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Introduction: This study conducts a comprehensive exploration of the

neurocognitive processes underlying consumer credit decision-making using

cutting-edge techniques from neuroscience and machine learning (ML).

Employing functional Near-Infrared Spectroscopy (fNIRS), the research

examines the hemodynamic responses of participants while evaluating diverse

credit offers.

Methods: The experimental phase of this study investigates the hemodynamic

responses collected from 39 healthy participants with respect to different loan

offers. This study integrates fNIRS data with advanced ML algorithms, specifically

Extreme Gradient Boosting, CatBoost, Extra Tree Classifier, and Light Gradient

Boosted Machine, to predict participants’ credit decisions based on prefrontal

cortex (PFC) activation patterns.

Results: Findings reveal distinctive PFC regions correlating with credit behaviors,

including the dorsolateral prefrontal cortex (dlPFC) associated with strategic

decision-making, the orbitofrontal cortex (OFC) linked to emotional valuations,

and the ventromedial prefrontal cortex (vmPFC) reflecting brand integration and

reward processing. Notably, the right dorsomedial prefrontal cortex (dmPFC)

and the right vmPFC contribute to positive credit preferences.

Discussion: This interdisciplinary approach bridges neuroscience, machine

learning and finance, offering unprecedented insights into the neural

mechanisms guiding financial choices regarding different loan offers. The

study’s predictive model holds promise for refining financial services

and illuminating human financial behavior within the burgeoning field of

neurofinance. The work exemplifies the potential of interdisciplinary research

to enhance our understanding of human financial decision-making.
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1 Introduction

Since Plato, followed by his pupil Aristotle, humans have
been characterized as rational animals (Keil and Kreft, 2019).
This assumption was so central to the way humans conceived
of themselves that it served as the foundation for entire
legal and economic systems (Blasi and Jost, 2006). Normative
theories of decision-making, such as the St. Petersburg paradox,
introduced by the 18th-century mathematician Daniel Bernoulli,
prescribes optimal approaches to decision-making (Bernoulli,
1954). Bernoulli’s explanation was based primarily on the
distinction between the objective value (i.e., the expected utility)
and the subjective value (i.e., the expected benefit) of the potential
monetary gains. The lack of human-related materials has led to
the aforementioned distinction in order to fully and rationally
explain such a paradox. In the mid-20th century, mathematician
John von Neumann and economist Oskar Morgenstern established
the underlying assumptions of Expected Utility Theory (Von
Neumann and Morgenstern, 1944) and asserted that if certain
conditions were met, individuals’ financial decisions could be
modeled through a utility function (Peasgood et al., 2014).
However, although these theoretical frameworks are valuable, they
are limited in explaining how humans make decisions in both
hypothetical and real-life scenarios. Nearly two millennia later,
following the emergence of behavioral and cognitive sciences,
the question of human rationality started to be a subject of
debate among scholars. With the popularization of prospect
theory (Kahneman and Tversky, 1979), which challenged the
premise of fully rational behavior by offering several examples of
human biases such as framing, subjective reference points, loss
aversion, and the isolation effect, research on the mechanisms
which prevent humans to act rationally grew. Empirical studies
on heuristics, cognitive biases, and situations that can induce
irrational behavior also increased rapidly (De Martino et al.,
2006), and the interest of the scientific community in the
neural basis of financial decision-making processes followed
suit.

1.1 Behavioral finance

Behavioral finance integrates insights from various fields
of research, drawing upon the works of several eminent
scholars, including Nobel laureates. Among them, Herbert Simon
introduced the concept of bounded rationality to explain how
humans’ cognitive limitations influence their decision-making
processes, challenging conventional economic models that assume
fully rational agents (Simon, 1957). Richard Thaler, another
Nobel laureate, started a significant departure from the prevailing
prescriptive economic framework, drawing on the insights of
early cognitive psychologists such as Kahneman and Tversky, and
co-developed the concept of nudging (Kahneman and Tversky,
1979; Sunstein and Thaler, 2008). Over time, a growing body
of research has documented deviations from rational decision-
making processes, demonstrating that individuals consistently and
predictably deviate from the assumptions of traditional finance
models. In addition to these, Shiller (1981) provided compelling
evidence for market inefficiencies, challenging the assumption of

investor rationality that underpins the efficient markets hypothesis.
Shiller’s (1981) work on capital markets played a pivotal role
in garnering the attention of financial researchers to behavioral
finance.

The works of Fama (1970, 1990) Nobel laureate Harry
Markowitz laid the groundwork for what is commonly referred to
as “traditional” finance. Markowitz’s (1952) modern portfolio
theory (MPT) assumes that rational investors base their
decisions on two key criteria: expected reward and variance.
Behavioral finance gained traction among academics due to
the identification of various market inefficiencies and the
limitations of prevailing traditional finance models, including
MPT, to account for these anomalies. Advocates of behavioral
finance extensively employed cognitive psychology theories
to explain suboptimal investor behavior or the decision-
making biases of sentiment-driven traders (Black, 1986;
De Long et al., 1989). The motivation to gain a deeper
understanding of financial decision-making processes has
motivated researchers to adopt novel methodologies and
frameworks, primarily focusing on neuroscientific applications,
and more notably neurofinance. Initial efforts in neurofinance have
focused on elucidating the neural mechanisms underlying
humans’ daily financial behavior, utilizing brain imaging
techniques. Neurofinance has emerged as a distinct field
driven by advancements in brain imaging technologies and
empirical evidence drawn from neuroscience, finance, and
experimental finance. Neurofinance has significantly enhanced our
understanding of neural processes involved in financial decision-
making processes, including credit decisions and investment
decisions.

1.2 Financial decision-making

Financial decision-making results from complex neural
processes involving, among other factors, the ongoing evaluation
of relevant statistical data, the balancing of emotional factors, and
the calculation of essential value indicators crucial for modern
economic thought (Bossaerts, 2009). In financial decision-making,
several factors, including risk and uncertainty, need to be evaluated.
The purpose of these assessments is to obtain rewards, in other
words, a favorable outcome or benefit anticipated from a specific
action or decision. For example, financial risk assessment involves
balancing potential gains against potential losses (Knutson and
Bossaerts, 2007). As reward processing is influenced by homeostatic
and psychological needs and goals, it interacts with emotional
processing. Therefore, the influence of both incidental emotions
and outcome anticipation on financial decision-making seems to
be an essential aspect of the decision-making process (Sander and
Nummenmaa, 2021; Sandberg et al., 2022).

1.2.1 Impact of reward system on financial
decisions

From an evolutionary perspective, the reward concept
is categorized into two primary categories. Primary rewards
encompass essential survival needs, such as food or sex. Secondary
rewards derive their value from their association with primary
rewards, such as monetary gains (Miendlarzewska et al., 2019).
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In other words, for centuries, primary rewards could be obtained
with secondary rewards such as money. While the limbic system
focuses on the quantity of primary rewards, the prefrontal cortex
is responsible for making strategic decisions regarding secondary
rewards to obtain these primary rewards. When making such
strategic decisions, it is crucial to evaluate the potential gains
and losses and ensure that the value gained outweighs the
value given. There is an internal motivation to make the right
decision by evaluating current conditions while drawing upon past
experiences (Beck et al., 2010; Rushworth et al., 2011; Sescousse
et al., 2013).

The neural correlates of financial decision-making are
underpinned by the integration of information from diverse
mental domains and by the operation of intricate neurobiological
processes within the human brain (Erkut et al., 2018). Investigating
neural activity in prefrontal cortex areas during financial decisions
can therefore yield novel insights into this complex cognitive
domain. Dopaminergic systems constitute the brain’s reward
circuitry, responsible for encoding and evaluating reward-related
cues. Financial stimuli are perceived as a form of monetary
incentive, capable of activating the reward system and influencing
decision-making (Walter et al., 2005; Burgdorf and Panksepp,
2006; Bermejo et al., 2011; Lewis et al., 2021). Dopamine receptors,
in particular, modulate risk-seeking and risk-averse tendencies,
affecting the influence of risk–reward trade-offs (Kuhnen and
Chiao, 2009; Soutschek et al., 2023). Just as purchasing decisions
are characterized as a form of problem-solving behavior (Kotler,
1997), decisions related to credit offers can be conceptualized as a
decision-making process involving the identification of the credit
offer, the appraisal of the credit offer terms, and the formulation of
a decision.

