
Frontiers in Human Neuroscience 01 frontiersin.org

Motor imagery for paediatric 
neurorehabilitation: how much 
do we know? Perspectives from a 
systematic review
Amalia Egle Gentile 1†, Sergio Rinella 2†, Eleonora Desogus 1, 
Cristiano Maria Verrelli 3, Marco Iosa 4,5, Vincenzo Perciavalle 6, 
Martino Ruggieri 7 and Agata Polizzi 2*
1 National Centre for Rare Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy, 2 Department of 
Educational Science, Chair of Pediatrics, University of Catania, Catania, Italy, 3 Department of 
Electronic Engineering, University of Rome Tor Vergata, Rome, Italy, 4 Department of Psychology, 
Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy, 5 Santa Lucia 
Foundation (IRCCS), Rome, Italy, 6 Faculty of Medicine and Surgery, Kore University of Enna, Enna, 
Italy, 7 Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of 
Catania, Catania, Italy

Background: Motor Imagery (MI) is a cognitive process consisting in mental 
simulation of body movements without executing physical actions: its clinical 
use has been investigated prevalently in adults with neurological disorders.

Objectives: Review of the best-available evidence on the use and efficacy of MI 
interventions for neurorehabilitation purposes in common and rare childhood 
neurological disorders.

Methods: systematic literature search conducted according to PRISMA by using 
the Scopus, PsycArticles, Cinahl, PUBMED, Web of Science (Clarivate), EMBASE, 
PsychINFO, and COCHRANE databases, with levels of evidence scored by 
OCEBM and PEDro Scales.

Results: Twenty-two original studies were retrieved and included for the analysis; 
MI was the unique or complementary rehabilitative treatment in 476 individuals 
(aged 5 to 18 years) with 10 different neurological conditions including, cerebral 
palsies, stroke, coordination disorders, intellectual disabilities, brain and/or 
spinal cord injuries, autism, pain syndromes, and hyperactivity. The sample 
size ranged from single case reports to cohorts and control groups. Treatment 
lasted 2 days to 6 months with 1 to 24 sessions. MI tasks were conventional, 
graded or ad-hoc. MI measurement tools included movement assessment 
batteries, mental chronometry tests, scales, and questionnaires, EEG, and EMG. 
Overall, the use of MI was stated as effective in 19/22, and uncertain in the 
remnant studies.

Conclusion: MI could be  a reliable supportive/add-on (home-based) 
rehabilitative tool for pediatric neurorehabilitation; its clinical use, in children, is 
highly dependent on the complexity of MI mechanisms, which are related to the 
underlying neurodevelopmental disorder.
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Introduction

Motor imagery (MI) is an active cognitive process (a dynamic 
state), during which an individual internally rehearses or simulates 
(within its working memory) a given action, without movement 
execution (ME) (Decety and Grèzes, 1999; Jeannerod, 2001; Yap and 
Lim, 2019). Defined as a mental representation of an action without 
its actual performance, MI straightforwardly includes the “image” of 
planning, modulation and execution of movements (Decety, 1996).

MI is usually named explicit when the representation of the task 
is consciously reproduced by individuals, while it becomes implicit 
when the task is unconsciously reproduced.

In any case, this intricate process, occurring within the motor 
domain, is conceptually corresponding to an internal model of motor/
behavioral representation, allowing the possibility that a cognitive 
simulation of an action sorts out an effective activation of the motor 
pathways as the real movement does. This individual ability led to the 
use of MI to improve motor performance and to learn or re-learn 
motor skills for neurorehabilitive purpose (Simonsmeier et al., 2021).

Over time, MI, taken as a complex cognitive process, has turned 
up to be an intriguing field of research as well as a practical tool in 
sportive training, not only for the beneficial consequences on 
performance outcomes, but also for its positive results on psychological 
outcomes including affective and motivational effects (Guillot and 
Collet, 2008; Cumming and Ramsey, 2009; Frank et  al., 2016; 
Simonsmeier et al., 2021).

As it occurs with motor tasks, MI represents the physiological 
result of complex sensory-motor integrations of feedforward and 
feedback to and from the external environment. In fact, during 
movements sensory-motor pathways connect the primary motor 
cortex, the premotor cortex and the supplementary motor area to the 
parietal somatosensory cortex, the cingulate cortex, the striatal 
pathway and the cerebellum. Whilst the former circuits are involved 
in generating movements, preparing muscles and stabilizing posture 
and coordination, the latter (afferent circuits) control execution and 
functions such as motor planning, motivation, decision and work 
memory. Thus, MI relies on complex and bidirectional sensorimotor 
information to create a mental simulation of a task (Yip and Lui, 2023).

Action observation (AO) is, instead, a cognitive perceptual process, 
during which an individual observes a purposeful action, performed 
by others. Experimental and clinical interest in AO rose, following the 
identification of the mirror-neuron system (MNS). As it occurs with 
simulation of actions, MI and AO involve the kinesthetic, visual and 
spatial aspects of the corresponding action.

Various studies revealed that MI, AO and motor execution (ME) 
approximately share the same neural networks activated during motor 
performance (Crammond, 1997; Grèzes and Decety, 2001; Jeannerod, 
2001; Hardwick et al., 2018) as demonstrated by evidences coming 
from preclinical researches in neurophysiology (Fleming et al., 2010; 
Hardwick et al., 2018; Kurkin et al., 2023) together with results of 
human experiments carried out with transcranial magnetic 
stimulation and functional MRI.

Few but relevant age-related studies disclosed that the ability of 
MI matches, from some point of view, on the trajectory of motor and 
sensory development so that compounds of the internal action control 
model are acquired during development through motor learning and 
sustained by experiences which provide sensory, kinesthetic and 
visuo-spatial feed-back. In normally developing children, the 

emergence of MI skills seems to occur explicitly at around age 5 to 
6 years and then develops with age, being refined between early 
adolescence and early adulthood (Gabbard and Bobbio, 2011; Souto 
et al., 2020b; Saleem, 2023).

