examined whether behavioral metrics in 18,245
participants between 21 and 100 years old who completed a simple
demographic questionnaire and the MemTrax CRT showed a
distribution of performance metrics appropriate for the analysis of
memory function and whether those metrics were related to sex and
age. Most participants performed this task with zero to six FA or
MISS errors, suggesting that the internal state of the participant was
the principal factor being measured, and external factors not related
to the task had minimal effects on the quality and distinctiveness of
the information processing.

The two types of errors, MISSes (1-HITs) and FAs (1-CRs),
had different effects on RT-HITs. In this case, incrementally
increasing the number of FAs on trials with a set number of
MISSes does not increase RT-HITs (Figures 6, 7). However,
incrementally increasing the number of MISSes on trials with
a set number of FAs progressively slowed RT-HITs. This
dichotomy suggests that incorrect analyses of non-matching
and of matching stimuli resulting in FAs and MISSes have
different effects on correct analysis of matching stimuli associated
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TABLE 1C Response times for HITs in milliseconds, with percentiles and Z-scores relative to the mean for each 10 ms time bin.

RT-HITs Percentile Z-score RT-HITs Percentile Z-score

560 100.0 3.9 1,100 9.4 −1.3

580 100.0 3.4 1,120 8.1 −1.4

600 99.9 3.0 1,140 7.1 −1.5

620 99.6 2.6 1,160 6.1 −1.5

640 99.1 2.4 1,180 5.2 −1.6

660 98.2 2.1 1,200 4.5 −1.7

680 96.7 1.8 1,220 4.0 −1.8

700 94.5 1.6 1,240 3.4 −1.8

720 91.1 1.3 1,260 2.9 −1.9

740 87.4 1.1 1,280 2.4 −2.0

760 82.6 0.9 1,300 2.1 −2.0

780 77.1 0.7 1,320 1.8 −2.1

800 70.9 0.6 1,340 1.6 −2.1

820 64.7 0.4 1,360 1.4 −2.2

840 58.6 0.2 1,380 1.2 −2.3

860 52.3 0.1 1,400 1.0 −2.3

880 46.3 −0.1 1,420 0.9 −2.4

900 40.7 −0.2 1,440 0.8 −2.4

920 35.6 −0.4 1,460 0.7 −2.5

940 31.0 −0.5 1,480 0.6 −2.5

960 26.9 −0.6 1,500 0.6 −2.5

980 23.4 −0.7 1,520 0.5 −2.6

1,000 20.3 −0.8 1,540 0.5 −2.6

1,020 17.3 −0.9 1,560 0.4 −2.7

1,040 14.8 −1.0 1,580 0.3 −2.7

1,060 12.7 −1.1 1,600 0.3 −2.8

1,080 11.0 −1.2

with HITs. Therefore, incorrect analysis of novel non-matching
stimuli resulting in FAs alters the effect that incorrect analysis
of familiar matching stimuli resulting in MISSes has on RTs
for correct analyses of matching stimuli producing HITs. The
incorrect analysis of familiar matching stimuli, producing MISSes,
is recognition failure. However, incorrect analysis of novel
non-matching stimuli producing FAs has no slowing effect
on RTs for correct analysis of matching stimuli producing
HITs. Thus, the lack of familiarity of matching stimuli, which
results in MISSes, indicates a disruption in the recognition
process.

A recent MemTrax study (Ashford et al., 2022a) performed
independent analyses of the HITs and CRs and showed a substantial
difference in their distribution, and there was a closer relationship
of RT-HITs to total HITS than to TC, while there was essentially
no relationship between CRs and RT-HITs. These distributions
reported here are essentially identical to those reported from the
more recent MemTrax data set (Figure 3; Ashford et al., 2022a),
providing strong reproducibility for MemTrax data across different
settings.

Consistent with the study in large group settings (Ashford
et al., 2011b), age appears to adversely affect performance on
the MemTrax CRT. Presumably, age alters the sensitivity of the
information processing apparatus and brain functions that encode
then recognize an event, in this case, the visual processing system.
Further, age is associated with decline in brain efficiency to
expend effort to direct attention and initiate new learning that
establishes familiarity and transition the information processing
apparatus to a state of automaticity and habituation. As such,
age degrades the capacity of STM to transfer information into
EM to maintain representations. This deterioration of processing
leads to slow and failing recognition responses and mediates the
effect of MISSes on RTs for HITs, as seen in a study of similar
parameters (Ratcliff et al., 2021). A separate process in which the
individual is trying excessively hard to make responses results in
FAs. Importantly, these different effects of errors on performance
may alter mathematical relationships between these events, but
differently than described by Signal Detection Theory (Stanislaw
and Todorov, 1999). In the current study, an effect of age on
impairing performance is clearly seen with HITS, CRs and RTs,

Frontiers in Human Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1304221
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1304221 March 28, 2024 Time: 15:12 # 17

Clifford et al. 10.3389/fnhum.2024.1304221

though the age-effect is small with respect to inter-individual
variability.