The purchasing process necessitates the consideration of a
multitude of factors, including price, size, and other features, with
the aim of optimizing value and contentment (Engel et al., 1995).
Decisions regarding credit offers are potentially influenced by
various internal factors, such as the principal amount, interest rate,
and repayment period, all of which comprise both emotional and
rational considerations, as well as by external factors. For instance,
provided that monthly payments remain within the borrower’s
affordability range, there is a propensity for price escalation as
consumers exhibit a tendency to enter into extended payment
obligations (Shin et al., 2020). An individual’s decision to take
on a loan appears to be influenced by a combination of factors,
including their personal history, their current economic situation,
and episodic emotions such as perceived risk and uncertainty
about the future (Lerner et al., 2015). Before this decision
becomes conscious to the individual, it seems that a significant
activation in the prefrontal regions is necessary to facilitate
optimal goal-directed decision-making. The prefrontal cortex is
associated with various higher-order cognitive functions, including
problem-solving, decision-making under uncertainty, strategic
thinking, working memory, and cognitive control (Funahashi,
2017).

1.2.2 The role of the prefrontal cortex on financial
decisions

A comparative study of products from national and private
brands demonstrated that products perceived as being of higher

quality elicit relatively greater left frontal activation during the
pre-decision phase (Ravaja et al., 2013; Bosshard et al., 2016). In
essence, these findings suggest that the neural activation of the left
prefrontal cortex may serve as an indicator for positive expectations
of gain. This left frontal activation might indicate an integrated
representation of neural processes throughout the prefrontal cortex
(PFC). However, few experimental studies have revealed differential
oxygenation levels in the right dorsolateral prefrontal cortex during
choices between labeled and unlabeled products, as well as between
strong and weak brands (Tusche et al., 2010; Kapoor et al., 2023).
Delving into the underlying mechanisms of this process is essential.
Empirical evidence indicates that the activity of the bilateral vmPFC
intensifies during preference judgments (“Which one do you like
better?”) compared to visual discrimination tasks (“Which drink is
in the bottle?”).

Moreover, three other brain areas exhibited significant
differences in activation between visual discrimination tasks and
preference judgments: the anterior cingulate gyrus, the left insular
cortex, and the right posterior parietal lobule. During visual
discrimination tasks, a significant positive correlation was observed
between activation levels in the anterior cingulate gyrus and the
number of discrimination errors (Paulus and Frank, 2003). An
investigation of neural activity in the PFC revealed that when
individuals made purchase decisions based on price, oxygenation
modulation in the right anterior polar cortex significantly
influenced purchase decisions (Mitsuda et al., 2012; Çakır et al.,
2018). Specifically, the left dlPFC is implicated in decision-making
when exposed to rising prices in addition to the vmPFC activation
which is associated with cash, stock holdings, and trade-offs in
financial decision-making during economic bubbles (Ogawa et al.,
2014).

In contrast, when faced with an unfair offer, especially one
in which fairness and self-interest clash, functional connectivity
between the posterior vmPFC and the right dlPFC intensifies.
During the evaluation of unfair offers, the right dlPFC contributes
to the ability to make normatively aligned decisions even when
they involve personal sacrifices. Conversely, the deactivation of the
posterior vmPFC impairs the ability to make normatively aligned
decisions despite personal costs. The orbitofrontal cortex (OFC),
located within the prefrontal cortex, has been shown to be active
in various studies examining business strategies, purchase choices,
product selection, risk evaluation, financial investment decisions,
and price assessments. Neural activity of the OFC is associated with
the anticipation of rewards. When comparing high-profit margins
to low-profit margins, the OFC exhibited reduced activation or
no activation in response to low-profit margins. Like the OFC,
the right dlPFC also exhibited reduced activation when low-profit
margins were presented. Moreover, activation in the right OFC
intensifies when presented with images of little desirable food,
suggesting that this region plays a crucial role in processing negative
emotional responses. A multitude of factors influence purchasing
decisions, including musical cues, monetary considerations, and
social evaluations. Additionally, perceptual assessments of desirable
and undesirable product features play a significant role in shaping
purchasing decisions (Kumagai, 2012).

An empirical study investigated the brain response of
consumers to various commercial communication strategies at the
point of sale. The neuroimaging data revealed a significant effect on
the perception of marketing strategies in two specific brain regions:
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the OFC and the dorsolateral prefrontal cortex (dlPFC) (Krampe
et al., 2018a). Furthermore, numerous empirical studies examining
financial decision-making processes have yielded insights on a
range of topics such as the influence of ambiguity, the distinction
between risk and ambiguity (Huettel et al., 2006; Coutlee et al.,
2016), the neural representation of ambiguity in the fronto-cortical
regions (Payzan-LeNestour et al., 2013), and the evaluation and
comparison of subjective values in the OFC (Levy et al., 2010;
Padoa-Schioppa and Cai, 2011).

Risk-taking behaviors possess an adaptive value in acquiring
potential benefits, both tangible and intangible. However, the
gains and losses should be precisely assessed, particularly in
uncertain situations (Hsu et al., 2005). In terms of financial
decisions, the evaluation of risk fundamentally hinges on the ability
to control impulsive tendencies, which can be modulated by the
magnitude heuristic. This heuristic can be explained by people
assigning less value to options with low potential gains compared
to options with high potential gains. Therefore, it is necessary to
suppress impulsivity to anticipate scenarios where the potential
losses are significant or the option with an excessively high-risk
profile is chosen. The decrease in the neural activity of the right
dlPFC diminishes the influence of this heuristic, impeding the
ability to control impulsive reactions (Ballard et al., 2018). On
the other hand, increased activity in the left dlPFC and decreased
activity in the right dlPFC are associated with risk-taking in the
context of loss, especially when protection is a concern (Huang
et al., 2017). Elevated activity in the right dlPFC also contributes
to a higher propensity for risk-taking (Yang et al., 2017).

1.3 Neuromarketing and strategies for
studying consumer behavior

One of the central goals of applied neurobiology is to
unravel the cognitive and neural mechanisms underpinning
purchase decisions (Meyerding and Mehlhose, 2020). Diverse
attributes, such as price, brand, and product features, can influence
individuals’ preferences, and the individuals themselves are also
a crucial factor within this context (Venkatraman et al., 2012).
Marketing researchers and experts have traditionally employed
conventional marketing methodologies including field studies,
surveys, focus groups, and in-depth interviews, to uncover
individuals’ preferences and the factors that shape those preferences
(Ariely and Berns, 2010). However, the past two decades have
seen the emergence of the field of neuromarketing, which
leverages neuroscientific techniques to gain a deeper understanding
of individual decision-making processes, emotional responses,
memory formation, value systems, and attitudinal dispositions
in response to marketing interventions (Ariely and Berns, 2010;
Plassmann et al., 2012, 2015; Çakar et al., 2021).

Neuroscientific methods such as functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG) are utilized
in applied neurobiology research to monitor consumer behavior
and decision-making. However, due to the challenges in real-world
implementation of these methods, fNIRS has gained prominence
in recent years (Krampe et al., 2018b; Lee et al., 2018). This optical
neuroimaging method strives to elucidate human brain processes
by assessing cortical hemodynamic responses. fNIRS also has

extensive applications in both medical and neuroscience research
(Ferrari and Quaresima, 2012; Huo et al., 2021). Numerous studies
have demonstrated that a wide range of phenomena, including
personal preferences, preference intensity, risk-taking behavior,
and task performance, can be detected using fNIRS (Kumagai,
2012; Holper et al., 2014; Kim et al., 2016). Since it is user-friendly
and yields accurate results, machine learning researchers have
also begun using this technique (Ferrari and Quaresima, 2012).
Once deep learning approaches are employed in investigations that
use fNIRS, many of the challenges that we currently encounter,
such as time-consuming data preparation and restricted sample
sizes, will be reduced while still obtaining comparable or superior
classification accuracy (Eastmond et al., 2022).

The synergy between fNIRS and machine learning algorithms
has shown promising results in predicting various cognitive states
and behaviors. An overall accuracy rate exceeding 75% was
achieved when investigating whether referring to a product as
expensive or inexpensive could influence its perceived value-for-
money (Misawa et al., 2014). In mental imagery, an accuracy of over
96% was achieved (Shibu et al., 2023). Moreover, these machine
learning models can differentiate between mind wandering and
task-related episodes with an accuracy of 73.2% (Liu et al., 2021).
In finger-tapping task classification, an accuracy of 99.52% was
achieved (Sommer et al., 2021), and in pain perception task,
an accuracy of 94.17% was attained (Fernandez Rojas et al.,
2019). These studies provide evidence to support the notion that
consumer behavior may be predicted by combining fNIRS and
machine learning algorithms.