More extensive explanations of MI in children direct attention—
as in adulthood—to a multidimensional construct of the phenomenon 
where complex sensory-motor data are efficiently integrated to 
mentally set out an action. Maturation of the parietal and frontal 
cortices structure and function contribute, alongside with practice, to 
the spontaneous progression of motor abilities control during 
development (Skoura et al., 2009). A background of theoretical models 
supports this assumption as nicely reviewed by Saleem (2023).

Beside the evidence that imagery can promote motor learning in 
young athletes (Simonsmeier et  al., 2018), more in general, MI 
training has been successfully showed to positively influence motor 
learning in healthy children and adolescents (Behrendt et al., 2021).

Upon these bases, it was obvious that imagery training could 
appropriately contribute, even more so, in enhancing or resuming the 
motor network in some pathological conditions of the nervous system 
of pediatric onset (Rannaud Monany et al., 2022).

Studies on MI in children with development coordination 
disorders (DCD), a complex paradigm of atypical neurodevelopment, 
disclosed a reduced capacity to use the internal modeling of motor 
representation to reach aspect of motor control, planning and 
execution (Steenbergen et al., 2020). Other instances of congenital 
abnormalities of neurodevelopment, are likely accompanied by a 
dysfunction of the internal motor representation process leading to an 
altered MI, AO and ME (Mutsaarts et al., 2006; Crajé et al., 2010; van 
Elk et al., 2010; Steenbergen et al., 2013; Jongsma et al., 2016; Errante 
et al., 2019).

A deficit of the internal modeling of motor representation and 
defective MI tasks is then conceivable in those neurological conditions 
of infantile onset where the motor domain including the movements 
execution (ME) are compromised early, since prenatal age, no matter 
what the severity of motor dysfunction is.

Apparently, explicit MI ability could be instead preserved in some 
cases of cerebral palsy, arguing that the capability to retrieve motor 
representations is maintained in some children with compromised 
motor abilities of various degree (Errante et al., 2019). Perhaps, this 
can happen when the cause of the disorder does not hinder the motor 
trajectory in the very early stages of development, but during late 
prenatal or postnatal life.

Accordingly, studies conducted in adulthood patients who 
underwent MI training after post-stroke brain injuries, disclosed that 
MI tasks is influenced by the internal representation of the motor act, 
regardless the level of the individual residual motor function (Sharma 
et al., 2006; Schulz et al., 2019).

At large, it arises that MI training can contribute, at any age, to the 
amelioration of motor activity in term of motor learning in health 
status or habilitation/rehabilitation of neurological dysfunctions, as 
the internal models of motor representation support MI, AO as well 
as motor execution (ME) (Rannaud Monany et al., 2022).

The possibility to evaluate the quality of MI is therefore useful to 
examine motor representations and to predict the leeway for feasible 
therapeutic interventions. For its implications, imagery-based 
techniques are so far limitedly used in rehabilitation to stimulate 
neuromuscular pathways and gain access to the motor network of 
persons with neurological disorders. Over the last years research has 
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advanced the therapeutic potential of MI interventions in adults (vs. 
children) with neurological disorders. Indeed, for adults’ conditions 
such as stroke, motor coordination disorders, Parkinson’s syndromes, 
dystonia, multiple sclerosis, brain and spine trauma, complex regional 
pain, etc., (Morya et  al., 2019), various approaches using MI are 
reasonably employed as adjunctive tools to conventional 
neurorehabilitation or in combination with newer interventions (i.e., 
music therapy) (Adams et al., 2014; Haire et al., 2021).

The present review aims to systematically analyze MI based 
clinical studies in childhood and adolescence with various dysfunction 
of the nervous system to investigate the efficacy of using MI in the 
pediatric (neuro)rehabilitative practice.

Methods

The systematic review was conducted according to the PRISMA 
statement (see Figure 1). Studies published up to December 30, 2022, 
were retrieved through a literature search in the Scopus, PsycArticles, 
Cinahl, PUBMED, Web of Science (Clarivate), EMBASE, PsycInfo, 
and COCHRANE databases. Where available, “0–18 years “age filters 
were used and applied for PubMed and MeSH terms. The search terms 
were: (“mental imagery” OR “motor imagery”) AND (“prematurity” 
OR “preterm” OR “newborn” OR “infant” OR “neonatal” OR “child” 
OR “adolescent”). Duplicates were removed.

Articles meeting the following criteria were included: (1) 
reference population of children or adolescents (0–18 years) with 

neurological disorders; (2) use of MI for neurorehabilitation 
purposes; (3) outcomes assessed in the age range between 
0–18 years; (4) original articles; (5) English language; (6) full text 
articles available. Three independent reviewers screened full-text 
articles and extracted the identified data using a standardized 
collection form. Disagreements on article inclusion were resolved 
by consensus obtained by two additional authors. All researchers 
confirmed the final evaluation. The level of evidence was assigned 
for each retrieved work, in accordance with the Howick et al. (n.d.). 
All retrieved RCT studies were scored by using the PEDro Scale 
(Cashin and McAuley, 2019).

Given the heterogeneity of the studies reviewed, a qualitative 
assessment of the results was chosen. In Table 1, a binary variable 
(Y/N) has been assigned based on explicit statements of efficacy by 
the respective authors. References were handled with Zotero (ver. 
6.0.18).

As indicated in Figure 1, clinical trials (CTs) retrieved from 
online registries (clinicaltrials.gov, trialsearch.who.int, and 
clinicaltrialsregister.eu) were excluded from the analysis as they 
refer to either partial published results (on adulthood only), or to 
still ongoing or unknown results from studies on pediatric 
population. However, for their potential relevance in deeping 
knowledge in a research and clinical field with a general lack of 
robust evidence, available data from these CTs consisting in 11 
randomized CTs (RCTs) and 3 non-RCT studies are included as 
Supplementary material (S1) and at times resumed throughout 
the discussion.