The effects of age on STM and EM and on error are not
addressed by traditional SDTs that instruct individuals to attend
to and detect occurrences of a specific “target” stimulus or stimuli,
such as the Sternberg task (Sternberg, 1966). This traditional
strategy produces data that illustrate a general proportional linear
increase in RTs toward those stimuli in the elderly, with a
disproportionate deterioration of those RTs related to memory
function (Poon and Fozard, 1980; Bowles and Poon, 1982; Hines
et al., 1982; Myerson et al., 1990; Yesavage et al., 1999; Ishihara
et al., 2002). However, the utilization of a specific target has
not been useful in producing data that describe a continuum
identifying within- and between-group variation and a formula that
distinguishes transition from normal to non-normal processing.
This deficiency may reflect the effect of instruction on those
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FIGURE 6

The relationship of the RTs for Hits for all participants with respect
to correctness. Panel (A) shows the relationship with TC (total
correct) responses, while panel (B) shows the portion of correct
responses contributed by HITs, which is more significantly related to
the RT for the HITs than for TC. By contrast, panel (C) shows the
portion of correct responses contributed by CRs, and this metric
has essentially no relationship to the RT for HITS.

operations in WM during the task. In these traditional SDTs,
instruction sets a criterion that directs those operations in WM
to deploy processes that maintain and compare the representation
of the “target” in STM with the present stimulus. Thus, analysis
resulting in a match or mismatch between that information in
STM clears content from STM on that trial so that only the
representation of the “target” occupies STM during the interval
between presentations. The MemTrax CRT effect, pushing way
beyond the immediate storage capacity of STM, alters the focus
expended by operations in WM to deploy resources, so it is the
neural processes of EM, predominantly related to medial temporal
lobe function, which produce correct and incorrect responses. This
difference is the critical factor provided by the CRT used in the
present study. Accordingly, the MemTrax CRT is predominantly
assessing the capacity, or decreased capacity, of EM, specifically the
function of the medial temporal lobe.

In the MemTrax CRT, instruction to attend to all stimuli and
detect repetition of a stimulus directs neural systems to deploy
processes to maintain and compare each representation with those
from other trials to detect a match. As such, each stimulus must
be viewed first as new information in STM. The critical issue
is whether the present stimulus matches information previously
perceived. If there is no match, this information requires transfer
into EM for use on subsequent trials (Baddeley and Hitch, 2000;
Baddeley et al., 2019). The process of encoding the new information
is presumably similar to neural functions associated with the
P300 evoked potential, which is particularly disturbed in early
AD, likely due to the critical underlying pathology affecting EM
(Ashford et al., 2011a; Marizzoni et al., 2019). If the encoding is
adequate, then the analysis of a repeated stimulus will result in a
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neural correlation with the same item residing in EM, a process
directed by operations in WM which search for and recognize the
representation that matches the present stimulus to indicate if it is
a repeated “target” image. In contrast to the small effect of age on
HITs, CRs, and RTs, the much greater inter-individual variability is
likely related to fundamental differences between individuals across
the lifespan, though any relationship to differences indicative of
pathological processes needs further study.

In MemTrax, if the stimulus is “new,” it increases the length
of the list of items to be stored, quickly exceeding the capacity of
STM, thus requiring transfer of the item information into EM. This
transfer makes each encoding and repeat analysis more difficult
as the number of unique items perceived increases from 1 to 25,
and the number of possible intervening, distracting items increases
to 49, many occurring as repeated items more than a minute
later. This progressive challenge allows for assessment of a broad
range of cognitive abilities and potentially very early detection of
cognitive impairment as is now widely desired for detecting early
AD (Ashford et al., 2022b; Mattke et al., 2023).

The modest change in instructions from traditional SDTs
stipulating the target items before the test begins to those of

MemTrax delivering a progressive accumulation of a large number
of target items during the CRT places a great demand on
STM. The effects of distraction and decay on processes that are
usually accommodated and directed by operations in WM instead
require substantial encoding in EM, even beyond traditional
applications of CRTs. This modification alters task complexity and
the demands placed on individual vigilance during that intervening
period between initial stimulus presentations and repetitions. The
likelihood of responses thus infers events that IPMs suggest occur
in the brain (Broadbent, 1965; Raaijmakers and Shiffrin, 1992), and
are consistent with extensive study of human memory (Malmberg
et al., 2019; Mulligan et al., 2023). Thus, the precision of the
MemTrax CRT and its challenge for STM performance allows
it to provide a substantial evaluation of STM from relatively
normal individuals to those with mild to moderate EM impairment,
potentially even exceeding the challenge of substantially delay recall
testing (Wearn et al., 2020).