1.4 Current research framework

The present study endeavors to develop a classification
model using machine learning algorithms trained on participants’
hemodynamic response data to predict their acceptance or rejection
of bank loan offers. This study investigates the association between
credit decisions and brain activity patterns in the prefrontal
cortex. The main research question is formulated as such: “Is
there a difference in neural activation between positive and
negative credit decisions?” Hereby, we used fNIRS to investigate
the neural mechanisms underlying decision-making toward credit
offers and their impact on the PFC. Thus, we hypothesized an
active involvement of PFC supporting reward anticipation and risk
evaluation, including vmPFC, dmPFC, and dlPFC, that will end up
with accepting or rejecting a credit offer.

The originality of this research stems from its pioneering
combination of the fNIRS technology and advanced machine
learning algorithms to investigate the neural mechanisms
underpinning individual credit decision-making processes. By
identifying unique patterns of neural activation within specific
prefrontal cortex regions, this study provides unprecedented
insights into the cognitive and emotional processes that shape
financial preferences. Moreover, this research contributes to the
burgeoning fields of consumer neuroscience and neurofinance
by proposing a predictive model that not only enhances our
understanding of individual credit decisions but also holds the
potential to inform the development of personalized financial
services and strategies.
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2 Materials and methods

2.1 Participants

A total of 39 participants (21 female) residing in Türkiye were
recruited to take part in this study. The age of the participants
ranged from 18 to 46 years. The mean age and standard deviation
of participants before preprocessing were 32.75 (SD = 5.05)
for females and 34.3 (SD = 5.78) for males, the result of the
statistical test indicated no significant age difference based on
gender [t(34) = −0.84, p = 0.404]. Moreover, the age distribution of
the participants with respect to their educational background also
showed no significant difference with respect to age [t(32) = −0.56,
p = 0.58]. The mean age and standard deviation of participants
before preprocessing were 32.89 (SD = 4.65) for high school
graduates and 33.94 (SD = 6.27) for Bachelor’s degree holders, the
result of the statistical test indicated no significant age difference
based on gender [t(34) = −0.84, p = 0.404].

The participants were selected from the consumer database of
a marketing research company via a stratified sampling method
across gender. All participants were right-handed as measured by
the Edinburgh Handedness Inventory (Oldfield, 1971). None of
the participants had a history of psychiatric disorders. Participants
were paid a monetary incentive for their participation. The data
of 3 participants were excluded due to excessive movements and
artifacts. This study was approved by the research ethics committee
of MEF University (47749665-050.01.04/275). Written informed
consent was obtained from the participants prior to the experiment.

2.2 Optical brain imaging system

The fNIRS is a non-invasive technique to monitor cerebral
hemodynamics, detecting variations in blood oxygenation caused
by neural activity. This technique qualifies as an effective tool for
neuroimaging applications outside traditional laboratory settings.
Essentially, fNIRS accurately tracks cerebral oxygenation and blood
flow dynamics (Bunce et al., 2006). In our study, we utilized a
continuous-wave fNIRS system designed and provided by fNIR
Devices LLC (Potomac, MD, USA).1 This system includes a flexible
headpiece (sensor pad) accommodating 4 light sources and 10
detectors, enabling the measurement of oxygenation levels in the
prefrontal cortex via 16 optodes. It also comprises a control unit
to manage hardware operations and a computer with COBI Studio
software to facilitate data collection (Ayaz et al., 2011). COBI Studio
Software was synchronized with E-Prime Software (v2.0) which
was used for stimuli presentation with the use of markers sent via
parallel port, and fNIRSoft was used for data preprocessing and the
first stages of the analyses (Ayaz, 2010).

The sensor features a source–detector distance of 2.5 cm,
enabling a penetration depth into the brain of approximately
1.25 cm. This configuration enables the system to track relative
shifts in oxyhemoglobin (HbO), i.e., oxygen-laden hemoglobin,
and deoxyhemoglobin (HbR), i.e., hemoglobin that has released
its oxygen load. These shifts in HbO and HbR concentrations,
along with the total hemoglobin (HbT), i.e., the sum of HbO

1 www.fnirdevices.com

FIGURE 1

Spatial distribution of monitored cortical regions using functional
near-infrared spectroscopy (fNIRS). Reproduced with permission
from Ayaz (2010).

and HbR, and the oxygen saturation (Oxy), i.e., the percentage
of oxygenated hemoglobin in the blood, are monitored with a
temporal resolution of 2 Hz. Neural activity assessment hinges on
these oxygenation changes, as variations in the brain blood flow are
intricately linked to functional brain activities through a process
known as neurovascular coupling (Obrig et al., 2000). The related
optodes to this coupling were positioned on the scalp at locations
corresponding to Brodmann areas 9, 10, 44, and 45, as depicted in
Figure 1 (Ayaz et al., 2012).

2.3 Experimental procedure

The task comprised 35 scenarios in which participants were
presented an offer and asked to make credit decisions based on the
current market. In each block, the participants had 7 s to view a
picture of the offer, and 5 s to respond to the offer with a binary
decision (“Yes” or “No”) according to whether they would prefer
to apply or not to apply; finally, an 8-s fixation screen completed
the block, so that each block lasted for 20 s. The total duration of
the experiment was approximately 12 min. E-Prime software (V2.0)
was used for the presentation of the experiment stimulus. The
participants were told that they should press a button to indicate
whether they would or would not apply to the offer displayed on the
screen, based on the details provided. The keys participants needed
to press to indicate their preference were randomly switched in each
block to avoid lateralization biases.

The presented offers contain the details of a loan offer which
includes a term of months (24 months for instance), indicating
the duration over which the loan must be repaid. The interest
rate applied to the loan is also presented (such as 2.39%), which
affects the total cost of borrowing. The principal amount of the
loan, or the total amount borrowed, is 30,000 units. The borrower
is required to make monthly installments of 1,746.33 units to
repay the loan. Over the course of the loan term, the total amount
to be repaid, which includes both the principal and the accrued
interest, sums up to 41,911.88 units. These components are key
in understanding the financial obligations of the loan, including
how much is borrowed, the cost of borrowing, and the repayment
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schedule. Yet, these components are presented in a single screen for
each offer during the experiment.

2.4 Data preprocessing

The preprocessing of the dataset was conducted to reflect the
temporal interplay between the presentation of stimuli and the
resultant changes in tissue oxygenation. We utilized fNIRS data
gathered from 16 optodes operating at dual wavelengths, and
applied a 20th-order, 0.1 Hz low-pass filter. This filtering, as advised
in by Ayaz et al. (2012), was critical for minimizing high-frequency
disturbances stemming from respiratory and cardiac activities. Any
channels that exhibited saturation–a state where the detector’s light
intensity surpassed the analog-to-digital conversion threshold–
were set to null values. We also implemented a robust approach to
identify and rectify motion-related artifacts using a sliding window
motion artifact filter, as described by Ayaz et al. (2011). The data
was segmented into rest and task-related epochs, based on time
synchronization markers embedded within the continuous data
stream. For each optode and during each task block, such as
loan offers and decision-making, changes in blood oxygenation
(1HbO2 and 1HbR) were calculated. This was done using the
modified Beer-Lambert Law and compared against a baseline
oxygenation level established at the onset of each trial (Ayaz, 2010).
In the subsequent preprocessing stage, the mean activity during the
rest periods preceding each task was subtracted from the activity
during each pairing phase. This process helped in highlighting the
stimulus-driven effects. We then computed the average values for
each phase of the pairing, setting the stage for further comparative
analyses. The recorded oxygenation signals, derived by averaging
the six-second trials and calculated as 1HbO2 minus 1HbR, were
then systematically categorized based on the participants’ decisions.
These categorized signals were later employed as target classes in
our ensuing data analysis endeavors.