FIGURE 1

Review flow diagram according to the PRISMA statement 2020.
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TABLE 1 Summary table of characteristics of the included studies.

Neurodevelopmental 

conditions

References Study 

design

Level of 

evidence

PEDro 

SCORE

Participants MI intervention Measurement 

tools (pre- and/or 

post-intervention)

Outcome Efficacy

Sample 

size/No. 

(sex)

Age 

range 

(y.o.)

Control 

group

Treatment 

duration/

sessions

Tasks Type Evaluation 

time

Assessmentb

ADHD Chevalier et al. 

(2003)

Concurrent 

cohort study

3 / 12 (n/a) 6–9 Y 6 months n/a 

sessions

Visual-motor 

imagery exercises

Ad hoc DuPaul Diagnostic 

Questionnaire; Attention 

Education Program (AEP); 

Conners Continuous 

Performance Test (CPT)

Pre-post at 

follow-up after 

6 months

Teachers focus 

groups (see 

Measurements 

column)

Y

ASD Xie et al. (2022)a Quasi-

experimental

3 / 20 (ASD group: 

16M, 4F) 20 (ID 

group: 16M, 4F)

7–15 Y 1 session Mental simulation 

of on-demand 

actions

Ad hoc The Raven Standard 

Progressive Matrices Test 

(SPM); Peabody Picture 

Vocabulary Test Revised, 

Chinese Version (PPVT-R); 

Action sequences span 

paradigm scores

Pre-post Action sequences 

span paradigm 

scores

N

CP Taherian et al. 

(2017)

Before-and-after 

study

4 / 6 (3M, 3F) 7–43 N 3 weeks 5–7 

sessions

Moving virtual 

object (MI-BCI: 

Emotiv EPOC)

Ad hoc 

(Digital)

EEG; Game scoring Pre-post (See Measurements 

column)

N

Cabral-Sequeira 

et al. (2016)

Quasi-

experimental

3 / 31 (16 M, 15F) 11–16 Y 2 days 2 sessions/

day

Modelling (mental 

simulation of 

observed action)

Ad hoc Kinematic analysis Pre-post (See Measurements 

column)

Y

Souto et al. 

(2020a,b)

Controlled 

before-and-after 

study

3 / 24 (13M, 11F) 7–14 Y 8 weeks 16 sessions Modelling (mental 

simulation of 

observed action)

Ad hoc Raven’s Coloured Progressive 

Matrices test; Block Design 

subtest of the Wechsler 

Intelligence Scale; backward 

Digit Span and backward 

Corsi Cubes tests; Manual 

Ability Classification System 

(MACS); Assisting Hand 

Assessment (AHA) version 4.3

Pre-post At 

follow-up after 

8 weeks

Assisting Hand 

Assessment (AHA) 

version 4.3

Y

Xie et al. (2021) Before-and-after 

study

4 / 10 (5M, 5F)—

short term 

group 8 (7M, 

1F)—long term 

group

8–12 / 12 weeks (short 

term) 60 weeks 

(long term) n/a 

sessions

Mental simulation 

of on-demand 

actions (MI-BCI)

Ad hoc EEG Pre-post (See Measurements 

column)

Y

(Continued)
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Neurodevelopmental 

conditions

References Study 

design

Level of 

evidence

PEDro 

SCORE

Participants MI intervention Measurement 

tools (pre- and/or 

post-intervention)

Outcome Efficacy

Sample 

size/No. 

(sex)

Age 

range 

(y.o.)

Control 

group

Treatment 

duration/

sessions

Tasks Type Evaluation 

time

Assessmentb

Stefano Filho et al. 

(2021)

Before-and-after 

study

4 / 5 (n/a) 11–14 / n/a weeks 1 

session

First-person avatar 

walking (VR-based 

Motor imagery: 

Oculus rift)

Ad hoc 

(Digital)

EEG Pre-post at 

follow-up after 

1 year

(See Measurements 

column)

/

Gözaçan 

Karabulut et al. 

(2022) (only 

abstract available)

RCT 2 n/a n/a n/a Y (two 

control 

groups: 

CP + TD)

8 weeks n/a 

sessions

MI + CT (Motor 

Imagery training: 

n/a)

n/a Movement Imagery 

Questionnaire-For Children 

(MIQ-C), mental 

chronometry, functional 

mobility, and resting muscle 

activation

n/a (See Measurements 

column)

Y

CRPS Hayashi et al. 

(2016)

Case-report 4 / 1F 15 / 80 days n/a 

sessions

Mirror action 

mental simulation

Ad hoc Visual analog scale (VAS); 

Neglect-like symptoms (NLS) 

questionnaire; Pain 

Catastrophizing Scale (PCS); 

Barthel Index

Pre-post (See Measurements 

column)

Y

Tubic (2018) Case-report 4 / 1F 11 / 12 weeks n/a 

sessions

Graded Motor 

Imagery (GMI: 

App Recognize 

Back)

Conventional 

(Digital)

Clinical evaluation Pre-post at 

follow-up after 

3.5 months

(See Measurements 

column)

Y

DCD Wilson et al. 

(2016)

RCT 2 9/11 12 (n/a) + 12 

(n/a)

7–12 Y 5 weeks 1 session/

week

Visual imagery and 

modelling

Ad hoc Background parents’ 

questionnaire on history of 

neurological conditions; 

Movement Assessment Battery 

for Children (MABC)

Pre-post MABC Y

Adams et al. 

(2017)

Quasi-

experimental

3 / 4 (n/a) 7–12 Y 9 weeks 1 session/

week

Visual imagery and 

modelling

Ad hoc Movement Assessment Battery 

for Children (m-ABC-2); 

Motor Coordination 

Questionnaire (MCQ)

Pre-post Therapists’ 

Experiences (see 

Measurements 

column)

Y

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

Neurodevelopmental 

conditions

References Study 

design

Level of 

evidence

PEDro 

SCORE

Participants MI intervention Measurement 

tools (pre- and/or 

post-intervention)

Outcome Efficacy

Sample 

size/No. 

