
TYPE Brief Research Report

PUBLISHED 29 February 2024

DOI 10.3389/fnhum.2024.1272121

OPEN ACCESS

EDITED BY

Claudio Lucchiari,

University of Milan, Italy

REVIEWED BY

Grzegorz Marcin Wójcik,

Marie Curie-Sklodowska University, Poland

Maria Elide Vanutelli,

University of Milano-Bicocca, Italy

*CORRESPONDENCE

Naoya Sazuka

naoya.sazuka@sony.com

RECEIVED 15 August 2023

ACCEPTED 09 February 2024

PUBLISHED 29 February 2024

CITATION

Sazuka N, Katsumata K, Komoriya Y, Oba T

and Ohira H (2024) Association of

brain–autonomic activities and task accuracy

under cognitive load: a pilot study using

electroencephalogram, autonomic activity

measurements, and arousal level estimated by

machine learning.

Front. Hum. Neurosci. 18:1272121.

doi: 10.3389/fnhum.2024.1272121

COPYRIGHT

© 2024 Sazuka, Katsumata, Komoriya, Oba

and Ohira. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Association of brain–autonomic
activities and task accuracy under
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The total amount of mental activity applied to working memory at a given point

in time is called cognitive load, which is an important factor in various activities

in daily life. We have proposed new feature quantities that reflect the time-series

changes in the power of typical frequency bands in electroencephalogram (EEG)

for use in examining the relationship between brain activity and behavior under

cognitive load. We also measured heart rate variability (HRV) and spontaneous

skin conductance responses (SCR) to examine functional associations among

brain activity, autonomic activity, and behavior under cognitive load. Additionally,

we applied our machine learning model previously developed using EEG to

the estimation of arousal level to interpret the brain–autonomic–behavior

functional association under cognitive load. Experimental data from 12 healthy

undergraduate students showed that participants with higher levels of infra-

slow fluctuations of alpha power have more cognitive resources and thus can

process information under cognitive load more e�ciently. In addition, HRV

reflecting parasympathetic activity correlated with task accuracy. The arousal

level estimated using our machine learning model showed its robust relationship

with EEG. Despite the limitation of the sample size, the results of this pilot study

suggest that the information processing e�ciency of the brain under cognitive

load is reflected by time-series fluctuations in EEG, which are associated with an

individual’s task performance. These findings can contribute to the evaluation of

the internal state of humans associated with cognitive load and the prediction of

human behaviors in various situations under cognitive load.
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1 Introduction

The total amount of mental activity applied to workingmemory
at a given point in time is called cognitive load (Barrouillet
et al., 2007). Cognitive load is an important factor for various
activities in daily life, learning, and employment. Cognitive load
can easily become excessive because human working memory has
limitations in processing capacity and retention time (Chen et al.,
2018). Another term, mental load, represents the cost of mental
operation and the constraints that are imposed by these costs on
performance in cognitive and behavioral tasks (Gopher, 2013).
Mental load is a broader and more general concept covering most
mental operations, including perception, cognition, and attention,
and is thus sometimes linked to fatigue (Díaz-García et al., 2021).
We define cognitive load in this study as a more specific load
of processing and computation within working memory. Thus,
cognitive load might affect task performance but is not necessarily
linked to fatigue when the duration of the task is not very long.

In psychology, cognitive load has conventionally been
examined using behavioral measures in tasks that are considered
to reflect the function of working memory, such as n-back tasks
(He et al., 2019; Nikolin et al., 2021). However, to accurately assess
cognitive load within individuals and to examine the characteristics
of information processing associated with cognitive load and its
individual differences in more detail, it is necessary to assess the
brain activity that underlies working memory.

For this purpose, studies on cognitive load have been
conducted using methods to measure brain activity such as
electroencephalogram (EEG) (Antonenko et al., 2010; Das et al.,
2014) and functional magnetic resonance imaging (fMRI) (Van
Dillen et al., 2009; Howard et al., 2015). In EEG, the average
powers of alpha (Marsella et al., 2017) and theta (Dan and Reiner,
2017) frequency bands have been used as indices of cognitive load;
however, in previous studies, changes in brain activity have not
been analyzed over time and those studies were limited in their
capability to estimate cognitive load.