Our dataset comprised 1,365 observations, which were
obtained from 39 participants each responding to 35 different
stimuli, and covered 66 attributes. These attributes comprise the
“Participant” identifier and the “Response Code,” along with the
values of HbO, HbR, HbT, and Oxy, measured from 16 separate
optodes, amounting to 64 metrics in total. The “Participant”
column serves as an index for the train-test split process, while
the “Response Code” reflects the participants’ binary responses to
the loan offers (classified as “Yes/Positive” or “No/Negative”). In
our predictive model, the 64 metrics derived from the optodes
are used as features, while the “Response Code” serves as the
dependent variable we aim to predict. This distinction ensures that
our model focuses on predicting the outcomes based on objective
neuroimaging data, rather than participant identifiers. We screened
the “Response Code” for any invalid entries and excluded them and
then excluded rows containing more than 28 null columns during
preprocessing. After these steps, the data from three individuals, as
well as specific observations for some participants, were removed
in the preprocessing phase. After the removal of 3 participants
from the dataset, the mean age and the standard deviation for the
remaining 36 participants were 33.36 (SD = 5.09) for females and
34.32 (SD = 5.94) for males no significant difference across gender
was observed [t(31) = −0.48, p = 0.63]. Similarly, the mean age and

standard deviation for the 36 participants were 33.0 (SD = 4.89) for
high school graduates and 34.4 (SD = 6.20) for bachelor’s degree
holders; no significant difference across educational background
was observed [t(29) = −0.70, p = 0.49].

We identified outliers within the data of each participant
using a z-score methodology. This approach involved comparing
each value against the mean and standard deviation specific to
that dataset. Any value exceeding a z-score threshold of 4 was
adjusted to its nearest boundary value, and this adjustment was
uniquely applied for each “Response Code” category. Following
this, we employed an Iterative Imputer method for filling in missing
data. This technique uses a form of regression modeling that
iteratively applies to each variable. It leverages the inter-variable
relationships to estimate the missing data points, as explained in
Azur et al. (2011). To achieve variance normalization across the
different measurement columns, we implemented the standard
scaler algorithm. This algorithm normalizes the data range for each
individual by centering each feature around the mean and scaling
it to unit variance. It effectively standardizes each feature to have
a mean of zero and a standard deviation of one, as explained by
Pedregosa et al. (2011).

We adopted a stratified hold-out approach, allocating 987
observations for training and 195 for testing, derived from a
random selection of 8 participants. The hold-out method is a
prevalent validation strategy in the realm of machine learning. It
entails reserving a portion of the data as a separate subset, which is
not used during the model’s training phase but instead utilized to
evaluate the model’s performance. By choosing participants for this
process, we ensured that the data used in evaluation was completely
independent from the training data. This approach is crucial for
a more precise evaluation of the model’s ability to generalize, as
highlighted by Hastie et al. (2009).

2.5 Handling imbalanced data

The distribution of the “Response Code” within our training
dataset is presented in Table 1. Recognizing the challenge posed
by the imbalanced nature of the processable data, we employed
both oversampling and undersampling techniques to address the
issue (Leevy et al., 2018). For oversampling, we utilized the KMeans
SMOTE algorithm, setting a cluster balance threshold at 0.3. The
KMeans SMOTE algorithm is a synthetic minority oversampling
technique that utilizes KMeans clustering to generate synthetic
samples in a more targeted manner (Chawla et al., 2002). As
for undersampling, the Random Under Sampler algorithm was
implemented. This algorithm randomly selects a subset of data
for the majority class, reducing it to match the size of the
minority class, thereby balancing the dataset (Chen et al., 2013).
In addition to these approaches, to observe the differences between
the methods, we also developed models without the application of
either technique.

TABLE 1 Distribution of the response code in the training dataset.

Count of response code

0 (negative/no) 613

1 (positive/yes) 374
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2.6 Model development

In the model development phase of our study, we utilized
Python 3.10.12, enhanced with essential libraries such as SHAP
0.43.0, catboost 1.2.2, sklearn 1.2.2, imblearn 0.10.1, and xgboost
2.0.2, for data processing, algorithmic exploration, and model
optimization. During the model development, we thoroughly
examined the impact of various machine learning algorithms
on our preprocessed dataset. This investigation encompassed
several key steps, including model selection, feature selection, fine-
tuning of hyperparameters, training, and a detailed evaluation,
allowing for a comprehensive comparison of the performance of
different algorithms.

A large range of algorithms was applied to our dataset, namely
Logistic Regression (Pampel, 2021), Random Forest (Breiman,
2001), Decision Tree (Dietterich, 2000), AdaBoost (Bühlmann and
Hothorn, 2007), XGBoost (Chen and Guestrin, 2016), Extra Tree
Classifier (Geurts et al., 2006), CatBoost (Dorogush et al., 2018),
and LightGBM (Lin et al., 2022). These algorithms, each with
unique characteristics and strengths, are widely recognized and
employed in predictive modeling research, particularly within the
field of neuroscience. This has been documented, for instance, in
the comprehensive review by Glaser et al. (2019), which focuses
on the applications of machine learning in neuroscience. The
specific methodologies we used, detailed in Table 2, highlight the
optimization strategies for each algorithm, guiding the selection of
the most suitable models for different types of analytical tasks.

To enhance the efficacy of our machine learning models,
we engaged in a detailed process of hyperparameter tuning.
This step involved adjusting key parameters such as the
learning rate, number of trees, and maximum depth of the
trees (Hernández-Lobato et al., 2017). The importance of fine-
tuning hyperparameters cannot be overstated, as the performance
of machine learning models is often significantly influenced
by these parameters, a concept emphasized by Hutter et al.
(2019). Our approach involved employing a random search
strategy, which entailed a systematic evaluation of the model’s
performance across a spectrum of hyperparameter configurations.
This evaluation was conducted using a fivefold flat cross-
validation process on the training data that had been set aside
(Wainer and Cawley, 2021). Such a method proved invaluable
in determining the most effective hyperparameter combinations
for the final training of our model. In our research, we explored
a diverse range of algorithms, each characterized by unique
classification strategies and varying parameter values shown in
Table 3.

2.7 Evaluation of machine learning
models

To determine the effectiveness of the models, we utilized
standard evaluation metrics such as accuracy, precision, recall, and
F1 score. The outcomes of these assessments were recorded and are
presented in Table 4, which provides a detailed view of the models’
performance on the test data (15% of the whole dataset).

The area under the curve (AUC) is a metric for evaluating
binary classifiers computed on the receiver operating characteristic

(ROC) curve. The ROC curve shows the trade-off between
the model’s true positive rate (sensitivity) and its false positive
rate (1–specificity) at various threshold settings (Witten et al.,
2016). Fundamentally, the AUC, whose value ranges from 0 to
1, assesses the model’s proficiency in accurately distinguishing
between positive and negative instances. A score of 1 represents
perfect classification accuracy, whereas a score of 0.5 indicates an
accuracy level equivalent to random guessing. Additionally, the
AUC metric is particularly useful in our data set thanks to its
resilience against imbalanced class distributions in the dataset.

To assess the fairness of the machine learning models,
we analyzed performance metrics across different demographic
groups, including groups based on age, gender, and educational
background. We examined the performance metrics to detect any
biases in model predictions. This evaluation aimed to provide
an unbiased understanding of the model’s performance variations
among these subgroups.

2.8 Explainability of the machine learning
models

Assessing the explainability of our model was achieved
through various techniques including SHAP (SHapley Additive
exPlanations) and feature importance (Samek et al., 2017). The
feature importance method quantifies the significance of each
attribute in our predictive model. We employed the permutation
importance method for this purpose, which involves randomly
shuffling each feature in the training set and observing the resulting
variations in the model’s performance (Samek et al., 2017). Features
that substantially affected the model’s accuracy were identified as
the most crucial.

Additionally, we utilized the SHAP method, a model-
agnostic technique for elucidating predictions made by machine
learning models. This method is grounded in the Shapley
values from game theory, which assesses the contribution
of each player (or feature) to a collective outcome (Wang
et al., 2021). In the context of machine learning, SHAP values
represent the mean difference in the model’s prediction with the
inclusion or exclusion of a particular feature. These values,
when aggregated, provide an explanation for the model’s
prediction on a specific input (Wang et al., 2021). The SHAP
approach offers several advantages over other explanatory
methods, notably its model-agnostic nature, consistency, and
local interpretability, as noted by Doshi-Velez and Kim (2017).
Moreover, SHAP values are instrumental in identifying key
features that substantially influence the model’s predictive
behavior.

3 Results

3.1 Statistical analysis

The statistical analyses were carried out via SPSS v22.0 with
4-way Repeated Measures ANOVA using decisions (Yes, No) as
the within-subject factor, optode regions (left, mid-left, mid-right,
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TABLE 2 Machine learning algorithms used for model development.