(sex)

Age 

range 

(y.o.)

Control 

group

Treatment 

duration/

sessions

Tasks Type Evaluation 

time

Assessmentb

Scott et al. (2019) Case-control 

study

4 / 12 (11M, 1F) 7–12 Y n/a AO + MI (mental 

simulation of 

observed daily 

action)

Ad hoc Movement Assessment Battery 

for Children (m-ABC-2); 

Movement imagery 

questionnaire-3; 

Developmental Coordination 

Disorder Questionnaire 2007; 

Vanderbilt Attention-Deficit 

Hyperactivity Disorder 

(ADHD) Diagnostic Parent 

Rating Scale

n/a (See Measurements 

column)

Y

Marshall et al. 

(2020)

RCT 2 6/11 20 (13M, 7F) 7–11 / n/a weeks 1 

session

AO + MI (virtual 

radial Fitts task: 

Unity3D)

Conventional 

(Digital)

eye-tracking; software 

recording

Pre-post (See Measurements 

column)

Y

EbrahimiSani 

et al. (2020)

Controlled 

before-and-after 

study

3 / 40F 7–10 Y 8 weeks n/a 

sessions

VR-based 

Intervention

Ad hoc 

(digital)

Time recording; hand rotation 

task, anticipatory action 

planning task, Rapid online 

control task; software 

recording

Pre-post (See Measurements 

column)

Y

Scott et al. (2020) Case-control 

study

4 / 13 (6M, 7F) 7–11 Y 1 session AO + MI (mental 

simulation of 

observed daily 

action)

Ad hoc m-ABC-2; Movement imagery 

questionnaire-3; health 

questionnaire and Vanderbilt 

ADHD Diagnostic Parent 

Rating Scale

n/a (See Measurements 

column)

Y

ID Hemayattalab and 

Movahedi (2010)

RCT 2 8/11 40 (n/a) 12–15 Y n/a weeks 24 

sessions

Sport-related 

mental simulation 

(mental simulation 

of an action)

Ad hoc EMG Pre-post at 

follow-up after 

10 days

Tuki follow up test 

(see Measurements 

column)

Y

(Continued)
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Neurodevelopmental 

conditions

References Study 

design

Level of 

evidence

PEDro 

SCORE

Participants MI intervention Measurement 

tools (pre- and/or 

post-intervention)

Outcome Efficacy

Sample 

size/No. 

(sex)

Age 

range 

(y.o.)

Control 

group

Treatment 

duration/

sessions

Tasks Type Evaluation 

time

Assessmentb

Chen et al. (2015) RCT 2 7/11 91 (50M, 41F) 6–12 Y 16 weeks 3 

sessions/week

Modelling (mental 

simulation of an 

observed action)

Ad hoc Study-specific questionnaire 

included child’s 

anthropometric variables, 

demographic data, received 

medications, treatments, and 

paramedical therapies; Test of 

Visual Perceptual Skill-third 

edition (TVPS-3); Wisconsin 

Card Sorting Test 64-card 

version (WCST-64); Stroop 

Color–Word Test, children’s 

version; Caregivers’ diaries for 

describing learning effects

Pre-post (See Measurements 

column)

Y

Xie et al. (2022)a Quasi-

experimental

3 / 20 (ASD group: 

16M, 4F) 20 (ID 

group: 16M, 4F)

7–15 Y 1 session Mental simulation 

of on-demand 

actions

Ad hoc The Raven Standard 

Progressive Matrices Test 

(SPM); Peabody Picture 

Vocabulary Test Revised, 

Chinese Version (PPVT-R); 

Action sequences span 

paradigm scores

Pre-post Action sequences 

span paradigm 

scores

N

NP Casanova-García 

et al. (2015)

RCT 

(preliminary 

study)

2 4/11 40 (all) 5–18 Y 4 weeks Motor 

imagery exercises 

(5 days/week for 

1 week) + Laterality 

recognition 

(5 days/week for 

1 week) + Mirror 

therapy (5 days/

week for 2 weeks)

Graded Motor 

Imagery (GMI)

Conventional Visual analog scale (VAS); 

survey on catastrophizing; 

accelerometry for physical 

activity

Pre-post (See Measurements 

column)

Y

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

Neurodevelopmental 

conditions

References Study 

design

Level of 

evidence

PEDro 

SCORE

Participants MI intervention Measurement 

tools (pre- and/or 

post-intervention)

Outcome Efficacy

Sample 

size/No. 

(sex)

Age 

range 

(y.o.)

Control 

group

Treatment 

duration/

sessions

Tasks Type Evaluation 

time

Assessmentb

SRBC Gagnon et al. 

(2016)

Before-and-after 

study

4 / 10 (7M, 3F) 14–18 / 6 weeks Mental simulation 

of an action

Ad hoc Pictorial Children’s Effort 

rating Table (P-CERT); 

Post-Concussion Scale; Beck 

Depression Inventory-Second 

Edition; Pediatric Quality of 

Life; Multidimensional Fatigue 

Scale; Bruininks-Oseretsky 

Test of Motor Proficiency – 

Second Edition (BOT); 

cognitive functioning 

(ImPACT®); State Trait 

Anxiety Inventory (STAI)

Pre-post (See Measurements 

column, except for 

the P-CERT)

Y

ST Lu et al. (2020) Before-and-after 

study

4 / 26 (n/a) 16–70 / 6 weeks n/a 

sessions

Mental simulation 

of affected limb 

action (MI-BCI; 

EEG system)

Ad hoc 

(Digital)

EEG; ROM; Mini-Mental State 

Examination (MMSE); Barthel 

index

Pre-post (See Measurements 

column)

Y

SY Biglioli et al. 