Additionally, peripheral physiological responses of the body,
especially autonomic nervous system activity such as cardiac
activity, can reflect cognitive load. Specifically, it has been reported
that heart rate (Cranford et al., 2014) and heart rate variability
(HRV) (Solhjoo et al., 2019) positively correlate with cognitive load.
Electrodermal activity (EDA) (Nourbakhsh et al., 2012; Vanneste
et al., 2021) also responded to cognitive load. However, the
relationship between the activities of the autonomic nervous system
and brain, especially the functional significance of autonomic
nervous activity in the modulation of brain activity accompanying
cognitive load, has not been clarified.

On the basis of the findings mentioned above, in this article,
we propose a new feature reflecting time-series changes in the
power of EEG and examine the relationships of brain and
autonomic nervous activities using heart rate and spontaneous
skin conductance responses (SCRs) as physiological indices,
respectively, with behavioral performance in an n-back task under
different cognitive loads. Although several types of infra-slow
fluctuations in EEG have been reported to date (Kropotov, 2022),
we specifically focus on low-frequency fluctuations of EEG power
in the alpha frequency band as a candidate new feature of cognitive

load (see Section 2.3). This is based on our speculation from
previous reports showing that spontaneous infra-slow fluctuations
of blood oxygen level-dependent (BOLD) signal in brain regions
within the default mode network and task-positive networks
measured by fMRI reflect cognitive performance (Bianciardi et al.,
2009; Padmala and Pessoa, 2010; Han et al., 2011; Shine et al.,
2016), including the performance in the tasks in which cognitive
load was manipulated (Vermeij et al., 2014). Recent studies showed
that slow fluctuations of brain activity can be detected from EEG
signals (Monto et al., 2008; Sato and Katori, 2019), which might
correspond to BOLD-fMRI signals. Our speculation is also based
on a recent argument that oscillatory activity of the brain, at
frequencies especially centered on the alpha band, plays important
roles in the development of various cognitive functions in relation
to bodily states (Engelen et al., 2023). Furthermore, we applied
arousal levels estimated by a machine learning model that we
previously developed (Sazuka et al., 2020) to the analysis of data
on new EEG features and autonomic activity indices (Sazuka et al.,
2021). Through these investigations in this study, we aim to explore
the effects of cognitive load experimentally manipulated by the
n-back task on the characteristics of the infra-slow fluctuations
of EEG and autonomic responses. We also aim to examine
whether such patterns of brain and body activities can predict the
performance of the task under cognitive load. As described above,
related previous findings are still limited; thus, this study is a pilot
study, which is exploratory rather than hypothesis driven.

2 Method

2.1 Study overview

This study was conducted as an exploratory pilot study to
examine characteristics of EEG and autonomic responses in a
situation of cognitive load and to develop a method to estimate
the degree of cognitive load using multimodal indices. Data
were acquired under a high-cognitive-load condition and a low-
cognitive-load condition (control) in n-back tasks. We compared
the indices of EEG and autonomic responses with task performance
between the two conditions. We then ran correlation analyses
between the EEG, autonomic, and task performance indices.

2.2 Experimental design

2.2.1 Participants
A total of 12 healthy undergraduates participated in this study

(eight male and 4 female, age M = 20.7, SD = 1.9). Data on
EDA from three participants were excluded from analyses owing
to technical problems in measurement.

2.2.2 Procedure
The participants conducted a three-back task as the high-

cognitive-load condition and a zero-back task as the low-cognitive-
load condition.

After obtaining written informed consent to participate in
the experiment, devices for measuring EEG and physiological
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responses were attached to the participants. The participants were
given instructions about the experimental task, with a minimal
number of trials for training to understand the task. Following
a resting period of 5min with their eyes open, for the purpose
of habituation to the experimental situation, the participants
performed the three-back task as the high-cognitive-load condition
and the zero-back task as the low-cognitive-load condition for
6min, each counterbalanced in the order of the condition. Under
each condition, a single-digit number was randomly and visually
presented on a computer display at 3-s intervals consisting of
200 trials of answers for each task. In the three-back task, the
participants judged whether the current number was the same
as the number presented three trials earlier, whereas in the zero-
back task, they judged whether the number presented was even or
odd. We produced the program for the n-back task by using the
Psychtoolbox of Matlab (ver. 3.0.10), and the accuracy of the task
(rate of correct answers) and reaction time (of both correct and
incorrect answers with temporal resolution of 1 millisecond) were
measured by this program. The average of reaction times in all trials
under each task was calculated for the index. The program was run,
and stimuli were presented to the participants using a PC.