Current state-of-the-art Neuropsychological tests frequently
take over 2 h of face-to-face administration most still using
paper and pencil (the classic Luria-Nebraska test requires
18 h), making them costly, instructionally complicated, and
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FIGURE 7

(A–E) The RT for HITs apportioned by number correct for HITs and CRs. For a set number of HITs (25 to 21), there is essentially no relationship
between RT-HITS and the number of CRs. However, regardless of the number of CRs (25 to 21), the RT-HITs have a strong linear relationship
between the RT-HITs and the decreasing number of HITs. Note that for 25 CRs, the value is the same in all five graphs, though the slope of the
relationship between RT-HITs and number of HITs declines slightly as the number of CRs decreases. By contrast, the slight positive relationship
between CRs and RT (more CRs, fewer FAs, slower RT-HITs) shows a progressive decrease overall across the graphs.
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time-consuming. These assessments classically are divided into
measures of intelligence, language, visuospatial, memory (a broad
function), and executive function. The critical issue in Alzheimer’s
disease is measurement of episodic memory, which is awkwardly
assessed by verbal learning tests, drawing a clock, and drawing

recall tests. And few neuropsychological test components are
suitable for frequent longitudinal assessment. While computerized
batteries have been developed, mostly based on implementation of
traditional tests, there is no accepted CRT for clinical utilization.
The MemTrax CRT is characterized by high measurement precision
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and addresses several limitations of the current neuropsychological
tests. Measuring the effects of FAs and misses on RTs for hits during
performance of MemTrax across the items of the tests, including
the types of categories and number of intervening stimuli which

can be standardized for users of different ages and cultural and
genetic backgrounds, may be used to describe the mathematical
performance of STM for measuring cognitive processes directed
by operations in WM. However, some aspects of intelligence,
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FIGURE 8

The number of individuals with an RT, both for HITS and FAs, across all the analyzed data. Panel (A) shows the distribution of the RT-HITs, by
millisecond, the number of RT-HITs across the user population for each millisecond, with a range from 550 to 2,000 ms. Panel (B) shows the
distribution of the RT-FAs, with a range from 250 to 2,999 ms. Note the skewed distribution of both plots. Panel (C) shows the curves for cumulative
distribution for both RT-HITs and RT-FAs, clearly showing the different distributions, with 45% of the individuals having faster RT-FAs than RT-HITs,
while there are 55% of the users for whom RT-HITs were faster than RT-FAs, with a notably larger number substantially slower. Of course, there were
many more responses for HITS across users than FAs, but that discrepancy would not be expected to affect this distribution. (8) Taking the negative
natural log of each slope, there is again a very strong reverse exponential relationship (RevEx), explaining well better than 99% of the variance of
RT-HITs and only slightly less for RT-FAs. Panel (E) shows the cumulative distribution of RT-HITs for those below and above the median age of
50 years old, with the older group being slightly slower across all times than those under 50. (F) The negative natural logs again explain more than
99% of the variance, but the slope shows that RT-HITs are slightly longer for those over 50, suggesting that the difference in those at the slower end
are progressively even slower with increased age.
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TABLE 1D Response times for HITs and FAs and +1, +1.5, and +2 SD, in
milliseconds, by 10-year age cohorts.

Mean +1 SD +1.5 SD +2 SD

RTs for
HITS

Male age

21–31 879 1,042 1,124 1,205

31–40 876 1,039 1,121 1,202

41–51 884 1,047 1,129 1,210

51–60 902 1,066 1,148 1,229

61–70 932 1,095 1,177 1,258

71–81 972 1,135 1,217 1,298

81–90 1,023 1,186 1,268 1,349

Female age

21–31 864 1,020 1,098 1,176

31–40 863 1,019 1,097 1,175

41–51 874 1,030 1,108 1,186

51–60 897 1,053 1,131 1,209

61–70 933 1,089 1,167 1,245

71–81 982 1,138 1,216 1,294

81–90 1,043 1,199 1,277 1,355

RTs for FAs
(false
alarms)

Male age

21–31 1,027 1,444 1,653 1,861

31–40 1,008 1,425 1,634 1,842

41–51 1,008 1,426 1,635 1,843

51–60 1,028 1,445 1,654 1,862

61–70 1,067 1,484 1,693 1,901

71–81 1,125 1,542 1,751 1,959

81–90 1,202 1,619 1,828 2,036

Female age

21–31 984 1,396 1,602 1,809

31–40 965 1,377 1,583 1,789

41–51 968 1,380 1,586 1,792

51–60 992 1,404 1,610 1,816

61–70 1,038 1,450 1,656 1,862

71–81 1,106 1,518 1,724 1,930

81–90 1,195 1,607 1,813 2,020

More than 2 SD is generally considered abnormal. Two values outside 1.5 SD are considered
possible impairment.

processing speed, language and visuospatial function, and executive
function are also reflected in MemTrax performance. Further,
MemTrax provides the precision to define the transition from
normal to abnormal processing. Measurement of these additional
aspects of cognition are important when assessing for clinical
phenomena like AD, and further development of MemTrax and its
analysis may provide such information.