(2017)

Cases series 4 / 18 (12M, 6F) 12–47 / 3 weeks n/a 

sessions

Mental simulation 

of on-demand 

actions

Ad hoc EMG; HouseeBrackmann 

(HB) scale

Pre-post At 

follow-up after 

3 weeks

(see Measurements 

column)

Y

Neurodevelopmental conditions (in alphabetical order); ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorders; CP, cerebral palsy; CRPS, complex regional pain syndrome; CT, conventional therapy; DCD, developmental coordination 
disorder; ID, intellectual disabilities; NP, neuropathic pain (due to cancer); SRBC, sports-related brain concussion; ST, stroke; SY, synkinesis; TD, typical development; n/a, not available (not described data in the article).
aThe article refers to both ASD and ID conditions.
bIn cases of overlap, please refer to the “Measurement Tool” column.
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Results

In total, 22 original research clinical studies met the defined 
inclusion criteria (Figure  1). The main characteristics of these 22 
original studies are shown in Table 1 and describe below.

A population of 476 individuals was collected from all records 
with the exclusion of 1 study where the sample size was not available 
(Gözaçan Karabulut et al., 2022).

MI was investigated and applied as a unique or complementary 
rehabilitative treatment in individuals with 10 different congenital or 
acquired neurological conditions. Intellectual disabilities (ID) 
(N = 151), development coordination disorders (DCD) (N = 113) and 
cerebral palsies (CP) (N = 84) were the most frequently studied 
conditions, followed by neuropathic pain (NP) (N = 40), stroke (ST) 
(N = 26), autism spectrum disorders (ASD) (N = 20), synkinesis (SY) 
(N = 18), attention deficit hyperactive disorder (ADHD) (N = 12), 
sports-related brain concussion (SRBC) (N = 10), and complex 
regional pain syndrome (CRPS) (N = 2).

The overall sample size of the intervention groups was highly 
variable ranging from single case reports to a cohort of 91 patients. In 
almost all studies a control group was included. Individuals were aged 
from 5 to 18 years. Three studies endeavored also adult populations 
(Biglioli et al., 2017; Taherian et al., 2017; Lu et al., 2020). Participants 
were mostly males whilst in 8 records sex was unknown or not specified.

Apparently, the overall length of intervention with MI overlapped 
with the total length of intervention of MI coupled to common 
rehabilitative program. Treatment was extended from 2 days to 
6 months, duration was unknown in 3 studies (Hemayattalab and 
Movahedi, 2010; Scott et al., 2019, 2020). Rehabilitative exercises based 
on MI tasks were run from 1 to 24 sessions. MI tasks were distinguished 
between conventional and more frequently purposeful ad-hoc tasks. 
Conventional tasks, mostly driven by the principles of Graded Motor 
Imagery (GMI) programs, were detailed only in a few cases and 
consisted mainly in graded MI interventions, Radial Fitts Task and 
Hand Rotation Task. Ad-hoc tasks essentially laid into MI exercises of 
on-demand actions, modelling (mental simulation of AO without clear 
relation to the active observation) and MI + AO (AO tasks are explicitly 
spelled out). Digital tools were employed in 6 studies, under the 
umbrella of brain computer interfaces, virtual reality, App Recognize 
Back™ (Taherian et al., 2017; Tubic, 2018; EbrahimiSani et al., 2020; Lu 
et al., 2020; Marshall et al., 2020; Stefano Filho et al., 2021). In a few 
studies, MI tasks were not indicated. Measurements of MI were obtained 
through different tools including movement assessment batteries, 
mental chronometry tests, scales and questionnaires for MI and for 
neurodevelopmental disorders, EEG and EMG. Clinical outcome was 
assessed at varying intervals of follow-up. Evaluation of changes in 
physical/motor and cognitive parameters was reported in 21/22 original 
articles, with the exception of one study for which only the abstract was 
available (Gözaçan Karabulut et  al., 2022). Considering that the 
effectiveness of MI differs for each developmental disorder/condition, 
the use of MI was stated effective in 19/22, while in the remnant studies 
efficacy was uncertain (Table 1).

Discussion

This systematic review focuses on how MI, through precise 
training, can drive gaining or re-gaining of abilities in children with 

various neurodevelopmental conditions. The analysis, which counted 
22 original research studies for a total of 476 participants demonstrates 
a definite interest in research and practice in exploring the efficacy of 
MI as neurorehabilitative intervention in the pediatric age.

In this respect, MI could represent an opportunity not only for 
studying the mechanisms that may underlie MI responses but also for 
boosting treatment outcomes in children with 
neurodevelopment conditions.

We found that treatments based on MI interventions have been 
addressed to a mixed group of congenital and acquired disorders of 
the nervous system (e.g., DCDs, stroke, CP, ID, ASD, ADHD). 
Participants were rather equally divided in control groups (a small 
number of studies included only the experimental group), which only 
received traditional physical therapy and experimental groups, that 
received MI interventions, only in a few cases there was a combination 
of both (see Table 1).

Due to the multidimensional and multimodal construct of 
imagery and its dual perspective (internal and external), assorted and 
integrated strategies were developed to engage different aspects of the 
imagery ability.

So, patients’ performance was measured through various 
assessment pre- and post-intervention, and at a follow-up session. The 
great majority of the reviewed experimental studies examine the 
short-term effects of MI in children aged 5–18 years. In one instance 
only, focusing on CP, effects were evaluated at a year follow-up 
(Table 1).

In details, 6 original articles investigated MI interventions in 
children with DCDs (Wilson et al., 2016; Adams et al., 2017; Scott 
et  al., 2019; EbrahimiSani et  al., 2020; Marshall et  al., 2020; Scott 
et al., 2020).