After completing the tasks, we thanked the participants, and
they were fully debriefed about the aims of the study. The
participants were given 2,000 Japanese Yen (∼14.00 USD) for their
participation in the experiments. This study was approved by the
ethics committee of Nagoya University (NUPSY-2016-A004).

2.2.3 Data acquisition
EEG and physiological responses were measured both in the

resting and task periods. The EEG and physiological data measured
in the first 60 s of the tasks were excluded from analyses because of
the instability of measurements immediately after the initiation of
the tasks. Behavioral data were taken during the task period both
under the high- and low-cognitive-load conditions; specifically, we
measured the accuracy of the n-back task (rates of correct responses
in the task) and reaction time in the task as behavioral indices.
In addition, the participants subjectively rated their feelings of
arousal immediately before and after the n-back task under the
high- and low-cognitive-load conditions using the visual analog
scales (VASs) of arousal [0 (not at all aroused) – 100 (extremely
aroused)] to confirm the psychological validity of the experimental
manipulation of cognitive load.

2.3 Feature extraction

2.3.1 EEG
The EEG signals of the frontal region (AF3, AF4, F3, F4, F7, and

F8) were measured using a wearable device (EPOC+, Emotiv Inc.,
www.emotiv.com) at a sampling rate of 256Hz (Haar and Faisal,
2020; Hebbar et al., 2021). Measurements were conducted using
electrodes of saline-soaked felt pads and consisted of two reference
electrodes (common mode sense active electrode and driven right
leg) positioned at P3/P4. The resolution of the measured EEG was
14 bits at 1 LSB = 0.51 µV and bandwidth of 0.16–43Hz with
digital notch filters at 50 and 60 Hz.

Data preprocessing and basic feature extraction from the
acquired EEG are as follows. To all channels, offset removal
and the application of a 4–30Hz 424-order FIR bandpass filter
were conducted. Then, the time series of EEG power was
extracted by continuously conducting Welch’s power spectral
density estimation (segmentation of 1 s without overlap) on
time-series segments of EEG (20-s-long windows with 1-
s shift sequences). EEG band power features were defined
as alpha (8–13Hz) and theta (4–7Hz), each of which was
normalized at a total power of a 4–30Hz band, hereafter
referred to as the first-order time series of alpha power and
theta power.

Then, the features for infra-slow fluctuations of alpha power
were extracted. The index of infra-slow fluctuations of alpha
power under each task was defined as the power spectrum of
fluctuations with a period of 64–128 s normalized by that with
a period of 5–128 s computed by Welch’s power spectral density
estimation method. Infra-slow fluctuations in EEG have been
conceptually divided into rhythmic and arrhythmic fluctuations
probably with different physiological mechanisms (Kropotov,
2022). We specifically focused on the rhythmic fluctuations of
alpha power on the basis of our speculation that the alpha band
rhythm is one of the most dominant and salient brain activities
and thus can reflect basic levels of processing ability under
cognitive load. Then, the average over all channels was used as
the index for infra-slow fluctuations of alpha power for the task
(Figure 1A).

2.3.2 Physiological responses
Photoplethysmography (PPG) signals for heart rate monitoring

from the ring finger and EDA signals for measuring frequencies
of SCR from the index and middle fingers of the non-dominant
hand were measured using a wearable device (Shimmer3 GSR+,
Shimmer Research Inc.) at a sampling rate of 512Hz. Frequencies
of SCR were calculated by Ledalab (Benedek and Kaernbach, 2010).
From PPG signals, R-waves were detected by a method using noise-
reduced pulse signals based on peak detection and autocorrelation
methods (Ishikawa et al., 2017). Then, the root mean square of
successive differences (RMSSD) of N-N intervals was calculated
as HRV.