Machine learning
algorithm

Strengths Weaknesses

Logistic Regression – Simple, interpretable linear model.
– Fast to train and predict.
– Effective for binary classification problems.
– Outputs well-calibrated predicted probabilities.

– Assumes linear relationship between predictors and target.
– Can be outperformed by complex models on non-linear data.
– Sensitive to irrelevant features and outliers.
– Not suitable for complex relationships without feature engineering.

Random Forest – Robust against overfitting due to ensemble approach.
– Handles high-dimensional data well.
– Suitable for both classification and regression tasks.
– Provides feature importance ranking.
– Resistant to noise and outliers.

– May require careful tuning of hyperparameters.
– Can be computationally intensive for large datasets.
– Interpretability of individual trees might be challenging.
– Prone to bias in favor of dominant classes.
– Difficult to visualize complex interactions.

Decision Tree – Easily visualized and interpreted.
– Can handle both numerical and categorical data.
– Does not require data normalization.
– Can model non-linear relationships.

– Prone to overfitting, especially with deep trees.
– Can be unstable with slight data changes.
– Biased with imbalanced datasets.

AdaBoost – Boosting technique improves weak learners.
– Less prone to overfitting.
– Aggregates results for improved accuracy.
– Adapts quickly to changes in the data.

– Sensitive to noisy data and outliers.
– Requires careful tuning of hyperparameters.

XGBoost – Powerful ensemble method with high predictive accuracy.
– Handles missing data effectively.
– Regularization and pruning prevent overfitting.
– Supports various evaluation criteria.
– Handles imbalanced classes through weighted sampling.

– Prone to overfitting if hyperparameters are not properly tuned.
– Requires careful selection of learning rate and tree-specific

parameters.
– Can be computationally intensive.
– Black-box nature makes interpretation challenging.
– Potential for biased predictions if not balanced properly.

Extra Tree Classifier – Random splits lead to reduced variance.
– Generally faster than Random Forest due to randomness.
– Can be less prone to overfitting.

– Potentially less accurate than Random Forest.
– Random splits sometimes produce suboptimal trees.

CatBoost – Handles categorical data directly.
– Less prone to overfitting with default parameters.
– Built-in support for missing data.
– Has an efficient implementation.

– Can be slower to train compared to other Gradient-Boosting
Machine (GBM)s.

– Parameter tuning can be complex for novice users.

LightGBM – Fast training and efficient memory usage.
– Supports categorical features.
– Suitable for large datasets with improved accuracy.
– Uses gradient-based one-side sampling.

– More sensitive to overfitting with small datasets.
– Requires careful tuning for optimal performance.
– Might be less intuitive than traditional GBMs.

right), and optode left–right and up–down placements as the
between-subject factors.

3.1.1 Model assumptions
Before conducting this 4-way Repeated Measures ANOVA,

several key assumptions were checked to ensure the validity of
the analysis. These assumptions included normality test, sphericity
(Mauchly’s test of sphericity), homogeneity of variances (Levene’s
test), multicollinearity, and absence of significant outliers. For
the outputs in which sphericity was violated, adjustments to the
degrees of freedom (using Greenhouse-Geisser or Huynh-Feldt
corrections) were applied.

3.1.2 Multivariate tests
The results of the multivariate tests indicated that the optode

region was significant [F(3, 30) = 4.656, p = 0.01]. The post-
hoc comparisons were performed via multiple comparison tests
with Bonferroni correction. The results of pairwise comparisons
demonstrate that the neural activations in the left region are
significantly higher than in the right region (p = 0.007). There were
significant decision ∗ optode region [F(3, 30) = 2.942, p = 0.05],

and decision ∗ optode region ∗ left–right placement interactions
[F(3, 30) = 4.261, p = 0.05]. There were also marginally significant
decision ∗ optode region ∗ up–down placement [F(3, 30) = 2.765,
p = 0.059]; optode region ∗ left–right ∗ up–down placements [F(1,
32) = 3.431, p = 0.073]; and for decision ∗ optode region ∗ left–right
∗ up–down placements interactions [F(3, 30) = 2.758, p = 0.060].

3.1.3 Tests of within-subjects effects
The results of tests of within-subjects effects indicate that

there was a main effect for the optode region [F(2.646,
84.675) = 5.392, p = 0.002]. The results illustrate that there
are significant decision ∗ optode region [F(3, 96) = 3.884,
p = 0.011], decision ∗ optode region ∗ left–right placement
[F(3, 96) = 4.255, p = 0.007] and decision ∗ optode region ∗

up–down placement interactions [F(3, 96) = 2.840, p = 0.042].
Moreover, there are marginally significant levels of interaction
effects for decision ∗ left–right ∗ up–down placement [F(1,
32) = 3.431, p = 0.073], and optode region ∗ left–right ∗ up–
down placement [F(3, 96) = 2.507, p = 0.064]. The post-hoc
comparisons were performed via multiple comparison tests with
Bonferroni correction.
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TABLE 3 Parameters used during model development.

Algorithm Critical parameters used during model development Tested
range/values

Logistic
Regression

C: This parameter controls the strength of the L2 regularization. A higher value of C will lead to a more regularized
model, which may be less accurate but more robust to overfitting.

(0.01, 0.03, 0.04, 0.05,
0.06, 0.08, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.8, 0.9, 0.1,
0.2, 0.3, 0.4, 0.5, 0.8, 1, 1.5,
2, 2.5, 3, 3.5, 4, 5)

Penalty: This parameter is used to specify the norm used in penalization. l2, l1

Class_weight: This parameter is used to specify weights associated with classes in order to address imbalances in the
training set.

Balanced, none

Random Forest n_estimators: This parameter controls the number of trees in the forest. A higher number of trees will lead to a more
accurate model, but it will also take longer to train.

(100, 200, 300, 400)

Max_depth: This parameter controls the maximum depth of each tree in the forest. A deeper tree will be able to learn
more complex relationships between features, but it will also be more prone to overfitting.

(3, 5, 6, 7, 8, 9, 10, 11, 12)

Decision Tree Max_depth: This parameter controls the maximum depth of the tree. A deeper tree will be able to learn more complex
relationships between the features, but it will also be more prone to overfitting.

(3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15)

Max_features: This parameter defines the number of features to consider when looking for the best split. auto, sqrt, log2

AdaBoost n_estimators: This parameter controls the number of base learners in the ensemble. A higher number of base learners
will lead to a more accurate model, but it will also take longer to train.

(100, 200, 300, 400)

Learning_rate: This parameter controls the learning rate of the AdaBoost algorithm. A higher learning rate will make the
algorithm learn more quickly, but it may also make it more prone to overfitting.

(0.01, 0.03, 0.05, 0.08, 0.1,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1,
1.4, 1.5, 1.6, 1.7, 1.8, 2.0)

XGBoost Max_depth: This parameter controls the maximum depth of each tree in the forest. A deeper tree will be able to learn
more complex relationships between the features, but it will also be more prone to overfitting.

(3, 4, 5, 6, 7, 8)

Learning_rate: This parameter controls the learning rate of the XGBoost algorithm. A higher learning rate will make the
algorithm learn more quickly, but it may also make it more prone to overfitting.

(0.01, 0.03, 0.05, 0.08, 0.1,
0.2, 0.3, 0.4, 0.5, 0.7, 0.9,
1.0, 1.1, 1.3, 1.5)

Extra Tree
Classifier

n_estimators: This parameter controls the number of trees in the forest. A higher number of trees will lead to a more
accurate model, but it will also take longer to train.

(100, 200, 300, 400)

Max_depth: This parameter controls the maximum depth of each tree in the forest. A deeper tree will be able to learn
more complex relationships between the features, but it will also be more prone to overfitting.

(3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 14)

CatBoost Iterations: This parameter controls the number of iterations the algorithm will run. (50, 100, 150, 200)

Depth: This parameter controls the depth of the tree. A deeper tree can model more complex relationships, but may lead
to overfitting.

(2, 3, 4, 5, 6)

Early_stopping_rounds: This parameter stops the training early to prevent overfitting in case the model’s performance
does not improve after a specified number of rounds.

(1, 2, 3, 4, 5, 6, 7, 8, 9)

Learning_rate: This parameter determines the step size at each iteration while moving toward a minimum value for the
loss function. A lower value will make the optimization more robust, but the convergence will be slower.