The simple application of the MemTrax CRT can be used
to measure RT to stimuli when these neurological processes are
at least modestly preserved in AD patients or individuals with
mild impairment. The application of an RT measurement for
simple versus complex choice to measure cognitive ability, to
make decisions about differences between stimuli, a distinction
that requires maintenance in STM during the interval between
occurrences, shows a specific impairment in AD (Pirozzolo et al.,
1981). The requirement of making a complex choice requires
the individual to examine their intentional maintenance of that
information by those operations in WM during this testing,
another specific impairment of AD (Mahurin and Pirozzolo,
1993). Consequently, the MemTrax implementation of the CRT
paradigm could be of considerable utility for early detection
and identification of the dementia associated with AD when
the cognitive impairment is still mild. By precisely assessing the
capability of the brain’s neural processing systems related to EM,
the MemTrax test can be used for tracking later mild states with
considerable precision as the AD pathology alters learning, memory
and cognitive functions. The MemTrax metrics may also have
utility in identifying clinical populations that may benefit from
disease modifying or progression-prevention treatments. Further,
the specific MemTrax metrics can define phenomena in target
populations that can be applied to assess beneficial aspects of new
treatments. By using MemTrax, an engaging assessment tool, the
test itself will enhance enrollment and adherence to protocols in
individuals who are likely to benefit from intervention. Provided
over the time-course of a study of essentially any length, MemTrax
can provide consistent assessment of the effectiveness of those
treatments, thus increasing the power of study designs.

In addition, MemTrax may be used for patients with dementia
who are presently unrecognized in the primary care setting. In
2011, Medicare added detection of cognitive impairment to its
annual wellness visit.3 The Centers for Medicare and Medicaid
Services’ guidance recommends assessing a patient’s learning,
memory and cognitive functions by direct observation, including
consideration of information and concerns reported by the patient,
family members, friends, caregivers, and others, and, if appropriate,
using a brief validated, structured assessment tool to objectively
measure these functions (Masuda et al., 2022). MemTrax could
provide data to the clinician for use in the objective evaluation of
impairments expressed by the patient or caregiver during the in-
office or virtual healthcare interview and for directing application
of additional testing (Ashford et al., 2022b). The MemTrax results
can then be evaluated and used by the clinician to increase
certainty of diagnosis and to anticipate problems patients may
have in understanding and adhering to medical treatment and
plans needed for advance planning by patients and families. For
a CRT like MemTrax to become a standard in an environment,
for which it is well-suited, additional clinical work will be required
to establish benchmarks across the continuum from the diverse
normal population through the mild phases of memory dysfunction
associated with early AD to the mild and moderate phases of
dementia (Ashford and Schmitt, 2001; Ashford et al., 2023).
However, the percentiles, SDs, and Z-scores provided in the tables

3 www.cms.gov/cognitive
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are essentially identical across MemTrax studies, suggesting that
this CRT is ready for clinical testing.

Limitations and strengths

The HAPPYneuron data were based on population recruitment
of anyone interested in online computer games that might preserve
their memory. There was no population-based sampling and older
individuals with significant memory difficulties who were not
aware of their problems would not be likely to have become
participants. Therefore, the level of cognitive impairment of any
individual/participant was not determined. This selection process
thus did not address this critical issue for validating the use of
MemTrax as a cognitive assessment tool for the elderly. However,
with so many individuals, the results presented here did represent
a broad population of online users who were concerned about their
memory. Further, much larger samples have been accumulated in
other studies, including www.memtrax.com since 2013 (Ashford
et al., 2022a), www.brainhealthregistry.org (Cholerton et al., 2019),
and China (Liu et al., 2021), including two studies which have
shown MemTrax to be at least as clinically useful a measure as
the Montreal Cognitive Assessment (Van der Hoek et al., 2019; Liu
et al., 2021). However, in-depth, case-controlled, clinical utilization
studies are needed to develop precise metrics for screening for
memory impairment and other cognitive functions and accurately
and precisely assessing early dementia changes over time (Ashford
et al., 2022b).
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