2.3.3 Arousal state estimation model
The arousal state of each participant was estimated using

our previously developed model (Sazuka et al., 2020). This
model was trained with data obtained from psychologically
controlled experiments using various cognitive tasks in which
the participants’ arousal was manipulated, using features such
as the fluctuations of time series of alpha and theta bands of
EEG power. This model was validated to be robust in estimating
arousal by using temporarily longer features of alpha power
that seem to be valid phenomena as biological responses to
cognitive load.

The details of the construction of the classification model are
as follows. Using the same feature extraction method explained
above, we extracted the first-order time series of alpha and
theta powers under various concentration tasks. Additionally, the
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FIGURE 1

Diagram showing the procedure of extracting infra-slow fluctuations of alpha power (A). Diagram showing the procedure of determining

second-order time series of alpha/theta band power and an arousal state estimation model (B).

time series of alpha and theta power features was segmented
into windows of 130 s long with 1-s shift sequences to extract
the power spectrum of fluctuations with a period of 40–90 s,
which is hereafter referred to as the second-order time series
of alpha power and theta power (Figure 1B). The combinations
of the first- and second-order time series of alpha/theta band
powers for the six channels formed 24-dimensional features as
input for training a Gaussian kernel support vector machine
(SVM) model (Chang and Lin, 2011). The features were
normalized using the z-transformation method under cognitive
tasks. The validation was conducted by applying the leave-
one-person-out cross-validation method to prevent overfitting.
The model described above was trained using a different n-
back dataset and has been validated previously (Sazuka et al.,
2020). The model was used for estimating arousal levels for
this analysis.

2.4 Statistical analysis

The difference in each feature between the cognitive tasks was
validated by the paired t-test following the confirmation of the
Kolmogorov–Smirnov normality test and by calculating the effect
size r defined by the z value divided by the square root of the total
number of samples.

The relationship between features was analyzed by calculating
the correlation coefficients. In these correlation analyses, the
difference values of variables (three-back task minus zero-back
task) were used for standardization considering wide individual
differences in the variables. Multiple testing correction was
conducted by the Benjamini–Hochberg procedure.

3 Results

3.1 Comparisons between high- and
low-cognitive-load conditions

3.1.1 Manipulation check
First, the psychological control of experiments was verified on

the basis of subjective evaluation, EEG results, and behavior. As
shown in Figure 2A, the VAS rating of arousal was significantly
higher in the three-back task than in the zero-back task (p-value
= 0.016, effect size r = 0.749). The alpha power and reaction time
during the three-back task were sufficiently smaller and longer (p-
value= 0.015, effect size r = 0.764 and p-value= 0.016, effect size r
= 0.738), respectively, than those in the zero-back task. Thus, it was
confirmed that the three-back task relies on an increased cognitive
load as compared with the zero-back condition. As the order of
tasks (zero-back vs. three-back) was counterbalanced, we examined
the effects of the order of the tasks and found none, suggesting few
concerns of contamination of human factors such as fatigue and
stress (see Supplementary Figure S1).

3.1.2 EEG and behavioral indices
Next, the proposed EEG and behavioral indices were examined

as to whether they were sensitive to a difference in high- and
low-cognitive-load conditions. As shown in Figure 2B, infra-
slow fluctuations of alpha power averaged over the number
of participants showed fluctuations in very-low-frequency bands
(<0.1Hz). The amplitude of alpha power fluctuated withmore than
a period of 10 s. Peaks of the power spectrum were observed at
around 0.01–0.05Hz under the low-cognitive-load condition; on
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the other hand, the peaks were attenuated, and the power around
0.01Hz increased under the high-cognitive-load condition. The
infra-slow fluctuations of alpha power in the three-back task were
marginally larger than those in the zero-back task (p-value= 0.062,
effect size r= 0.601). For behavioral indices, the interquartile range
of reaction time during each task showed a difference between the
three-back task and the zero-back task by statistical testing of all
the participants’ results (p-value = 0.002, effect size r = 0.852)
(Figure 2C). In addition, fluctuations of reaction time among the
participants in a very-low-frequency band (<0.05Hz) were found
to be larger under the high-cognitive-load condition then under
the low-cognitive-load condition (p-value < 0.001, effect size r =
0.900) (Figure 2D). These proposed EEG and behavioral indices,
which reflected the cognitive load differences, were used to identify
associations between task accuracy and EEG and physiological
responses under cognitive load.