Although poor motor planning is a key feature of children with 
DCDs (Bhoyroo et  al., 2019), in most of the works, ad-hoc MI 
techniques stimulating motor and sensory modalities were used. 
Interventions include both visual imagery and modeling (Wilson 
et al., 2016; Adams et al., 2017), MI plus AO (Scott et al., 2019, 2020; 
Marshall et  al., 2020) or VR-based training through the “Kinect 
games” of the Xbox 360 (EbrahimiSani et al., 2020). Visual imagery 
and modeling allowed to associate motor imagery training (MIT) to 
perceptual-motor training (PMT) to enhance the acquisition of motor 
skills (Wilson et  al., 2016) or adding the occupational therapy, to 
improve imitation skills (Adams et al., 2017). In both studies, MIT was 
as effective as conventional physical therapies, resulting in significant 
improvements in motor scale scores. In one additional study, the 
benefits of VR-based training on predictive motor control, through 
the “Kinect games” of the Xbox 360 have been evaluated (EbrahimiSani 
et al., 2020). Results showed that MIT significantly improved both 
motor planning and predictive motor control skills using the 
VR-based training allowing also the maintenance of its effectiveness 
even at 2 months follow-up. Three further studies explored the 
effectiveness MIT (Mental Motor Simulation; Virtual radial Fitts task) 
combined to the Action Observation (AO): some benefit was recorded 
in reducing the deficits of internal modeling and eye-manual 
coordination (Marshall et al., 2020) and in enhancing automatic and 
intentional imitation in children with DCDs (Scott et al., 2019, 2020). 
The results of the three studies showed that the combination of 
AO + MI was more effective than AO alone in improving intentional 
and automatic imitative abilities and in enhancing response times, 
eye-to-manual coordination and fluidity of motion kinematics. The 
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use of MI combined with AO shows the greatest evidence of treatment 
effectiveness. At the same time, the use of VR is considered a valuable 
aid to set up MIT programs.

Children with CP get into troubles with MI compared to peers 
with typical development, even if this is not totally compromised 
(Steenbergen et al., 2007; Souto et al., 2020b; Williams et al., 2021). 
Other evidences have focused instead on assessing the value of both 
implicit and explicit MI functions (Parsons et al., 1995; Parsons, 2001). 
In this respect, some studies (Spruijt et al., 2013; Molina et al., 2015; 
Lust et al., 2016; Errante et al., 2019) concluded that children and 
adolescents with CP show deficits in tasks requiring the use of implicit 
MI, while explicit MI ability appears to be preserved. This suggests 
that working on explicit MI can be useful for rehabilitating motor 
function. More recently Williams et al. (2021) nicely showed that MI 
deficits are not universally observable in children with congenital 
hemiplegia and that, for example, the performance of the hand 
laterality task (HLT) can be as fast and accurate as typically developing 
peers. The poor performance on the HLT was rather irrespective of 
the affected side as previously stated (Mutsaarts et  al., 2007), 
depending more on the level of daily functioning of the hand. 
Moreover, the impact of low IQ on test performance should 
be believed a bias (Williams et al., 2021). These considerations raise 
the importance of evaluating individual performance and 
characteristics before drawing general conclusions on the estimation 
of the efficacy of MI training in children with CP.

The revised 6 original papers on CP revealed the prevailing use of 
MIT often in combination with AO (Cabral-Sequeira et al., 2016; 
Taherian et al., 2017; Souto et al., 2020a; Xie et al., 2021; Gözaçan 
Karabulut et al., 2022). Stefano Filho et al. (2021) proposed in their 
study a combined AO and MI VR intervention proving that detectable 
changes in functional connectivity (FC) patterns are partially due to 
the AO + MI VR task that the patients performed.

All the interventions proposed in these studies showed to 
be effective, with the exception of the study by Taherian et al. (2017), 
who obtained inconclusive results due to the instability in using the 
device, with the authors hoping for greater material flexibility for 
future products.

Items investigated were gait and capacity of the lower limbs, 
specific kinematics functions, balance and trunk resistance. Besides 
MI tasks, the BeFAST method (Brain Change After Fun, Athletic, 
Sports-skill Training), the PETTLEP model which takes into account 
many different domains related to motor imagery: physical features, 
environment, task-related aspects, timing equivalence, learning, 
emotion, and perspective (Morone et  al., 2022) together with MI 
exercises were applied.

Three original papers (Xie et al., 2022) including 2 RCTs (Pedro 
score of 8/11 and 7/11 respectively) (Hemayattalab and Movahedi, 
2010; Chen et al., 2015) considered ad-hoc MI techniques based on 
modeling to support children and adolescent with ID. The age of the 
participants ranged from 6 to 15 years. Overall treatment duration 
ranged from 1 single session to 3 sessions1/week for 16 weeks.

The works used ad-hoc MI techniques for the treatment, which 
included exercises of mental simulation of observed or requested 
actions. Assessments of the patients’ MI skills were not foreseen, while 
anthropometric and physiological parameters, scales to assess motor 
skills and cognitive functioning were used to evaluate the efficacy of 
the treatment. Instrumental tools included the Test of Visual 
Perceptual Skill-third edition (TVPS-3), the Wisconsin Card Sorting 

Test 64-card version (WCST-64), the Stroop Color-Word Test, 
children’s version, and caregiver diaries with notes on observed 
learning progress. Only one study had positively evaluated MI 
intervention Chen et al. (2015) and Xie et al. (2022) found that only 
typically developing children performed better following MI 
intervention, while Hemayattalab and Movahedi (2010) found that MI 
alone was effective when compared to the group without any 
treatment, but less effective than those who carried out physical 
practice only.