(0.01, 0.03, 0.05, 0.08, 0.1,
0.3, 0.5, 0.8, 1, 1.3, 1.4, 1.5,
1.6, 1.8)

LightGBM Boosting_type: This parameter defines the type of algorithm to run. gbdt stands for gradient boosting Decision Tree, goss
stands for gradient-based one-side sampling, and darts stands for dropouts meet multiple additive regression trees.

gbdt, goss, dart

Learning_rate: This parameter determines the rate at which the model corrects for errors from the previous iteration.
A lower learning rate can lead to a more accurate model but will take longer to train.

(0.01, 0.03, 0.05, 0.08, 0.1,
0.3, 0.5, 0.8, 1, 1.3, 1.5)

Num_iterations: This parameter specifies the number of boosting iterations, which corresponds to the number of trees
added to the model.

(50, 100, 150)

Early_stopping_rounds: This parameter stops the training early to prevent overfitting in case the model’s performance
does not improve after a specified number of rounds.

(1, 2, 3, 4)

Max_depth: This parameter controls the maximum depth of each tree in the forest. A deeper tree will be able to learn
more complex relationships between the features, but it will also be more prone to overfitting.

(2, 3, 4, 5, 7)

3.2 Model performance outputs

Regarding the model development phase, the model
evaluation metrics were generated and presented as tables.
The performance outputs of undersampling and oversampling

strategies in our model development is given in Tables 5–
7. These tables present a comprehensive classification
report for each predictive model under three distinct data
balancing methods: the original dataset, undersampling, and
oversampling.
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TABLE 4 Evaluation metrics for machine learning models.

Term Definition Formulation

Accuracy The proportion of
predictions that are
correct.

(True positives + true negatives)
/total

Precision The proportion of
positive predictions that
are correct.

True positives/(true positives + false
positives)

Recall The proportion of actual
positive cases that are
correctly predicted.

True positives/(true positives + false
negatives)

F1 score A harmonic mean of
Precision and Recall.

2 × (Precision × recall)/(precision +
recall)

In the original dataset (Table 5), the Extra Tree model
demonstrated the highest overall effectiveness, with an accuracy
of 0.79 and an AUC of 0.78. Meanwhile, the Decision Tree
model was the least effective across all metrics. Upon the
application of undersampling (Table 6), we observed a general
decrease in performance metrics for most models. Conversely,
the implementation of oversampling (Table 7) led to an overall
improvement in model performance. Notably, the CatBoost model
excelled in this scenario, achieving the highest accuracy and AUC
of 0.80 and 0.79, respectively.

3.3 Model explainability

The SHAP analysis output (presented in Figure 2) illustrates
how the activation patterns of different brain regions influenced
model prediction, helping to reveal the importance and impact of
each region on the decision-making process. Figure 2 illustrates the
critical input parameters that have acquired importance during the
model development phase which is generated using the test dataset.

According to the fNIRS recordings, the HbR measurements of
optode 3 (corresponding to the left dlPFC), the HbT measurements
of optode 5, and HbO measurements of optode 6 (corresponding
to the left dmPFC), the HbR measurements of optode 8
[corresponding to the left frontopolar cortex (FPC)], the Oxy
and HbO measurements of optode 10 (corresponding to the right
FPC), and the HbO and Oxy measurements of optode 15, and
HbR measurements of optode 16 (corresponding to the right
dlPFC) correlated to a negative impact on the credit decision of
participants. On the other hand, the Oxy measurements of optodes
1 and 3, and the HbO measurements of optode 4 (corresponding
to the left dlPFC), the HbT measurements of optode 7 and the
HbO measurements of optode 8 (corresponding to the left FPC),
the HbO measurements of optode 9 (corresponding to the right
FPC), the HbT measurements of optode 12 (corresponding to the
right dmPFC), the HbO and HbT measurements of optode 13,
Oxy measurements of optode 14, HbR and HbT measurements
of optode 15, and Oxy measurements of optode 16 (all of which
correspond to the right dlPFC) correlated to a positive impact on
the credit decision of participants.

In Table 8, each feature is associated with an importance
score, which quantifies the contribution of that feature to decision-
making process of the CatBoost model with oversampling. These

importance scores are computed based on the model’s internal
calculations, such as how often each feature is used to split the data
and make predictions. It was observed that the feature importance
outputs were compatible with the SHAP analysis results. The
obtained findings support our initial hypothesis for the activation
of vmPFC, dmPFC, and dlPFC regions for this experimental task,
since the related optodes acquired importance within the SHAP
outputs.

3.4 Evaluation of model fairness

The fairness of the developed best model is evaluated by the
assessment of the model’s performance on different subgroups
of the population.

For age groups, the model showed higher accuracy, precision,
recall, and F1 scores for the younger group (25–33 years), with an
overall accuracy of 0.86 (Table 9). In contrast, the performance for
the 34–43 age group denoted a notable decrease in precision, recall,
and F1 scores for positive cases, resulting in a lower overall accuracy
of 0.75 (Table 9).

Gender-wise analysis revealed a visible disparity. The
performance metrics for females were exceptionally high with
an accuracy of 0.98, indicating almost perfect classification
(Table 10). However, the metrics for males were lower, with an
accuracy of only 0.63 (Table 10).

Furthermore, when evaluating the model’s fairness in terms of
educational background, we observed a similar performance for
both high school graduates and bachelor’s degree holders, with
accuracies of 0.81 and 0.80, respectively (Table 11).

4 Discussion

Financial decisions constitute some of the most important
decisions individuals make and can significantly influence the
course of their life. Thus, understanding every aspect of financial
preferences is crucial. The behavior of getting a loan should be
carefully considered by the recipient. Even though this evaluation
postulates that economic wellbeing exerts a positive influence on
secondary rewards, a prudent assessment of the feasibility of timely
repayment within the present circumstances is equally imperative.
Thus, one can think of it as a struggle between potential gains
balanced against potential losses. The current study aimed to reveal
the regions of the PFC that hold a potentially predictive role in
individuals’ financial preferences when evaluating credit decisions
during the recording of hemodynamic responses of participants.
The findings obtained from the statistical analyses confirm that the
hemodynamic activity tends to change with respect to the credit
decisions given this experimental design.

The study integrated fNIRS data with different machine
learning algorithms, namely Logistic Regression, Random Forest,
Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier, CatBoost,
and LightGBM to predict the participants’ credit decisions based
on prefrontal cortex (PFC) activation patterns up to 80% accuracy
in oversampling condition. In addition to this, behavioral findings
obtained indicated that the participants tended to respond more
frequently to negative buttons (62%) than to positive buttons
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TABLE 5 Classification report for the predictive models.

Model Accuracy Precision Recall F1 AUC

Logistic Regression 0.78 0.74 0.77 0.77 0.77

Random Forest 0.77 0.77 0.77 0.77 0.77

Decision Tree 0.50 0.47 0.55 0.46 0.55

Ada Boost 0.74 0.73 0.73 0.73 0.73

XGBoost 0.71 0.67 0.70 0.70 0.70

Extra Tree 0.79 0.78 0.78 0.78 0.78

Cat Boost 0.73 0.72 0.71 0.71 0.71

LightGBM 0.77 0.70 0.76 0.77 0.76

The bold values represent the results of the best model achieved in the corresponding framework.

TABLE 6 Classification report for the predictive models with undersampling.

Model Accuracy Precision Recall F1 AUC

Logistic Regression 0.77 0.73 0.75 0.76 0.75

Random Forest 0.77 0.72 0.74 0.75 0.74

Decision Tree 0.63 0.63 0.65 0.63 0.65

Ada Boost 0.71 0.67 0.70 0.70 0.70

XGBoost 0.65 0.65 0.66 0.65 0.66

Extra Tree 0.77 0.76 0.77 0.77 0.77

Cat Boost 0.70 0.66 0.68 0.68 0.68

LightGBM 0.77 0.73 0.76 0.77 0.76

The bold values represent the results of the best model achieved in the corresponding framework.

TABLE 7 Classification report for the predictive models with oversampling.

Model Accuracy Precision Recall F1 AUC

Logistic Regression 0.77 0.73 0.75 0.76 0.75

Random Forest 0.79 0.75 0.77 0.77 0.77

Decision Tree 0.75 0.67 0.73 0.74 0.73

Ada Boost 0.70 0.68 0.70 0.70 0.70

XGBoost 0.74 0.74 0.74 0.74 0.74

Extra Tree 0.75 0.74 0.73 0.73 0.73

Cat Boost 0.80 0.78 0.79 0.79 0.79

LightGBM 0.77 0.71 0.76 0.76 0.76

The bold values represent the results of the best model achieved in the corresponding framework.