3.2 Correlations between task accuracy and
EEG and physiological responses

3.2.1 Correlation between task accuracy and
conventional EEG index

To estimate the cognitive load of participants in n-back
tasks, task accuracy (which is considered to indicate cognitive
performance) was defined as the rate of correct answers for each
n-back task. The conventional index of cognitive load, which is the
average alpha power normalized at a total power of 4–30Hz bands,
did not show a significant correlation with task accuracy, reaction
time variability, or the infra-slow fluctuations of alpha power (r
= 0.147, p-value = 0.705; r = 0.184, p-value = 0.644; and r =

0.081, p-value = 0.836, respectively). Moreover, the median of the
first-order time series of alpha power did not show a significant
correlation with task accuracy, reaction time variability, or infra-
slow fluctuations of alpha power (r = 0.407, p-value = 0.262;
r = 0.029, p-value = 0.930; and r = 0.276, p-value = 0.459,
respectively). From the above statistics, both the conventional index
of the average alpha power and the first-order feature of alpha
power were found not to capture characteristic behaviors under
cognitive load. Additionally, the average alpha power was strongly
positively correlated with the median of the first-order time series
of alpha power (r = 0.913, p-value < 0.001). For basic data of
conventional indices, see Supplementary Tables S1, S2.

3.2.2 Correlation between task accuracy and
proposed EEG and physiological indices

The difference in the infra-slow fluctuations of alpha power
between the high- and low-cognitive-load tasks showed a
significant positive correlation with task accuracy (r = 0.707, p-
value = 0.028) (Figure 3A). RMSSD from PPG signals showed a
marginal positive correlation with task accuracy (r= 0.586, p-value
= 0.087) (Figure 3B). In addition, the variability of reaction time
showed a significant negative correlation with task accuracy (r =
−0.719, p-value= 0.030) (Figure 3C). That is, the participants with
a greater enhancement of the infra-slow fluctuations of alpha power
exhibited a higher task accuracy, a higher HRV in the three-back

task, and a more constant reaction time in the high-cognitive-load
task than in the low-cognitive-load task. On the other hand, SCR
showed no consistent patterns of correlation with task accuracy (r
= 0.428, p-value= 0.329).

3.3 Further investigation of infra-slow
fluctuations of alpha power

Since infra-slow fluctuations of alpha power were found to
show a correlation with task accuracy, further investigation of the
correlation analyses was conducted. To investigate the relationship
between reaction time variability and the infra-slow fluctuations of
alpha power, the difference in the interquartile reaction time range
between the three-back and zero-back tasks and the difference in
the infra-slow fluctuations of alpha power between the two tasks
were calculated. As a result, a higher infra-slow EEG alpha power
was found to be significantly associated with a shorter reaction time
(r =−0.817, p-value= 0.003). The infra-slow fluctuations of alpha
power also tended to correlate with less variability in reaction time
(r = −0.548, p-value = 0.116) (Figure 4A), but not significantly.
The index of characteristic fluctuations of reaction time was defined
as the mean power spectrum density function and is hereafter
referred to as reaction time fluctuations. The difference in reaction
time fluctuations between the three-back and zero-back tasks was
calculated. We found that reaction time fluctuations showed a
significantly negative correlation with the infra-slow fluctuations of
alpha power, that is, the participants with a greater enhancement
of the infra-slow fluctuations of alpha power presented smaller
reaction time fluctuations (correlation = −0.714, p-value = 0.028)
(Figure 4B).

We estimated the arousal levels of the participants during n-
back tasks using our SVMmodel as explained above. The difference
in the infra-slow fluctuations of alpha power between the high-
and low-cognitive-load tasks was negatively correlated with arousal
level, which is the time portion of estimated high arousal during
the three-back task (r = −0.663, p-value = 0.043) (Figure 4C).
This finding indicates that the participants with higher infra-slow
fluctuations of alpha power did not show an excessive arousal level,
which is related to the depletion of cognitive resources during the
high-cognitive-load task.