Despite the considerable attention paid today to many aspects of 
the ASD, relatively few experimental studies considered MI processes 
in ASD (Conson et al., 2013; Chen et al., 2018; Piedimonte et al., 
2018). The prevalence of motor difficulties in children with ASD is 
quite high as well as their influence on behavioral and daily functions 
(Lim et al., 2021). As a matter of fact, an impaired imitation has been 
discovered to be a relevant factor contributing to social communication 
deficits (Dowd et  al., 2010). Accordingly, the neural correlate of 
imitation, the mirror neuron system (MNS), is assumed to 
be dysfunctional in ASD, ensuing deficit of imitation as one of the 
crucial behavioral features in ASD (Chan and Han, 2020). It is well-
known that the MNS is involved in the imitation of movements, but 
also in action recognition, MI and motor learning process (Johansson 
et al., 2022). When MI was explored using the HLT task to investigate 
the development of MI in children with ASD, results showed a 
performance variability in the affected group with more deficits than 
the control group in the MI criterion task (Conson et  al., 2013). 
Hence, in children with ASD, there is either a clear failure or a delay 
to develop motor representation. This inability is significant for the 
construction of the model of body movements during action and 
could be responsible for a series of clinical features related to motor 
disturbances. In this respect, children with ASD may take an 
advantage from ad hoc neurorehabilitative training also to help 
learning of novel motor actions. On this topic, a quasi-experimental 
study (Xie et al., 2022) was reviewed. Unfortunately, ad-hoc exercises 
of mental simulation of actions failed to demonstrate any type of 
efficacy as stated by Xie et al. (2022).

In their cohort of children with ADHD, Chevalier et al. (2003), 
tested the effectiveness of the Attention Education Program (AEP), 
comprising visual MI techniques, measured through the DuPaul 
Diagnostic Questionnaire and the Conners Continuous Performance 
Test (CPT). The results showed an improvement in reaction times and 
a reduction in task errors. The ongoing clinical trial (NCT05208255, 
2022) targets the effects of telerehabilitation-based exercise and MI 
practices on symptoms and balance skills. MI training is performed 
remotely in the form of imagined Neurocognitive Exercise Program 
(NEP), a multimodal exercise program including different motor 
coordination exercises and cognitive tasks, for a total length of 6 weeks 
(2 sessions/week).

The rational of MI intervention in CRPS is the re-organization of 
the primary sensory cortical and associated motor areas by means of 
MIT. Two case reports of CRPS were reviewed disclosing in either 
case, an improvement in pain levels and motor performances (Hayashi 
et  al., 2016; Tubic, 2018). The ages of the participants in the two 
studies were 15 and 12 years, respectively. The interventions lasted 
80 days (Hayashi et al., 2016) and 12 weeks (Tubic, 2018). Hayashi 
et al. (2016) proposed an intervention based on ad-hoc mirror action 
mental simulation techniques, the efficacy of which was measured 
using the Visual analog scale (VAS), Neglect-like symptoms (NLS) 
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questionnaire, Pain Catastrophizing Scale (PCS) and the Barthel 
Index. Differently,  Tubic (2018) experimented a combined 
intervention of epidural infusions of analgesics and MI techniques 
based on Graded Motor Imagery (GMI), administered via a mobile 
App (App Recognize Back). In either case, authors described an 
improvement in pain levels.

The results of a pilot RCT (Pedro score of 4/11) on NP were 
reported by Casanova-García et al. (2015). The intervention involved 
40 patients aged between 5 and 18 years (n = 20 experimental group), 
who were asked to practice GMI-based MI exercises, in addition to 
conventional therapy, for a total of 5 days/week for 4 weeks. The 
effectiveness of the intervention was assessed with the visual analog 
scale (VAS), a survey on catastrophizing and the accelerometer for 
physical activity and revealed a positive effect on pain symptoms only 
in a small number of patients.

The effect of MI was analyzed to treat SY in a case series (Biglioli 
et  al., 2017). Authors proposed an intervention for patients aged 
between 12 and 47, lasting 3 weeks, to test post-facial surgery 
rehabilitation. Tools included internal trials of MI of specific 
movements. Treatment efficacy was tested by electromyography 
(EMG) and the Housee Brackmann scale (HB). The results revealed a 
significant improvement in facial movements in all patients (Biglioli 
et al., 2017).

MI based interventions in ST were evaluated in one original 
article (Lu et al., 2020). The study was conducted on a large mixed 
age-related population (patients from 16 to 70 years of age) to verify 
the efficacy of MI-based continuous passive movement control (CPM) 
and a brain-computer interface (BCI) in the recovery of a wrist 
extension following stroke. The duration of the intervention was 
6 weeks. The efficacy was measured by calculating the range of motion 
by means of the EEG and by some indirect tests such as the Barthel 
index, measuring the degree of the assistance required. The 
intervention showed beneficial effects.

A completed clinical trial retrieved from online registers 
developed a BCI-based robotic arm and self-guided 
neurorehabilitation protocol for patients with SCI aged 14 years and 
older (NCT02443558, 2015). Objective of the study was to allow 
patients to interact with the robotic arm by modulating their own 
brain waves through kinesthetic MI (kMI) and visual MI (vMI) 
practices, using a portable EEG device (Emotiv EPOC). Published 
results refer exclusively to adult subjects, while participants appeared 
to perform better using vMI rather than kMI as an imagery modality 
for BCI control, the analysis did not prove a statistically significant 
correlation (Athanasiou et al., 2017). A rehabilitation system (iCTuS-L, 
Interactive Computer-based Therapy System for legs) was the goal of 
another completed clinical trial (NCT02149186, 2014) where AO, MI 
and EM, based on gaming sessions in virtual reality (VR), were used 
to treat NP and motor dysfunction in patients aged between 16 and 
80 years with an incomplete SCI or stroke. The published results report 
data only from the adult population revealing beneficial functional 
training effects in subjects with chronic SCI (Villiger et al., 2017).

For sports-related brain concussions (SRBC), we recovered only 
one original work proposing a rehabilitative treatment for adolescents. 
The protocol included physical exercises, mental simulation of motor 
actions and positive imagination (Gagnon et al., 2016). Intervention 
efficacy was monitored using the Post-Concussion Scale (PCS), Beck 
Depression Inventory-2 (BDI-2), Pediatric Quality of Life 
Multidimensional Fatigue Scale (PQLMFS), Bruininks-Oseretsky Test 

of Motor Proficiency-2 (BOT), ImPACT® for Cognitive Functioning, 
and the State Trait Anxiety Inventory (STAI). Postoperatively, the 
authors report that post-concussive symptoms, fatigue and 
mood improved.