(38%). The neuroscientific findings revealed distinct PFC regions
associated with credit behaviors, including the dlPFC, the OFC, the
vmPFC and the dmPFC.

4.1 Evaluation of model performance
outputs

This study provides valuable insights into the complex
relationship between data balancing techniques and model
performance for imbalanced datasets. By carefully choosing and
implementing appropriate balancing methods, researchers can
significantly enhance the effectiveness of their models, leading to
more accurate and reliable predictions. However, it is crucial to

maintain a balanced perspective, considering both the potential
benefits and risks associated with different approaches. Through
continued research and exploration, we can develop robust and
ethical AI models capable of delivering superior performance
across diverse data scenarios.

Three distinct data balancing techniques were employed:
original dataset, undersampling, and oversampling. The
performance of each model under these different scenarios is
analyzed and discussed. The findings highlight the importance
of data balancing techniques in optimizing model performance
for imbalanced datasets. While the Extra Tree model performed
well in the original unbalanced dataset, oversampling further
enhanced the performance of the CatBoost model. This
demonstrates that different models respond differently to
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FIGURE 2

SHAP output of the CatBoost model with oversampling.

data balancing techniques, and the optimal approach may
require careful evaluation and experimentation. However, it is
important to acknowledge potential drawbacks of oversampling.
Oversampling can introduce artificial data points, potentially
leading to model overfitting and reduced generalizability.
Therefore, careful validation and evaluation are crucial to
ensure that the benefits of oversampling outweigh its potential

risks. In line with these, the Decision Tree model exhibited an
improvement, particularly in precision and recall, suggesting
that this model is more sensitive to class imbalance. Notably,
the CatBoost model excelled in this scenario, achieving the
highest Accuracy and AUC of 0.80 and 0.79, respectively.
This indicates a potential affinity of this model to the
oversampling technique.
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TABLE 8 Feature importance results of the CatBoost model
with oversampling.

Feature Importance Feature Importance

Hbo_Op15 8.23 Oxy_Op1 3.06

Hbo_Op9 5.65 Hbo_Op13 3.06

Hbr_Op15 5.31 Hbo_Op4 3.05

Hbr_Op10 5.16 Oxy_Op16 3.05

Hbr_Op16 4.04 Hbo_Op8 3.04

Hbr_Op8 4.01 Hbt_Op16 3.03

Oxy_Op2 3.90 Oxy_Op3 2.92

Hbr_Op2 3.63 Oxy_Op10 2.79

Hbo_Op6 3.63 Hbr_Op7 2.71

Hbt_Op13 3.54 Oxy_Op14 2.43

Oxy_Op15 3.38 Hbo_Op10 2.05

Hbt_Op7 3.30 Oxy_Op7 2.02

Hbt_Op12 3.25 Hbt_Op5 1.95

Hbr_Op3 3.16 Hbo_Op16 1.52

Hbt_Op15 3.13

TABLE 9 Evaluation metrics for age groups.

Precision Recall F1 score Support

Age group 1 (25–33)

0 (negative) 0.84 0.90 0.87 48

1 (positive) 0.88 0.82 0.85 45

Accuracy 0.86 93

Macro
average

0.86 0.86 0.86 93

Weighted
average

0.86 0.86 0.86 93

Age group 2 (34–43)

0 (negative) 0.79 0.82 0.80 65

1 (positive) 0.66 0.62 0.64 37

Accuracy 0.75 102

Macro
average

0.72 0.72 0.72 102

Weighted
average

0.74 0.75 0.74 102

4.2 Analysis of the model’s fairness

The fairness of a developed model by analyzing its performance
across various demographic subgroups were investigated. The
findings indicate age and gender biases in the model’s predictions,
while the results for educational background reveal more moderate
performance biases.

4.2.1 Age-related bias
The model exhibits a distinct performance difference between

the younger (25–33 years) and older (34–43 years) age groups. The
younger group benefits from higher accuracy and precision, recall,

TABLE 10 Evaluative metrics for gender groups.

Precision Recall F1 score Support

Male

0 (negative) 0.69 0.72 0.70 61

1 (positive) 0.54 0.50 0.52 40

Accuracy 0.63 101

Macro
average

0.61 0.61 0.61 101

Weighted
average

0.63 0.63 0.63 101

Female

0 (negative) 0.96 1.00 0.98 52

1 (positive) 1.00 0.95 0.98 42

Accuracy 0.98 94

Macro
average

0.98 0.98 0.98 94

Weighted
average

0.98 0.98 0.98 94

TABLE 11 Evaluative metrics for educational background groups.

Precision Recall F1 score Support

High school graduates

0 (negative) 0.79 0.89 0.84 38

1 (positive) 0.84 0.70 0.76 30

Accuracy 0.81 68

Macro
average

0.82 0.80 0.80 68

Weighted
average

0.81 0.81 0.81 68

Bachelor’s degree holders

0 (negative) 0.83 0.83 0.83 75

1 (positive) 0.75 0.75 0.75 52

Accuracy 0.80 127

Macro
average

0.79 0.79 0.79 127

Weighted
average

0.80 0.80 0.80 127

and F1 scores, indicating a potential bias favoring their predictions
(Table 9). Even though this difference does not indicate severe bias,
it might be overcome with larger sample size.

4.2.2 Gender-related bias
The observed gender disparity is particularly concerning.

The lower accuracy for males (0.63) compared to females (0.98)
indicates a pronounced bias that systematically disadvantages
male individuals (Table 10). This raises ethical concerns about
the model’s potential discriminatory implications and necessitates
immediate mitigation strategies to ensure fairness and inclusivity.
Even though gender-based differences have been empirically
proven in the relevant academic literature (Cazzell et al., 2012;
Duan et al., 2021; Nissen and Krampe, 2021; Aryadoust et al.,
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2022), for the current study the difference might be related to the
motivation level of the participants, which could have resulted in a
gender-based difference.

4.2.3 Educational background bias
The model’s performance for different educational

backgrounds (Table 11) do not exhibit a distinct difference
where both high school graduates and bachelor’s degree holders
achieve similar accuracies (0.81 and 0.80, respectively).

4.3 Model explainability

The models we developed based on fNIRS measurements
yield significant insights into participants’ reactions to loan offers.
However, it is important to recognize that fNIRS signals do not
always correlate directly with specific brain regions. This variability
in signal interpretation across different studies is attributed to
the nature of fNIRS technology, which tracks changes in blood
oxygenation levels. These levels are influenced by multiple factors,
including blood flow, metabolic processes, and brain activity.
Despite these inherent limitations, fNIRS stands out as a reliable
instrument for examining brain activity, especially in scenarios
where alternative methods like fMRI may not be practical or
available. This versatility underscores the utility of fNIRS in
neuroscientific research, particularly in applied settings outside
traditional laboratory environments. The obtained findings of this
research underscore the critical role of the PFC in shaping financial
preferences and decisions. Notably, distinct regions within the
PFC exhibited varying patterns of activation that correlated with
participants’ credit decisions. The outputs from the developed
best model indicate that our initial hypothesis is supported by
the feature importance and SHAP outputs by which specific PFC
regions including vmPFC, dmPFC, and dlPFC tend to have roles
during the credit decision-making process.

4.3.1 dlPFC
The dlPFC has an indispensable role in strategic decision-

making (Soutschek et al., 2015). Moreover, the activity of the left
dlPFC regulates impulsivity and strategic behavior; in particular,
increased activity in the left dlPFC causes an important decrease
in risk-taking. However, decreased activity in the left dlPFC
suppresses strategic behavior but does not trigger risk-taking
(Fecteau et al., 2007; Steinbeis et al., 2012). The current findings
showed that the activity pattern of the left dlPFC (optodes 1-Oxy,
3-Oxy, and 4-HbO) correlated with impact tendency on credit
preference: increased activity in the left dlPFC correlated with a
positive impact on credit behaviors, while, increased activity in
the left dlPFC (optode 2-Oxy) correlated with a negative impact
on credit decisions. These findings suggest that the activation
observed in the left dlPFC is a potential indicator for either positive
or negative behavioral outcomes within individuals, in line with
the relevant scholarly literature. It has been shown that the right
anterior polar cortex has a significant impact on purchase decisions
(Mitsuda et al., 2012; Çakır et al., 2018). Increased levels of neural
activity in the right dlPFC are associated with maintaining alertness
and verbal reasoning, and decreased activity is associated with risk-
taking in the context of loss, especially when protection is a concern

(Mannarelli et al., 2015; Huang et al., 2017; Obeso et al., 2021).
These findings showed that an increase in neural activity in the right
dlPFC is correlated with positive credit decisions. However, the
opposing nature of activity in this region (optode 15), in contrast
to other areas, may be related to the right dlPFC accelerating the
rate of adaptation to visual rotation by enabling participants to
explicitly explore the movement space by more actively changing
their aiming direction (Song et al., 2020). These findings are in line
with the literature mentioned above and suggest that the activation
patterns of the right dlPFC are a promising prediction metric for
risky decisions (Yang et al., 2017).