No significant association of the physiological response index
was found with the EEG features and estimated arousal levels (see
Supplementary Figure S2).

4 Discussion

The results of this study indicated that the enhanced infra-slow
fluctuations of EEG alpha power during the n-back tasks correlated
with better task performance. These findings suggest that the infra-
slow fluctuations of EEG alpha power might be linked with efficient
processing within working memory when cognitive load increases.

Although the phenomenon of infra-slow fluctuations of EEG
including the alpha band is already known, its significance in
cognitive ability has not been clarified. It has been reported that
the phase of infra-slow fluctuation of the full-band EEG correlated
with accuracy in perceptual tasks such as somatosensory stimulus
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FIGURE 2

VAS arousal rating of zero-back task and three-back task (A). Power spectrum density of the time series of alpha power averaged over the number of

participants and electrodes. The dashed line indicates the power spectrum density of the zero-back task. The solid line indicates the power spectrum

density of the three-back task (B). Time series of reaction time in three-back task (solid line) and zero-back task (dashed line) (C). Power spectrum

density of the time series of reaction time. The dashed line indicates the power spectrum density in the zero-back task. The solid line indicates the

power spectrum density in the three-back task (D).

FIGURE 3

Correlation analysis of task accuracy in three-back task and infra-slow fluctuations of alpha power di�erence between two tasks (A), RMSSD in

three-back task (B), and reaction time variability between two tasks (C).

detection, suggesting that the infra-slow fluctuations of EEG reflect
the excitability dynamics of cortical networks (Monto et al., 2008).
Another study indicated that the infra-slow fluctuations of EEG,
mainly in alpha power, positively correlated with reaction time
in simpler visual and auditory stimulus discrimination tasks,
suggesting that larger infra-slow fluctuations of EEG are associated

with lower performance in the tasks (Sato and Katori, 2019).
This finding is seemingly the opposite of our finding indicating
the association between larger infra-slow fluctuations of alpha
power and superior task performance. One possible interpretation
of these contradictory findings is to consider the speculation
that the relationship between infra-slow fluctuations of EEG and
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FIGURE 4

Correlation analysis of reaction time variability (i.e., interquartile reaction time range) di�erence between three-back and zero-back tasks and

infra-slow fluctuations of alpha power di�erence between two tasks (m is the slope of the regression line; p is the p-value of coe�cient) (A).

Correlation analysis of reaction time fluctuation and the infra-slow fluctuations of alpha power di�erences between two tasks (m is the slope of the

regression line; p is the p-value of coe�cient) (B). Correlation analysis of estimated high arousal portion in three-back task and the infra-slow

fluctuations of alpha power between two tasks (m is the slope of the regression line; p is the p-value of coe�cient) (C).

task performance depends on the complexity and difficulty of
the task, and the relationship can be reversed depending on the
characteristics of the tasks. The validity of this speculation should
be clarified in future studies. As Sato and Katori (2019) reasoned,
these findings might correspond to previous findings from fMRI
studies showing that the low-frequency oscillations in BOLD signal
fluctuations in large-scale neural networks such as the default-
mode network were linked to the performance in some cognitive
tasks (Bianciardi et al., 2009; Padmala and Pessoa, 2010; Han et al.,
2011; Hiltunen et al., 2014; Shine et al., 2016), including the tasks in
which the cognitive load was manipulated (Vermeij et al., 2014).
However, such previous studies (Monto et al., 2008; Sato and
Katori, 2019) relied on the conventional frequency analysis of EEG
power. Note that the conventional index (average alpha power)
was not sensitive to cognitive load in the present study but only
the infra-slow fluctuations of alpha power, which we proposed as a
new feature responding to behavioral indices under cognitive load.
This might explain the differences between the findings of previous
studies and our study. Our study also suggests the potential utility
of the new feature of the infra-slow alpha fluctuations, which we
propose here, even though this is still a pilot study.