Lastly, more recent anecdotal/single clinical studies retrieved from 
online registers and currently open, focus on congenital or acquired 
conditions with nervous system impairment opening the way to 
additional possibilities of therapies for complex disorders such as 
cerebellar ataxia (CA) secondary to resection of medulloblastoma 
(NCT04790981, 2021) and Duchenne Muscular Dystrophy 
(NCT05601986, 2022).

To summarize, this systematic review evaluates the use of MIT 
interventions in a heterogeneous group of children and adolescents 
with common and rare chronic disorders, recognizing genetic or 
acquired causes, presenting with various level of impairment in motor 
performance, planning and control, perceptual/sensory, behavior and 
executive functions.

Due to this array of conditions, severity, course and dysfunctions 
including the way of assessment of MIT, pooling the data was not 
achievable as intended. However, consistent with the objective of this 
review some common characteristics and comments can be outlined.

In practice, our results suggest that MI training is a potential 
resourceful approach to neurorehabilitation that enhances motor skills 
and coordination, making it particularly beneficial for conditions like 
DCDs and CP, which are among the most common neurodevelopment 
disorders. MI also bolsters cognitive functions, improving memory, 
attention, planning and problem-solving abilities, which is especially 
valuable for children with neurodevelopmental conditions. If 
integrates into tailored traditional rehabilitation programs, combining 
physical practice with mental rehearsal, MI interventions could 
expedite recovery and maximize the quality of life of young persons. 
Utilizing adaptive technologies such as VR and BCI systems provides 
real-time feedback, making rehabilitation exercises engaging and 
motivating. MI’s individualized approach recognizes each patient’s 
uniqueness, allowing therapy customization based on age, condition, 
and cognitive abilities. The potential outcomes of MI training on 
symptoms in comorbidity, including social/emotional manifestations, 
must be considered an extra value in pediatric neurorehabilitation. 
Moreover, MI facilitates progress traceable through assessment tools, 
ensuring that rehabilitation programs can be adjusted as needed for 
optimal outcomes. According to current evidence, introducing MI 
training at an early age offers short-term benefits, particularly for 
children with neurodevelopmental disorders, as it enhances motor 
learning and cognitive development. Additionally, MI shows promise 
in managing chronic pain conditions by empowering patients to 
reduce pain perception and improve overall well-being.

At the same time, some limitations have been recorded: to date, 
relatively few studies have explored the usefulness of MI interventions 
in the pediatric age; in many interventions distinguished on the base 
of their construct, there was not clear difference between the use of 
the terms “motor imagery” and “mental imagery,” reinforcing the 
consideration that these terms are often confused in the literature as 
in the clinical practice.

Moreover, disappointingly, beside the frequent inconsistent size 
of the population studied, the scarcity of RCTs consisting of clinical 
studies with in hand results, the great heterogeneity of protocol of 
interventions including the presence and/or suitability methods/scales 
adopted to evaluate the efficacy, close correlation with the severity of 
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condition, reliability of MI mainly as add-on therapy and poor 
assessment of duration of efficacy, are restrictions that make the 
evidence gathered rather unpredictable, thus hampering the 
identification of decisions and evidence-based criteria for intervention 
planning and clinical practice recommendation leaving some 
unanswered questions that we were unable to address. An additional 
intrinsic limit of MI is that the therapist does not exactly know what 
the child is imagining. At this end, BCI or dynamic versions of MI (in 
which imagery is coupled with simplified patterns of the movements 
imitating some temporal or spatial features of the simultaneous 
mental representation of the action, such as stepping in place during 
walking imagery) have been proposed to compensate for 
this limitation.

Conclusion

The systematic literature review results hereby presented revealed 
that MI training, integrated into neurorehabilitation programs, thus 
far shows an encouraging trend of positive outcomes in term of 
sensory-motor, mental, and social well-being, in children and 
adolescents with particular conditions/disorders of the nervous 
system. To gain larger and more satisfactory results, MI protocols 
should provide as much treatment as possible in terms of frequency, 
duration, and intensity of the most appropriate form of MI training 
required by the clinical condition.

Neurosciences supply fascinating evidence revealing how newer 
interventions could contribute to change the brain structurally and 
functionally; however, with no complete understanding of how an 
intervention acts, as in the case of MI, to ascribe the causal relationship 
still remains difficult.

In this respect, the possibility to evaluate the quality of MI in 
different neurodevelopmental disorders could uncover more 
neurobiological insights explaining why effectiveness of MI differs 
for each of them. It might be obvious to think that the greater the 
involvement of the motor areas, the greater the effectiveness of MI 
intervention. However, as discussed in this article, such an 
explanation would be considered rough. Certainly, the reason for 
such differing effectiveness should be sought in the complexity of 
MI networks and pathways which interplay with the heterogeneous 
pathogenic mechanisms underlying some of the 
neurodevelopmental disorders for which MI interventions are 
effective (e.g., cerebral palsy spectrum disorder, autism spectrum 
disorders) (Ruggieri, 2024).

MI assessment offers interesting opportunities for modeling 
feasible therapeutic interventions to promote motor learning or 
re-learning, ameliorate psychomotor skills and enhance cognitive 
performances, as proven in a consistent group of children with 
neurological disorders. These results provide also additional evidence 
on the assumption that exercises based on MI might be also combined 
to physical education and sport activities in non-therapeutic settings 

letting a quantitative and qualitative extension of interventions in the 
everyday life of disabled children.

The clinical use of MI for pediatric neurorehabilitive purposes, is 
however highly dependent on the complexity of MI mechanisms, which 
are specifically related to the underlying neurodevelopmental disorder. 
Thus, the precise neuropathophysiology of the treated child must 
be contemplated for tailored MI-based neurorehabilitation programs.
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