4.3.2 OFC
The frontopolar cortex is closely associated with the OFC

and vmPFC regions (Koechlin, 2011; Nashiro et al., 2013;
Çakır et al., 2018; Bak et al., 2022). The OFC, a subregion
of the prefrontal cortex, has demonstrated consistent activation
across multiple investigations in domains such as commercial
tactics, consumer preferences, product preference discernment,
risk appraisal, financial investment choice, and pricing evaluations
(Kim et al., 2016). The anterior part of the OFC is associated
with the representation of fundamental reinforcers such as taste,
and is also involved in updating associations to emotional stimuli,
whereas the posterior part is implicated in processing more
intricate or abstract reinforcements, including financial gains and
losses (Kringelbach, 2005; Sakaki et al., 2011). It has also been
demonstrated that good-based decisions take place in the OFC
and thus regulate goal-directed actions; consequently, the OFC has
deactivation in low-profit margin (Gremel and Costa, 2013; Padoa-
Schioppa and Conen, 2017; Wanniarachchi et al., 2021). The left
OFC (optode 8-HbO) correlates with increased activity in positive
credit decisions. On the other hand, the right OFC (optode 10-Oxy
and -HbO) shows increased hemodynamic activity during negative
credit decisions. In line with these findings, the discrete correlation
of both left and right OFC with credit decisions is a promising
outcome for the predictive modeling of people’s decisions.

4.3.3 vmPFC
Another prefrontal region related to the FPC is the vmPFC.

The findings of this study indicate that bilateral increased vmPFC
(optodes 7-Oxy and 9-HbO) activity is associated with positive
credit decisions. It has been shown that the bilateral vmPFC
activity increases during preference judgments (Paulus and Frank,
2003) or normative judgments (Baumgartner et al., 2011). Also,
it has been shown that the increase in activation of the vmPFC
may be a process of integrating previous emotional experiences
with the brand into the ongoing decision process (Deppe et al.,
2005). Hence, the bilateral increased activation of the vmPFC
correlates with positive credit decision; this is consistent with the
current literature and suggests that the vmPFC (predominantly
the left vmPFC) is an important region for predicting behavioral
outcomes of individuals as its involvement in the interaction of
brand information and uncertainty information (Plassmann et al.,
2008).

4.3.4 dmPFC
The dmPFC contributes to strategic control in complex

decision-making processes (Venkatraman et al., 2012). However,
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together with the vmPFC, it takes a role in processing social
and economic information. The vmPFC and the dmPFC provide
divergent contributions to the processing of subjective reward
valuations and normative reward valuations. The dmPFC only
processes the value of rewards when making normative choices,
whereas value encoding takes place in the vmPFC (Apps and
Ramnani, 2017). Decreased activation in the dmPFC results in the
suppression of normative behavior, and in strategic control, while
an increase in vmPFC activity is associated with reward values.
There is no finding that supports the relation between the dmPFC
and the vmPFC, yet the increased activity in both left and right
vmPFC is associated with positive credit decisions. In addition,
the increased levels of hemodynamic activity in the left dmPFC
(optodes 5-HbT and 6-HbO) is associated with negative credit
decisions; this indicates that the left dmPFC might play a role
in people being risk-averse in their loan-taking behavior. Despite
that, the increased hemodynamic activity in the right dmPFC
(optode 12-HbT) correlates with positive credit decisions. In line
with the current findings, these two regions separately appear to
be possible indicators of credit decision-making processes. Their
effects on behavioral outcomes shall be studied with more specific
and detailed experimental designs, with the prediction that the
unique activation balance of these two regions is likely to provide
potential evidence for predicting people’s decisions.

4.4 Limitations

The limitations of the study are primarily associated with
the inherent constraints of functional near-infrared spectroscopy
(fNIRS) during the data collection and interpreting the results.
First, specific to this fNIRS model, it is limited to data collection
from the prefrontal cortex and the lateral regions might cause
problems during the data collection due to the forehead. Also, the
experimental design does not allow to pinpoint the exact moment
of decision-making, implying that the results most likely represent
offer evaluation. Secondly, despite the compelling findings, it is
crucial to acknowledge that fNIRS, as a method, has limitations
that can affect the interpretation of the data (Arenth et al., 2007;
Ferrari and Quaresima, 2012; Boas et al., 2014; Rupawala et al.,
2018; Hussain et al., 2023). These include susceptibility to noise and
artifacts present in the fNIRS data and to address these limitations,
some researchers have employed inverse problem solutions. These
solutions are mathematical algorithms that utilize knowledge of
light propagation physics within the brain to estimate the origin of
fNIRS signals (Tremblay et al., 2018; Condy et al., 2021). However,
it is important to note that these inverse problem solutions also
have their own limitations, including vulnerability to the noise and
artifacts inherent in fNIRS data (Kirilina et al., 2012; Hussain et al.,
2023).

In addition to the limitations associated with the fNIRS
methodology, the study’s design, primarily based on laboratory
experiments, presents another set of constraints. Laboratory
experiments, while controlled and replicable, may not always
accurately represent real-world scenarios. The artificial
environment of a laboratory can influence participants’ behavior,
potentially leading to results that do not fully translate to natural
settings. This limitation is important to consider, as the study’s

findings might vary if conducted in a more realistic context
outside the laboratory.

4.5 Future prospects

This research highlights how data balancing techniques impact
model performance in imbalanced datasets. By selecting and
applying suitable balancing methods, researchers can improve
model effectiveness, yielding more precise and dependable
predictions. It might be of interest to investigate the factors
contributing to the performance differences observed across
models under various data balancing techniques. Another future
research might focus on exploring the effectiveness of alternative
data balancing methods, such as SMOTE or ADASYN, against
the approaches employed in this study as diving deeper into the
impact of oversampling on model generalizability and exploring
methods to mitigate potential overfitting risks. Further research
might aim to increase the number of participants while developing
ensemble models that leverage the strengths of individual models
and capitalize on the benefits of both undersampling and
oversampling strategies.

Despite the fact that the developed model demonstrates
acceptable overall performance, the identified biases raise critical
concerns about its fairness and ethical implications. Addressing
these issues through careful analysis, proactive mitigation
strategies, and ongoing research is crucial to ensure responsible
and inclusive development and deployment of AI systems. It might
be of research interest to investigate the specific features or data
points responsible for the observed biases, explore alternative
modeling techniques or algorithms that are less susceptible to
bias, develop standardized benchmarks and evaluation metrics
for assessing fairness in machine learning models. However, it is
crucial to maintain a balanced perspective, considering both the
potential benefits and risks associated with different approaches.
Through continued research and exploration, it is possible for the
researchers to develop robust and ethical AI models capable of
delivering superior performance across diverse data scenarios.

4.6 Conclusive remarks

Overall, the current investigation bridges the gap between
neuroscience and finance, offering novel insights into the neural
mechanisms within the prefrontal cortex that underlie consumer
credit evaluations. By unraveling the neural signatures of financial
decision-making, this research opens avenues for the development
of innovative strategies that leverage neuroscientific knowledge
to inform marketing practices and optimize financial decision
support systems. As the fields of neuromarketing, neurofinance and
behavioral economics continue to evolve, this study demonstrates
the potential of interdisciplinary research in reshaping our
understanding of human behavior in financial contexts. The
contributions of this study in predicting credit decisions based
on neural activation patterns underscores the potential of fNIRS
coupled with machine learning algorithms in deciphering intricate
cognitive processes underlying financial behaviors. Such predictive
modeling can provide valuable insights for both researchers and
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financial institutions, enabling a deeper understanding of consumer
behavior and facilitating tailored financial services.
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