The mechanisms underlying the infra-slow fluctuations of
alpha power observed in this study are not clear yet. Kropotov
(2022) pointed out the significance of 0.1Hz oscillations in arterial
blood pressure coupled with fluctuations of efferent sympathetic
nervous activity (Julien, 2006) in the rhythmic spontaneous infra-
slow fluctuations of EEG. One possibility is that such cardiovascular
activity might play important roles in shaping, maintaining, and
enhancing EEG fluctuations, especially in the alpha band, through
cerebral vasomotion (Nikulin et al., 2014) and/or the physical
principle of the phase–amplitude coupling (Klimesch, 2018).

The mechanisms underlying the correlation between the infra-
slow fluctuations of alpha power and the performance of cognitive
tasks are also unclarified. We observed that the variance of reaction
time increased under the high-cognitive-load condition compared

with that under the low-cognitive-load condition. To the best of our
knowledge, this phenomenon itself is a new finding, presumably
reflecting a type of clogging of cognitive processing caused by
cognitive load and the shortage of working memory resources. In
previous studies using n-back tasks, reaction time was examined as
the average over all trials in the task; thus, temporal fluctuations of
reaction time have not been addressed. We observed a tendency
of negative correlations between the infra-slow fluctuations of
alpha power and the frequencies of reaction time fluctuations.
This finding suggests that our new EEG feature could capture the
characteristics of behaviors that might be related to their hidden
mechanisms attributable to the cognitive load.

The arousal levels estimated by our previously constructed
SVM model showed a negative association with the infra-slow
fluctuations of alpha power. This suggests that the brain is not
overloaded cognitively and can process a load efficiently. The
strengths of our model are 2-fold. First, we built our model
on the basis of characteristic biological responses that might
reflect arousal levels. Specifically, our model uses the temporarily
longer feature of alpha power, a phenomenon that seems to be
characteristic of cognitive load, as the feature quantity. Most of the
previous studies (Lawhern et al., 2018; Salama et al., 2018; Fahimi
et al., 2019) are based on engineering interests and do not pay
much attention to whether they can capture valid responses in
biological phenomena. For example, many previous models were
constructed by analyzing EEG in a time window of <10 s. It is
expected that even such models can capture some characteristics
of input data such as EEG in that short time window. However,
no matter how excellent the calculations of the machine learning
classifiers are, if the phenomenon of interest, such as arousal level,
is reflected in biological responses that are temporarily longer
than the time window, it cannot be captured by the model in
principle. Second, we obtained high-quality data in a precisely
controlled psychological experiment. No matter how much data
are available, if their quality is poor, a well-tuned model cannot
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be constructed. Compared with computer science, in psychology,
one attempts to strictly define the target phenomenon, logically
draws hypotheses, and empirically tests the hypotheses through
elaborately controlled human experiments. For biological data,
especially for the evaluation of the internal state of humans
similarly to this study, which is difficult tomeasure in large amounts
owing to the nature of experiments, it is important to control well
the measurements of even small amounts of biological data.

Here, note that EDA and HRV showed no significant
correlations with the arousal level estimated using the model. These
results suggest that the arousal levels estimated by our model
are not direct representations of peripheral physiological activity
reflected by EDA and HRV but might reflect more integrated
and abstract forms of representations of arousal constructed in
the brain.

This is a pilot study conducted with a small sample size and a
constraint of gender imbalance. This is a limitation of this study
that is common to previous studies (Monto et al., 2008; Hiltunen
et al., 2014; Hebbar et al., 2021); thus, caution is needed when
interpreting the results. However, even taking such limitations into
account, the results of this study suggest that the efficiency of
brain information processing under cognitive load is reflected by
temporal fluctuations in alpha EEG bands, which are associated
with individual task performance. Arousal levels, marginally
reflected in HRV (a parasympathetic index) and estimated by a
machine learning model, might be associated with individual task
performance. This finding can contribute to the assessment of the
internal state of humans under cognitive load and to the prediction
of behaviors. In addition, the devices used in this study to measure
EEG and physiological responses are wearable, less expensive, and
simpler than conventional neuroimaging methods such as positron
emission tomography and fMRI. The findings obtained in this
study and the model developed on the basis of simpler methods
should be beneficial for future social implementation.
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